MITSUBISHI IGBT MODULES
CM400HA-34H
HIGH POWER SWITCHING USE
INSULA TED TYPE
A
B
R - M4 THD
(2 TYP.)
A B
Outline Drawing and Circuit Diagram
Dimensions Inches Millimeters
A 4.49 114.0
B 3.66±0.01 93.0±0.25
C 1.50+0.04/-0.02 38.0+1.0/-0.5
D 1.26 32.0
E 1.18+0.04/-0.02 30.0+1.0/-0.5
F 1.02 26.0
G 1.0 25.5
H 0.83 21.0
H
H
E
E
G
N
G
E
E
J
EC
L
Dimensions Inches Millimeters
J 0.71 18.0
K 0.57 14.5
L 0.43 11.0
M 0.41 10.5
N 0.35 9.0
P M8 Metric M8
Q 0.26 Dia. Dia. 6.5
R M4 Metric M4
Q - DIA.
(4 TYP.)
P - M8 THD
(2 TYP.)
G
Description:
Mitsubishi IGBT Modules are
M
DF
M
K
designed for use in switching applications. Each module consists of
one IGBT in a single configuration
with a reverse-connected super-fast
recovery free-wheel diode. All components and interconnects are isolated from the heat sinking base-
C
plate, offering simplified system assembly and thermal management.
Features:eatures:
u Low Drive Power
u Low V
CE(sat)
u Discrete Super-Fast Recovery
C
Free-Wheel Diode
u High Frequency Operation
u Isolated Baseplate for Easy
Heat Sinking
Applications:
u AC Motor Control
u Auxilliary Inverter for Traction
u UPS
u Welding Power Supplies
Ordering Information:
Example: Select the complete part
module number you desire from
the table below -i.e. CM400HA-34H
is a 1700V (V
), 400 Ampere
CES
Single IGBT Module.
Type Current Rating V
Amperes Volts (x 50)
CM 400 34
CES
Sep.1998
MITSUBISHI IGBT MODULES
CM400HA-34H
HIGH POWER SWITCHING USE
INSULA TED TYPE
Absolute Maximum Ratings, Tj = 25 °C unless otherwise specified
Ratings Symbol CM600HU-12H Units
Junction T emperature T
Storage T emperature T
Collector-Emitter Voltage (G-E SHORT) V
Gate-Emitter Voltage (C-E SHORT) V
Collector Current (Tc = 25°C) I
Peak Collector Current (Tj ≤ 150°C) I
Emitter Current** (Tc = 25°C) I
Peak Emitter Current** I
Maximum Collector Dissipation (Tc = 25°C) P
j
stg
CES
GES
C
CM
E
EM
c
Mounting Torque, M8 Main Terminal – 8.83~10.8 N · m
Mounting Torque, M6 Mounting – 1.96~2.94 N · m
Mounting Torque, M4 Terminal – 0.98~1.47 N · m
Weight – 980 Grams
Isolation Voltage (Main Terminal to Baseplate, AC 1 min.) V
* Pulse width and repetition rate should be such that the device junction temperature (Tj) does not exceed T
**Represents characteristics of the anti-parallel, emitter-to-collector free-wheel diode (FWDi).
iso
j(max)
rating.
-40 to 150 °C
-40 to 125 °C
1700 Volts
±20 Volts
400 Amperes
800* Amperes
400 Amperes
800* Amperes
4100 Watts
4000 Vrms
Static Electrical Characteristics, Tj = 25 °C unless otherwise specified
Characteristics Symbol Test Conditions Min. Ty p. Max. Units
Collector-Cutoff Current I
Gate Leakage Current I
Gate-Emitter Threshold Voltage V
Collector-Emitter Saturation Voltage V
CES
GES
GE(th)
CE(sat)
VCE = V
VGE = V
, VGE = 0V – – 4 mA
CES
, VCE = 0V – – 0.5 µA
GES
IC = 40mA, VCE = 10V 4.5 6.0 7.5 Volts
IC = 400A, VGE = 15V – 2.7 3.7** Volts
IC = 400A, VGE = 15V, Tj = 150°C – – –* Volts
Total Gate Charge Q
Emitter-Collector Voltage V
** Pulse width and repetition rate should be such that device junction temperature rise is negligible.
G
EC
VCC = 750V, IC = 400A, VGE = 15V – 2900 – nC
IE = 400A, VGE = 0V – – 3.4 Volts
Dynamic Electrical Characteristics, Tj = 25 °C unless otherwise specified
Characteristics Symbol Test Conditions Min. Ty p. Max. Units
Input Capacitance C
Output Capacitance C
Reverse Transfer Capacitance C
Resistive Turn-on Delay T ime t
d(on)
Load Rise Time t
Switching Turn-off Delay Time t
d(off)
Times Fall Time t
Diode Reverse Recovery Time t
Diode Reverse Recovery Charge Q
ies
oes
res
r
f
rr
rr
VGE = 0V , VCE = 10V – – 20 nF
VCC = 750V , IC = 400A, – – 1500 ns
V
= V
GE1
= 15V , RG = 10Ω – – 1500 ns
GE2
IE = 400A, diE/dt = –800A/µs – – 400 ns
IE = 400A, diE/dt = –800A/µs – 7.0 – µC
––85nF
– – 15 nF
– – 900 ns
– – 800 ns
Thermal and Mechanical Characteristics, Tj = 25 °C unless otherwise specified
Characteristics Symbol Test Conditions Min. Ty p. Max. Units
Thermal Resistance, Junction to Case R
Thermal Resistance, Junction to Case R
Contact Thermal Resistance R
th(j-c)
th(j-c)
th(c-f)
Per Module, Thermal Grease Applied – – 0.023 °C/W
Per IGBT – – 0.030 °C/W
Per FWDi – – 0.060 °C/W
Sep.1998