MITSUBISHI IGBT MODULES
CM350DU-5F
HIGH POWER SWITCHING USE
INSULA TED TYPE
A
Point
B
E
K(4 - Mounting
Holes)
T
Measured
C
C
D
F
3 - M6 NUTS
L
CM
E2
H
J
H
Description:
Mitsubishi IGBT Modules are de-
R
R
G
signed for use in switching applications. Each module consists of
TAB #110, t = 0.5
MPPM
M
N
two IGBTs in a half-bridge configuration with each transistor having
a reverse-connected super-fast recovery free-wheel diode. All com-
Q
ponents and interconnects are isolated from the heat sinking baseplate, offering simplified system
assembly and thermal management.
G2
E2
C1C2E1
E1
G1
Features:
u Low Drive Power
u Low V
CE(sat)
u Discrete Super-Fast Recovery
Free-Wheel Diode
u High Frequency Operation
u Isolated Baseplate for Easy
Heat Sinking
Outline Drawing and Circuit Diagram
Dimensions Inches Millimeters
A 4.33 110.0
B 3.66±0.01 93.0±0.25
C 3.15 80.0
D 2.44±0.01 62.0±0.25
E 0.55 14.0
F 0.86 21.75
G 0.94 24.0
H 0.24 6.0
Dimensions Inches Millimeters
J 0.59 15.0
K 0.26 Dia. 6.5 Dia.
L 1.14 +0.04/-0.02 29 +1.0/-0.5
M 0.71 18.0
N 0.33 8.5
P 0.28 7.0
Q 0.83 21.0
R 0.98 25.0
Applications:
u UPS
u Forklift
Ordering Information:
Example: Select the complete
module number you desire from
the table - i.e. CM350DU-5F is a
250V (V
), 350 Ampere Trench
CES
Gate Design Dual IGBT Module.
Type Amperes Volts (x 50)
Current Rating V
CM 350 5
CES
Sep.1998
MITSUBISHI IGBT MODULES
CM350DU-5F
HIGH POWER SWITCHING USE
INSULA TED TYPE
Absolute Maximum Ratings, Tj = 25 °C unless otherwise specified
Ratings Symbol CM350DU-5F Units
Junction T emperature T
Storage T emperature T
Collector-Emitter Voltage (G-E SHOR T) V
Gate-Emitter Voltage (C-E SHOR T) V
Collector Current (Tc = 25°C) I
Peak Collector Current I
Emitter Current** (Tc = 25°C) I
Peak Emitter Current** I
Maximum Collector Dissipation (Tc = 25°C, Tj ≤ 150°C) P
j
stg
CES
GES
C
CM
E
EM
c
Mounting Torque, M6 Main Terminal – 1.96 ~ 2.94 N · m
Mounting Torque, M6 Mounting – 1.96 ~ 2.94 N · m
Weight – 520 Grams
Isolation Voltage (Main Terminal to Baseplate, AC 1 min.) V
* Pulse width and repetition rate should be such that the device junction temperature (Tj) does not exceed T
**Represents characteristics of the anti-parallel, emitter-to-collector free-wheel diode (FWDi).
iso
-40 to 150 °C
-40 to 125 °C
250 Volts
±20 Volts
350 Amperes
700 Amperes
350 Amperes
700* Amperes
960 Watts
2500 Vrms
rating.
j(max)
Static Electrical Characteristics, Tj = 25 °C unless otherwise specified
Characteristics Symbol Test Conditions Min. Typ. Max. Units
Collector-Cutoff Current I
Gate Leakage Current I
Gate-Emitter Threshold Voltage V
Collector-Emitter Saturation Voltage V
CES
GES
GE(th)
CE(sat)
VCE = V
VGE = V
, VGE = 0V – – 1 mA
CES
, VCE = 0V – – 0.5 µA
CES
IC = 35mA, VCE = 10V 3.0 4.0 5.0 Volts
IC = 350A, VGE = 10V , Tj = 25°C – 1.2 1.7 Volts
IC = 350A, VGE = 10V , Tj = 125°C – 1.10 – Volts
Total Gate Charge Q
Emitter-Collector Voltage* V
* Pulse width and repetition rate should be such that the device junction temperature (Tj) does not exceed T
G
EC
VCC = 100V , IC = 350A, VGE = 10V – 1320 – nC
IE = 350A, VGE = 0V – – 2.0 Volts
rating.
j(max)
Dynamic Electrical Characteristics, Tj = 25 °C unless otherwise specified
Characteristics Symbol Test Conditions Min. Typ. Max. Units
Input Capacitance C
Output Capacitance C
Reverse Transfer Capacitance C
Resistive Turn-on Delay Time t
d(on)
Load Rise Time t
Switching Turn-off Delay Time t
d(off)
Times Fall Time t
Diode Reverse Recovery Time t
Diode Reverse Recovery Charge Q
ies
oes
res
r
f
rr
rr
VCE = 10V, VGE = 0V – – 4.5 nF
VCC = 100V, IC = 350A, – – 1100 ns
V
= V
GE1
= 10V, – – 2400 ns
GE2
RG = 7.1Ω, Resistive – – 900 ns
Load Switching Operation – – 500 ns
IE = 350A, diE/dt = -700A/µs – – 300 ns
IE = 350A, diE/dt = -700A/µs – 5.7 – µC
––99nF
– – 3.4 nF
Thermal and Mechanical Characteristics, Tj = 25 °C unless otherwise specified
Characteristics Symbol Test Conditions Min. Typ. Max. Units
Thermal Resistance, Junction to Case R
Thermal Resistance, Junction to Case R
Contact Thermal Resistance R
th(j-c)
th(j-c)
th(c-f)
Per Module, Thermal Grease Applied – 0.010 – °C/W
Per IGBT – – 0.17 °C/W
Per Free-Wheel Diode – – 0.28 °C/W
Sep.1998