Linear Technology LTC1598IG, LTC1598CG, LTC1594IS, LTC1594CS Datasheet

FEATURES
LTC1594/LTC1598
4- and 8-Channel,
Micropower Sampling
12-Bit Serial I/O A/D Converters
U
DESCRIPTION
12-Bit Resolution
Auto Shutdown to 1nA
Low Supply Current: 320µA Typ
Guaranteed ±3/4LSB Max DNL
Single Supply 5V Operation (3V Versions Available: LTC1594L/LTC1598L)
Multiplexer: 4-Channel MUX (LTC1594)
8-Channel MUX (LTC1598)
Separate MUX Output and ADC Input Pins
MUX and ADC May Be Controlled Separately
Sampling Rate: 16.8ksps
I/O Compatible with QSPI, SPI and MICROWIRETM, etc.
Small Package: 16-Pin Narrow SO (LTC1594)
24-Pin SSOP (LTC1598)
U
APPLICATIONS
Pen Screen Digitizing
Battery-Operated Systems
Remote Data Acquisition
Isolated Data Acquisition
Battery Monitoring
Temperature Measurement
The LTC®1594/LTC1598 are micropower, 12-bit sampling A/D converters that feature 4- and 8-channel multiplexers, respectively. They typically draw only 320µA of supply current when converting and automatically power down to a typical supply current of 1nA between conversions. The LTC1594 is available in a 16-pin SO package and the LTC1598 is packaged in a 24-pin SSOP. Both operate on a 5V supply. The 12-bit, switched-capacitor, successive approximation ADCs include a sample-and-hold.
On-chip serial ports allow efficient data transfer to a wide range of microprocessors and microcontrollers over three or four wires. This, coupled with micropower consump­tion, makes remote location possible and facilitates trans­mitting data through isolation barriers.
The circuit can be used in ratiometric applications or with an external reference. The high impedance analog inputs and the ability to operate with reduced spans (to 1.5V full scale) allow direct connection to sensors and transducers in many applications, eliminating the need for gain stages.
, LTC and LT are registered trademarks of Linear Technology Corporation.
MICROWIRE is a trademark of National Semiconductor Corporation.
U
TYPICAL APPLICATION
24µW, 4-Channel, 12-Bit ADC Samples at 200Hz and Runs Off a 5V Supply
OPTIONAL
ADC FILTER
ANALOG
INPUTS
0V TO 5V
RANGE
20 21 22 23 24
1 2 3
8 COM
CH0 CH1 CH2 CH3 CH4 CH5 CH6 CH7
1k
1µF
8-CHANNEL
MUX
18 17 16 15, 19
ADCINMUXOUT
+
V
REFVCC
12-BIT
SAMPLING
ADC
CSADC
CSMUX
GND
4, 9
CLK
D
IN
D
OUT
NC NC
1594/98 TA01
10 6 5, 14 7 11
12 13
5V
1µF
SERIAL DATA LINK
MICROWIRE AND
SPI COMPATABLE
MPU
Supply Current vs Sample Rate
1000
TA = 25°C
= 5V
V
CC
= 5V
V
REF
= 320kHz
f
CLK
100
10
SUPPLY CURRENT (µA)
1
0.1
1 10 100
SAMPLE FREQUENCY (kHz)
1594/98 TA02
1
LTC1594/LTC1598
WW
W
U
ABSOLUTE MAXIMUM RATINGS
(Notes 1, 2)
Supply Voltage (VCC) to GND................................... 12V
Voltage
Analog Reference .................... –0.3V to (VCC + 0.3V)
Analog Inputs .......................... –0.3V to (VCC + 0.3V)
Digital Inputs .........................................– 0.3V to 12V
Digital Output .......................... –0.3V to (VCC + 0.3V)
U
W
PACKAGE/ORDER INFORMATION
ORDER PART
NUMBER
TOP VIEW
1
CH0
2
CH1
3
CH2
4
CH3
5
ADCIN
6
V
REF
7
COM
8
GND
16-LEAD PLASTIC SO
T
JMAX
16 15 14 13 12 11 10
9
S PACKAGE
= 125°C, θJA = 120°C/ W
V
CC
MUXOUT D
IN
CSMUX CLK V
CC
D
OUT
CSADC
LTC1594CS LTC1594IS
Power Dissipation.............................................. 500mW
Operating Temperature Range
LTC1594CS/LTC1598CG ......................... 0°C to 70°C
LTC1594IS/LTC1598IG ..................... –40°C to 85°C
Storage Temperature Range ................. –65°C to 150°C
Lead Temperature (Soldering, 10 sec).................. 300°C
U
ORDER PART
NUMBER
LTC1598CG LTC1598IG
1
CH5
2
CH6
3
CH7
4
GND
5
CLK
6
CSMUX
7
D
IN
8
COM
9
GND
10
CSADC
11
D
OUT
12
NC
24-LEAD PLASTIC SSOP
T
JMAX
TOP VIEW
24 23 22 21 20 19 18 17 16 15 14 13
G PACKAGE
= 150°C, θJA = 110°C/ W
CH4 CH3 CH2 CH1 CH0 V
CC
MUXOUT ADCIN V
REF
V
CC
CLK NC
Consult factory for Military grade parts.
WW
RECOM ENDED OPERATING CONDITIONS
UU
UU
(Note 5)
SYMBOL PARAMETER CONDITIONS MIN TYP MAX UNITS
V
CC
f
CLK
t
CYC
t
hDI
t
suCS
t
suDI
t
WHCLK
t
WLCLK
t
WHCS
t
WLCS
Supply Voltage (Note 3) 4.5 5.5 V Clock Frequency VCC = 5V (Note 4) 320 kHz Total Cycle Time f
= 320kHz 60 µs
CLK
Hold Time, DIN After CLK VCC = 5V 150 ns Setup Time CS Before First CLK (See Operating Sequence) VCC = 5V 1 µs Setup Time, DIN Stable Before CLK VCC = 5V 400 ns CLK High Time VCC = 5V 1 µs CLK Low Time VCC = 5V 1 µs CS High Time Between Data Transfer Cycles f CS Low Time During Data Transfer f
= 320kHz 16 µs
CLK
= 320kHz 44 µs
CLK
2
LTC1594/LTC1598
UW
CONVERTER AND MULTIPLEXER CHARACTERISTICS
PARAMETER CONDITIONS MIN TYP MAX MIN TYP MAX UNITS
Resolution (No Missing Codes) 12 12 Bits Integral Linearity Error (Note 6) ±3 ±3LSB Differential Linearity Error ±3/4 ±1LSB Offset Error ±3 ±3LSB Gain Error ±8 ±8LSB REF Input Range (Notes 7, 8) 1.5V to V Analog Input Range (Notes 7, 8) –0.05V to VCC + 0.05V V MUX Channel Input Leakage Current Off Channel ±200 ±200 nA MUXOUT Leakage Current Off Channel ±200 ±200 nA ADCIN Input Leakage Current (Note 9) ±1 ±1 µA
U
(Note 5)
LTC1594CS/LTC1598CG LTC1594IS/LTC1598IG
+ 0.05V V
CC
UW
DYNAMIC ACCURACY
SYMBOL PARAMETER CONDITIONS MIN TYP MAX UNITS
S/(N + D) Signal-to-Noise Plus Distortion Ratio 1kHz Input Signal 71 dB THD Total Harmonic Distortion (Up to 5th Harmonic) 1kHz Input Signal – 78 dB SFDR Spurious-Free Dynamic Range 1kHz Input Signal 80 dB
Peak Harmonic or Spurious Noise 1kHz Input Signal – 80 dB
(Note 5) f
SMPL
= 16.8kHz
U
DIGITAL AND DC ELECTRICAL CHARACTERISTICS
SYMBOL PARAMETER CONDITIONS MIN TYP MAX UNITS
V
IH
V
IL
I
IH
I
IL
V
OH
V
OL
I
OZ
I
SOURCE
I
SINK
R
REF
I
REF
I
CC
High Level Input Voltage VCC = 5.25V 2.6 V Low Level Input Voltage VCC = 4.75V 0.8 V High Level Input Current VIN = V Low Level Input Current VIN = 0V –2.5 µA High Level Output Voltage VCC = 4.75V, IO = 10µA 4.0 4.64 V
Low Level Output Voltage VCC = 4.75V, IO = 1.6mA 0.4 V Hi-Z Output Leakage CS = High ±3 µA Output Source Current V Output Sink Current V Reference Input Resistance CS = V
Reference Current CS = V
Supply Current CS = VCC, CLK = VCC, DIN = V
CC
VCC = 4.75V, IO = 360µA 2.4 4.62 V
= 0V –25 mA
OUT
= V
OUT
CC
IH
CS = V
IL CC
760µs, f
t
CYC
t
60µs, f
CYC
760µs, f
t
CYC
t
60µs, f
CYC
25kHz 90 µA
CLK
320kHz 90 140 µA
CLK
25kHz 320 µA
CLK
320kHz 320 690 µA
CLK
CC
(Note 5)
2.5 µA
45 mA
5000 M
55 k
0.001 2.5 µA
0.001 ±5 µA
3
LTC1594/LTC1598
TEMPERATURE (°C)
–55
92.0
REFERENCE CURRENT (µA)
92.5
93.5
94.0
94.5
–15
25
45 125
1594/98 G03
93.0
–35 5
65
85
105
95.0 VCC = V
REF
= 5V
f
SMPL
= 16.8kHz
f
CLK
= 320kHz
AC CHARACTERISTICS
(Note 5)
SYMBOL PARAMETER CONDITIONS MIN TYP MAX UNITS
t
SMPL
f
SMPL(MAX)
t
CONV
t
dDO
t
dis
t
en
t
hDO
t
f
t
r
t
ON
t
OFF
t
OPEN
C
IN
Analog Input Sample Time See Figure 1 in Applications Information 1.5 CLK Cycles Maximum Sampling Frequency See Figure 1 in Applications Information 16.8 kHz
Conversion Time See Figure 1 in Applications Information 12 CLK Cycles Delay Time, CLK to D Delay Time, CS to D Delay Time, CLK to D Time Output Data Remains Valid After CLK C D
Fall Time See Test Circuits 50 150 ns
OUT
D
Rise Time See Test Circuits 50 150 ns
OUT
Data Valid See Test Circuits 250 600 ns
OUT
Hi-Z See Test Circuits 135 300 ns
OUT
Enabled See Test Circuits 75 200 ns
OUT
= 100pF 230 ns
LOAD
Enable Turn-On Time See Figure 1 in Applications Information 260 700 ns Enable Turn-Off Time See Figure 2 in Applications Information 100 300 ns Break-Before-Make Interval 35 160 ns Input Capacitance Analog Inputs On-Channel 20 pF
Off-Channel 5 pF
Digital Input 5 pF
The denotes specifications which apply over the full operating temperature range.
Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired.
Note 2: All voltage values are with respect to GND. Note 3: These devices are specified at 5V. Consult factory for 3V
specified devices (LTC1594L/LTC1598L). Note 4: Increased leakage currents at elevated temperatures cause the S/H
to droop, therefore it is recommended that f
75kHz at 70°C and f
f
CLK
Note 5: VCC = 5V, V
REF
1kHz at 25°C.
CLK
= 5V and CLK = 320kHz unless otherwise specified.
160kHz at 85°C,
CLK
CSADC and CSMUX pins are tied together during the test.
Note 6: Linearity error is specified between the actual end points of the A/D transfer curve.
Note 7: Two on-chip diodes are tied to each reference and analog input which will conduct for reference or analog input voltages one diode drop below GND or one diode drop above V bias of either diode for 4.5V V
. This spec allows 50mV forward
CC
5.5V. This means that as long as the
CC
reference or analog input does not exceed the supply voltage by more than 50mV, the output code will be correct. To achieve an absolute 0V to 5V input voltage range, it will therefore require a minimum supply voltage of
4.950V over initial tolerance, temperature variations and loading.
Note 8: Recommended operating condition. Note 9: Channel leakage current is measured after the channel selection.
W
U
TYPICAL PERFORMANCE CHARACTERISTICS
Supply Current vs Sample Rate
1000
TA = 25°C
= 5V
V
CC
= 5V
V
REF
= 320kHz
f
CLK
100
10
SUPPLY CURRENT (µA)
1
0.1
4
1 10 100
SAMPLE FREQUENCY (kHz)
1594/98 G01
Supply Current vs Temperature
450
TA = 25°C
= V
= 5V
V
CC
REF
= 320kHz
f
CLK
400
350
300
SUPPLY CURRENT (µA)
250
200
f
SMPL
–35 5
–55
= 16.8kHz
–15
TEMPERATURE (°C)
25
85
45 125
105
65
1594/98 G02
Reference Current vs Temperature
W
0
–0.05
–0.15
–0.20
–0.25
–0.30
–0.50
–0.35
–0.10
–0.40
–0.45
REFERENCE VOLTAGE (V)
1.0
CHANGE IN LINEARITY (LSB)
2.0 3.0
4.0
5.0
1594/98 G06
1.5 2.5
3.5
4.5
TA = 25°C V
CC
= 5V
f
CLK
= 320kHz
f
SMPL
= 16.8kHz
INPUT LEVEL (dB)
–40
0
SIGNAL-TO-NOISE PLUS DISTORTION (dB)
20
10
40
30
60
50
80
70
–30 –20
1594/98 G12
–10 0
TA = 25°C V
CC
= V
REF =
5V
f
IN
= 1kHz
f
SMPL
= 16.8kHz
CODE
0
DIFFERENTIAL NONLINEARITY ERROR (LBS)
–1.0
–0.8
–0.6
–0.4
–0.2
0.4
0.6
0.8
1.0
0.2
0.0
2048
1594/98 G09
4096
U
TYPICAL PERFORMANCE CHARACTERISTICS
LTC1594/LTC1598
Change in Offset vs Reference Voltage
3.0
)
REF
2.5
2.0
1.5
1.0
0.5
CHANGE IN OFFSET (LSB = 1/4096 V
0
1.0
2.0 3.0
1.5 2.5 REFERENCE VOLTAGE (V)
Change in Gain vs Reference Voltage
–10
–9 –8 –7 –6 –5 –4 –3
CHANGE IN GAIN (LSB)
–2
–1
0
1.0
2.0 3.0
1.5 2.5
REFERENCE VOLTAGE (V)
TA = 25°C
= 5V
V
CC
= 320kHz
f
CLK
f
SMPL
4.0
3.5
TA = 25°C
= 5V
V
CC
= 320kHz
f
CLK
f
SMPL
4.0
3.5
= 16.8kHz
4.5
1594/98 G04
= 16.8kHz
4.5
1594/98 G07
5.0
5.0
Change in Offset vs Temperature
0
–0.5
–1.0
–1.5
–2.0
CHANGE IN OFFSET (LSB)
–2.5
–3.0
VCC = V f f
–55
= 5V
REF
= 320kHz
CLK
= 16.8kHz
SMPL
–15 25
–35 5
TEMPERATURE (°C)
Peak-to-Peak ADC Noise vs Reference Voltage
2.0 TA = 25°C
V
= 5V
CC
f
= 320kHz
CLK
1.5
1.0
ADC NOISE IN LBSs
0.5
0
1
2
REFERENCE VOLTAGE (V)
3
Change in Linearity vs Reference Voltage
65
45
85
1594/98 G05
Differential Nonlinearity vs Code
4
5
1594/98 G08
Effective Bits and S/(N + D) vs Input Frequency
12 11
10
9 8 7 6 5 4
3
TA = 25°C V
CC
2
f
CLK
EFFECTIVE NUMBER OF BITS (ENOBs)
1
f
SMPL
0
1
= 5V
= 320kHz
= 16.8kHz
10 100 1000
INPUT FREQUENCY (kHz)
1594/98 G10
Spurious Free Dynamic Range vs Frequency
74 68
62 56 50 44 38
100
90 80 70 60
50 40 30 20
TA = 25°C
= V
V
CC
10
SPURIOUS FREE DYNAMIC RANGE (dB)
f
SMPL
0
1
5V
REF =
= 16.8kHz
10 100 1000
INPUT FREQUENCY (kHz)
1594/98 G11
S/(N + D) vs Input Level
5
LTC1594/LTC1598
SOURCE RESISTANCE ()
10 100 1000
1594/98 G18
10.1 10000
100
S & H ACQUISITION TIME (ns)
1000
10000
TA = 25°C V
CC
= V
REF
= 5V
+INPUT
COM
R
SOURCE
+
V
IN
W
U
TYPICAL PERFORMANCE CHARACTERISTICS
Attenuation vs Input Frequency
0
10 20
30
40 50
60
ATTENUATION (%)
70
80
TA = 25°C
= V
V
CC
90
f
SMPL
100
110
5V
REF =
= 16.8kHz
INPUT FREQUENCY (kHz)
100 1000 10000
Power Supply Feedthrough vs Ripple Frequency
0
TA = 25°C
= 5V (V
V
CC
= 5V
V
REF
= 320kHz
f
CLK
–50
FEEDTHROUGH (dB)
–100
1 100 1000 10000
= 20mV)
RIPPLE
10 RIPPLE FREQUENCY (kHz)
1594/98 G13
1594/98 G16
4096 Point FFT Plot
0
TA = 25°C
= V
CC
REF
= 5kHz
IN
= 320kHz
CLK
= 12.5kHz
SMPL
12
= 5V
35
FREQUENCY (kHz)
V
–20
f f
–40
f
–60
–80
MAGNITUDE (dB)
–100
–120
–140
0
Maximum Clock Frequency vs Source Resistance
360
300
240
180
120
CLOCK FREQUENCY (kHz)
60
TA = 25°C
= V
V
0
0.1
= 5V
CC
REF
SOURCE RESISTANCE (k)
Intermodulation Distortion
0
TA = 25°C V
–20
f
1
f
2
–40
f
SMPL
–60
–80
MAGNITUDE (dB)
–100
–120
467
1594/98 G14
–140
0
Sample-and-Hold Acquisition Time vs Source Resistance
+INPUT
V
IN
COM
R
SOURCE
110
1594/98 G17
= V
CC
REF =
= 5kHz = 6kHz
= 12.5kHz
12
5V
467
35
FREQUENCY (kHz)
1594/98 G15
6
Minimum Clock Frequency for
0.1LSB Error vs Temperature
320
VCC = V
240
160
80
CLOCK FREQUENCY (kHz)
0
–55
–35
REF
–15
= 5V
5
25 45 65 85
TEMPERATURE (°C)
1594/98 G19
Input Channel Leakage Current vs Temperature
1000
VCC = 5V V
= 5V
REF
100
10
ON CHANNEL
1
20
OFF CHANNEL
60
40 80
LEAKAGE CURRENT (nA)
0.1
0.01 –60
–40
0
–20
TEMPERATURE (°C)
100
120
1594/98 G20
140
UUU
PIN FUNCTIONS
LTC1594
LTC1594/LTC1598
CH0 (Pin 1): Analog Multiplexer Input. CH1 (Pin 2): Analog Multiplexer Input. CH2 (Pin 3): Analog Multiplexer Input. CH3 (Pin 4): Analog Multiplexer Input. ADCIN (Pin 5): ADC Input. This input is the positive analog
input to the ADC. Connect this pin to MUXOUT for normal operation.
V
(Pin 6): Reference Input. The reference input defines
REF
the span of the ADC. COM (Pin 7): Negative Analog Input. This input is the
negative analog input to the ADC and must be free of noise with respect to GND.
GND (Pin 8): Analog Ground. GND should be tied directly to an analog ground plane.
CSADC (Pin 9): ADC Chip Select Input. A logic high on this input powers down the ADC and three-states D low on this input enables the ADC to sample the selected channel and start the conversion. For normal operation drive this pin in parallel with CSMUX.
OUT
. A logic
D
(Pin 10): Digital Data Output. The A/D conversion
OUT
result is shifted out of this output. VCC (Pin 11): Power Supply Voltage. This pin provides
power to the ADC. It must be bypassed directly to the analog ground plane.
CLK (Pin 12): Shift Clock. This clock synchronizes the serial data transfer to both MUX and ADC.
CSMUX (Pin 13): MUX Chip Select Input. A logic high on this input allows the MUX to receive a channel address. A logic low enables the selected MUX channel and connects it to the MUXOUT pin for A/D conversion. For normal operation, drive this pin in parallel with CSADC.
DIN (Pin 14): Digital Data Input. The multiplexer address is shifted into this input.
MUXOUT (Pin 15): MUX Output. This pin is the output of the multiplexer. Tie to ADCIN for normal operation.
VCC (Pin 16): Power Supply Voltage. This pin should be tied to Pin 11.
LTC1598 CH5 (Pin 1): Analog Multiplexer Input. CH6 (Pin 2): Analog Multiplexer Input. CH7 (Pin 3): Analog Multiplexer Input. GND (Pin 4): Analog Ground. GND should be tied directly
to an analog ground plane. CLK (Pin 5): Shift Clock. This clock synchronizes the serial
data transfer to both MUX and ADC. It also determines the conversion speed of the ADC.
CSMUX (Pin 6): MUX Chip Select Input. A logic high on this input allows the MUX to receive a channel address. A logic low enables the selected MUX channel and connects it to the MUXOUT pin for A/D conversion. For normal operation, drive this pin in parallel with CSADC.
DIN (Pin 7): Digital Data Input. The multiplexer address is shifted into this input.
COM (Pin 8): Negative Analog Input. This input is the negative analog input to the ADC and must be free of noise with respect to GND.
GND (Pin 9): Analog Ground. GND should be tied directly to an analog ground plane.
CSADC (Pin 10): ADC Chip Select Input. A logic high on this input deselects and powers down the ADC and three­states D sample the selected channel and start the conversion. For normal operation drive this pin in parallel with CSMUX.
D
OUT
result is shifted out of this output.
NC (Pin 12): No Connection. NC (Pin 13): No Connection. CLK (Pin 14): Shift Clock. This input should be tied to Pin 5.
. A logic low on this input enables the ADC to
OUT
(Pin 11): Digital Data Output. The A/D conversion
7
LTC1594/LTC1598
UUU
PIN FUNCTIONS
VCC (Pin 15): Power Supply Voltage. This pin provides power to the A/D Converter. It must be bypassed directly to the analog ground plane.
V
(Pin 16): Reference Input. The reference input de-
REF
fines the span of the ADC. ADCIN (Pin 17): ADC Input. This input is the positive
analog input to the ADC. Connect this pin to MUXOUT for normal operation.
MUXOUT (Pin 18): MUX Output. This pin is the output of the multiplexer. Tie to ADCIN for normal operation.
W
BLOCK DIAGRA S
LTC1594
15 5 6 16
+
SAMPLING
V
12-BIT
ADC
GND
REFVCC
8
CSADC
CSMUX
CLK
D
D
OUT
LTC1594
9 13 12 14
IN
10
1
CH0
2
CH1
3
CH2
4
CH3
7 COM
ADCINMUXOUT
4-CHANNEL
MUX
VCC (Pin 19): Power Supply Voltage. This pin should be tied to Pin 15.
CH0 (Pin 20): Analog Multiplexer Input. CH1 (Pin 21): Analog Multiplexer Input. CH2 (Pin 22): Analog Multiplexer Input. CH3 (Pin 23): Analog Multiplexer Input. CH4 (Pin 24): Analog Multiplexer Input.
LTC1598
18 17 16 15, 19
+
SAMPLING
V
12-BIT
ADC
GND
REFVCC
4, 9
CSADC
CSMUX
CLK
D
D
OUT
NC NC
LTC1598
1594/98 BD
10 6 5, 14 7
IN
11 12 13
20 21 22 23 24
1 2 3
8 COM
CH0 CH1 CH2 CH3 CH4 CH5 CH6 CH7
ADCINMUXOUT
8-CHANNEL
MUX
TEST CIRCUITS
Load Circuit for t
D
OUT
8
1.4V
3k
dDO
100pF
, tr and t
TEST POINT
f
1594/98 TC01
Voltage Waveforms for D
D
OUT
t
r
Rise and Fall Times, tr, t
OUT
t
f
1594/98 TC02
f
V
OH
V
OL
Loading...
+ 16 hidden pages