MITSUBISHI IGBT MODULES
CM400HA-24H
HIGH POWER SWITCHING USE
INSULATED TYPE
A
B
KFJH
Q - THD
(2 TYP.)
D
C
J
Description:
Mitsubishi IGBT Modules
are designed for use in switching
applications. Each module consists
of one IGBT in a single configuration with a reverse-connected super-fast recovery free-wheel diode.
All components and interconnects
are isolated from the heat sinking
baseplate, offering simplified system assembly and thermal management.
G
R - THD
(2 TYP.)
P - DIA.
M
L
(4 TYP.)
E
E
E
G
Outline Drawing and Circuit Diagram
Dimensions Inches Millimeters
A 4.21 107.0
B 3.661±0.01 93.0±0.25
C 2.44 62.0
D 1.89±0.01 48.0±0.25
E 1.42+0.04/-0.02 36.0+1.0/-0.5
F 1.14 29.0
G 1.02+0.04/-0.2 25.8+1.0/-0.5
H 0.94 24.0
N
C
Dimensions Inches Millimeters
J 0.79 20.0
K 0.69 17.5
L 0.63 16.0
M 0.35 9.0
N 0.28 7.0
P 0.26 Dia. Dia. 6.5
Q M6 Metric M6
R M4 Metric M4
Features:
u Low Drive Power
u Low V
CE(sat)
u Discrete Super-Fast Recovery
Free-Wheel Diode
u High Frequency Operation
u Isolated Baseplate for Easy
Heat Sinking
Applications:
u AC Motor Control
u Motion/Servo Control
u UPS
u Welding Power Supplies
Ordering Information:
Example: Select the complete part
module number you desire from
the table below -i.e. CM400HA24H is a 1200V (V
), 400 Am-
CES
pere Single IGBT Module.
Type Current Rating V
Amperes Volts (x 50)
CM 400 24
CES
Sep.1998
MITSUBISHI IGBT MODULES
CM400HA-24H
HIGH POWER SWITCHING USE
INSULATED TYPE
Absolute Maximum Ratings, Tj = 25 °C unless otherwise specified
Ratings Symbol CM600HU-12H Units
Junction T emperature T
Storage T emperature T
Collector-Emitter Voltage (G-E SHORT) V
Gate-Emitter Voltage (C-E SHORT) V
Collector Current (Tc = 25°C) I
Peak Collector Current (Tj ≤ 150°C) I
Emitter Current** (Tc = 25°C) I
Peak Emitter Current** I
Maximum Collector Dissipation (Tc = 25°C) P
j
stg
CES
GES
C
CM
E
EM
c
Mounting Torque, M6 Main Terminal – 1.96~2.94 N · m
Mounting Torque, M6 Mounting – 1.96~2.94 N · m
Mounting Torque, M4 Terminal – 0.98~1.47 N · m
Weight – 400 Grams
Isolation Voltage (Main Terminal to Baseplate, AC 1 min.) V
* Pulse width and repetition rate should be such that the device junction temperature (Tj) does not exceed T
**Represents characteristics of the anti-parallel, emitter-to-collector free-wheel diode (FWDi).s not exceed T
j(max)
j(max)
rating.
rating.
iso
-40 to 150 °C
-40 to 125 °C
1200 Volts
±20 Volts
400 Amperes
800* Amperes
400 Amperes
800* Amperes
2800 Watts
2500 Vrms
Static Electrical Characteristics, Tj = 25 °C unless otherwise specified
Characteristics Symbol Test Conditions Min. Typ. Max. Units
Collector-Cutoff Current I
Gate Leakage Current I
Gate-Emitter Threshold Voltage V
Collector-Emitter Saturation Voltage V
CES
GES
GE(th)
CE(sat)
VCE = V
VGE = V
, VGE = 0V – – 2.0 mA
CES
, VCE = 0V – – 0.5 µA
GES
IC = 40mA, VCE = 10V 4.5 6.0 7.5 Volts
IC = 400A, VGE = 15V – 2.5 3.4** Volts
IC = 400A, VGE = 15V, Tj = 150°C – 2.25 – Volts
Total Gate Charge Q
Emitter-Collector Voltage V
** Pulse width and repetition rate should be such that device junction temperature rise is negligible.
G
EC
VCC = 600V, IC = 400A, VGE = 15V – 2000 – nC
IE = 400A, VGE = 0V – – 3.4 Volts
Dynamic Electrical Characteristics, Tj = 25 °C unless otherwise specified
Characteristics Symbol Test Conditions Min. Typ. Max. Units
Input Capacitance C
Output Capacitance C
Reverse Transfer Capacitance C
Resistive Turn-on Delay Time t
d(on)
Load Rise Time t
Switching Turn-off Delay Time t
Times Fall Time t
Diode Reverse Recovery Time t
Diode Reverse Recovery Charge Q
ies
oes
res
r
d(off)
f
rr
rr
VGE = 0V , VCE = 10V – – 28 nF
VCC = 600V, IC = 400A – – 500 ns
V
= V
GE1
= 15V, RG = 0.78Ω – – 350 ns
GE2
IE = 400A, diE/dt = –800A/µs – – 250 ns
IE = 400A, diE/dt = –800A/µs – 2.97 – µC
– – 80 nF
– – 16 nF
– – 300 ns
– – 350 ns
Thermal and Mechanical Characteristics, Tj = 25 °C unless otherwise specified
Characteristics Symbol Test Conditions Min. Typ. Max. Units
Thermal Resistance, Junction to Case R
Thermal Resistance, Junction to Case R
Contact Thermal Resistance R
th(j-c)
th(j-c)
th(c-f)
Per Module, Thermal Grease Applied – – 0.040 °C/W
Per IGBT – – 0.045 °C/W
Per FWDi – – 0.09 °C/W
Sep.1998