This document is a condensed version of the full Product Reference Manual.
This version only includes the Maxtor Information about the Product. Information
that can be found in the ANSI specification is not included in this document to
reduce its over all size. Also eliminated are the Table of Contents and Glossary.
This condensed version is created to allow faster downloading from Maxtor's
Internet home page and MaxFax services.
Thank you for your interest in the Maxtor DiamondMax™ 2880 AT hard disk drives. This manual provides
technical information for OEM engineers and systems integrators regarding the installation and use of DiamondMax
hard drives
the Maxtor Customer Service Center at 800-2MAXTOR or 408-432-1700.
Before unpacking the hard drive, please review Sections 1 through 4.
Drive repair should be performed only at an authorized repair center. For repair information, contact
CAUTION
Maxtor DiamondMax 2880 hard drives are precision products. Failure to
follow these precautions and guidelines outlined here may lead to
product failure, damage and invalidation of all warranties.
1
2
3
4
5
BEFORE unpacking or handling a drive, take all proper electro-static discharge (ESD)
precautions, including personnel and equipment grounding. Stand-alone drives are sensitive to
ESD damage.
BEFORE removing drives from their packing material, allow them to reach room
temperature.
During handling, NEVER drop, jar, or bump a drive.
Once a drive is removed from the Maxtor shipping container, IMMEDIATELY secure the drive
through its mounting holes within a chassis. Otherwise, store the drive on a padded, grounded,
antistatic surface.
NEVER switch DC power onto the drive by plugging an electrically live DC source cable into
the drive's connector. NEVER connect a live bus to the drive's interface connector.
Please do not remove or cover up Maxtor factory-installed drive labels.
They contain information required should the drive ever need repair.
DIAMONDMAX 2880 – INTRODUCTION
SECTION 1
Introduction
Maxtor Corporation
Maxtor Corporation has been providing high-quality computer storage products since 1982. Along the way,
we’ve seen many changes in data storage needs. Not long ago, only a handful of specific users needed more than
a couple hundred megabytes of storage. Today, downloading from the Internet and CD-ROMs, multimedia,
networking and advanced office applications are driving storage needs even higher. Even home PC applications
need capacities measured in gigabytes, not megabytes.
Products
Maxtor’s products meet those demanding storage capacity requirements with room to spare. They feature
proven compatibility and reliability. While DiamondMax™ 2880 is the latest addition to our family of high
performance desktop hard drives, the DiamondMax™ 2160 and DiamondMax™ 1750 series hard drives
deliver industry-leading capacity, performance and value for many PC applications.
Support
No matter which capacity, all Maxtor hard drives are supported by our commitment to total customer
satisfaction and our No Quibble
(http://www.maxtor.com) – puts you in touch with either technical support or customer service. We’ll
provide you the information you need quickly, accurately and in the form you prefer – a fax, a downloaded
file or a conversation with a representative.
®
Service guarantee. One call – or a visit to our home page on the Internet
Manual Organization
This hard disk drive reference manual is organized in the following method:
If there is a conflict between text and tables, the table shall be accepted as being correct.
Key Words
The names of abbreviations, commands, fields and acronyms used as signal names are in all uppercase type
(e.g., IDENTIFY DRIVE). Fields containing only one bit are usually referred to as the “name” bit instead of
the “name” field.
Names of drive registers begin with a capital letter (e.g., Cylinder High register).
Numbering
Numbers that are not followed by a lowercase “b” or “h” are decimal values. Numbers that are followed by
a lowercase “b” (e.g., 01b) are binary values. Numbers that are followed by a lowercase “h” (e.g., 3Ah) are
hexadecimal values.
Signal Conventions
Signal names are shown in all uppercase type.
All signals are either high active or low active signals. A dash character (-) at the end of a signal name
indicates that the signal is low active. A low active signal is true when it is below ViL and is false when it is
above ViH. A signal without a dash at the end indicates that the signal is high active. A high active signal is
true when it is above ViH and is false when it is below ViL.
When a signal is asserted, it means the signal is driven by an active circuit to its true state.
When a signal is negated, it means the signal is driven by an active circuit to its false state.
When a signal is released, it means the signal is not actively driven to any state. Some signals have bias
circuitry that pull the signal to either a true or false state when no signal driver is actively asserting or negating
the signal. These instances are noted under the description of the signal.
1 – 5
PRODUCT DESCRIPTION
SECTION 2
Product Description
Maxtor DiamondMax™ 2880 AT disk drives are 1-inch high, 3.5-inch diameter random access storage devices
which incorporate an on-board ATA/Ultra DMA controller. High capacity is achieved by a balanced
combination of high areal recording density and the latest data encoding and servo techniques.
Maxtor's latest advancements in electronic packaging and integration methods have lowered the drive's power
consumption and increased its reliability. Advanced magneto-resistive read/write heads, an state-of-the-art head/
disk assembly using an integrated motor/spindle design allow up to four disks in a 3.5-inch package.
Exceptionally high data transfer rates and 9.0 ms access times make these performance series disk drives especially
well-suited to high speed desktop and server applications.
DiamondMax 2880 Key Features
ANSI ATA-4 compliant PIO Mode 4 interface (Enhanced IDE)
Supports Ultra DMA Mode 2 for up to 33 MB/sec data transfers
256 KB buffer with multi-adaptive cache manager
9.0 ms seek time
Zone density and I.D.-less recording
High reliability with
Outstanding shock resistance at 200 Gs
High durability with 50K constant start/stop cycles
Extended data integrity with ECC protected data and fault tolerant servo synchronization fields
Supports EPA Energy Star Standards (Green PC Friendly) with ATA powering savings commands
Auto park and lock actuator mechanism
Low power consumption
S.M.A.R.T. Capability
Note: Maxtor defines one megabyte as 106 or one million bytes and one gigabyte as 109 or one billion bytes.
>
500,000 hour MTBF
2 – 1
PRODUCT DESCRIPTION
Product Features
Functional / Interface
Maxtor DiamondMax™ 2880 hard drives contain all necessary mechanical and electronic parts to interpret control
signals and commands from an AT-compatible host computer. See Section 3 Product Specifications, for complete
drive specifications.
Zone Density Recording
The disk capacity is increased with bit density management – common with Zone Density Recording. Each
disk surface is divided into 16 circumferential zones. All tracks within a given zone contain a constant
number of data sectors. The number of data sectors per track varies in different zones; the outermost zone
contains the largest number of data sectors and the innermost contains the fewest.
Read/Write Multiple Mode
This mode is implemented per ANSI ATA/ATAPI-4 specification. Read/Write Multiple allows the host to
transfer a set number of sectors without an interrupt request between them, reducing transfer process
overhead and improving host performance.
UltraDMA - Mode 2
Maxtor DiamondMax 2880 hard drives fully comply with the new ANSI Ultra DMA protocol, which greatly
improves overall AT interface performance by significantly improving burst and sustained data throughput.
Multi-word DMA (EISA Type B) - Mode 2
Supports multi-word Direct Memory Access (DMA) EISA Type B mode transfers.
Sector Address Translation
All DiamondMax 2880 drives feature a universal translate mode. In an AT/EISA-class system, the drive may
be configured to any specified combination of cylinders, heads and sectors (within the range of the drive's
formatted capacity). DiamondMax 2880 drives power-up in a translate mode:
LEDOMLYCDHTPSenoZLmocPWYTICAPAC
8D25119233,226136)*()*(BM025,11
7D80019045,916136)*()*(BM080,01
6D54809383,616136)*()*(BM554,8
6D04809672,616136)*()*(BM004,8
5D02709759,316136)*()*(BM002,7
5D84609555,216136)*()*(BM084,6
4D67509661,116136)*()*(BM067,5
4D01509529,96136)*()*(BM221,5
3D23409473,86136)*()*(BM023,4
2D88209385,56136)*()*(BM088,2
2D65209069,46136)*()*(BM065,2
(*) The fields LZone (Landing Zone) and WPcom (Write Pre-comp) are not used by the Maxtor hard drive
and the values may be either 0 or the values set by the BIOS. All capacities listed in the above table are based
on 106 or one million bytes.
2 – 2
PRODUCT DESCRIPTION
Logical Block Addressing
The Logical Block Address (LBA) mode can only be utilized in systems that support this form of translation.
The cylinder, head and sector geometry of the drive, as presented to the host, differs from the actual physical
geometry. The host AT computer may access a drive of set parameters: number of cylinders, heads and
sectors per track, plus cylinder, head and sector addresses. However, the drive can’t use these host parameters
directly because of zoned recording techniques. The drive translates the host parameters to a set of logical
internal addresses for data access.
The host drive geometry parameters are mapped into an LBA based on this formula:
LBA= (HSCA - 1) + HHDA x HSPT + HNHD x HSPT x HCYA(1)
whereHSCA = Host Sector Address, HHDA = Host Head Address
= (HSCA - 1) + HSPT x (HHDA + HNHD x HCYA)(2)
HCYA = Host Cylinder Address, HNHD = Host Number of Heads
HSPT = Host Sectors per Track
The LBA is checked for violating the drive capacity. If it does not, the LBA is converted to physical drive
cylinder, head and sector values. The physical address is then used to access or store the data on the disk and
for other drive related operations.
Defect Management Zone (DMZ)
Each drive model has a fixed number of spare sectors per drive, all of which are located at the end of the
drive. Upon detection of a bad sector that has been reassigned, the next sequential sector is used.
For example, if sector 3 is flagged, data that would have been stored there is “pushed down” and recorded
in sector 4. Sector 4 then effectively becomes sector 3, as sequential sectors are “pushed down” across the
entire drive. The first spare sector makes up for the loss of sector 3, and so maintains the sequential order of
data. This push down method assures maximum performance.
On-the-Fly Hardware Error Correction Code (ECC)
33 bits, single burst, guaranteed
Software ECC Correction
81 bits, single burst, guaranteed
33 bits, double bursts, guaranteed
Automatic Park and Lock Operation
Immediately following power down, dynamic braking of the spinning disks delays momentarily allowing the
read/write heads to move to an inner mechanical stop. A small fixed magnet holds the rotary actuator in
place as the disk spins down. The rotary actuator is released only when power is again applied.
2 – 3
PRODUCT DESCRIPTION
Cache Management
Buffer Segmentation
The data buffer is organized into two segments: the data buffer and the micro controller scratch pad.
The data buffer is dynamically allocated for read and write data depending on the commands received.
A variable number of read and write buffers may exist at the same time.
Read-Ahead Mode
Normally, this mode is active. Following a read request, disk read-ahead begins on the first sector and
continues sequentially until the allocated buffer is full. If a read request is received during the read-ahead
operation, the buffer is examined to determine if the request is in the cache. If a cache hit occurs, readahead mode continues without interruption and the host transfer begins immediately.
Automatic Write Reallocation (AWR)
This feature is part of the write cache and reduces the risk of data loss during deferred write operations. If a
disk error occurs during the disk write process, the disk task stops and the suspect sector is reallocated to a
pool of alternate sectors located at the end of the drive. Following reallocation, the disk write task continues
until it is complete.
Write Cache Stacking
Normally, this mode is active. Write cache mode accepts the host write data into the buffer until the buffer
is full or the host transfer is complete. A command complete interrupt is generated at the end of the transfer.
A disk write task begins to store the host data to disk. Host write commands continue to be accepted and
data transferred to the buffer until either the write command stack is full or the data buffer is full. The drive
may reorder write commands to optimize drive throughput.
2 – 4
Loading...
+ 19 hidden pages
You need points to download manuals.
1 point = 1 manual.
You can buy points or you can get point for every manual you upload.