LG Display LM270WF5-SSA1 Specification

Global LCD Panel Exchange Center
( ) Preliminary Specification
) Final Specification
(
www.panelook.com
LM270WF5
Liquid Crystal Display
Product Specification
FOR
APPROVAL
BUYER
MODEL
SIGNATURE DATE
/
/
General
27” Full HD TFT LCD Title
SUPPLIER LG Display Co., Ltd.
*MODEL LM270WF5
SUFFIX SSA1
*When you obtain standard approval,
please use the above model name without suffix
APPROVED BY
C.K. Lee / G.Manager
REVIEWED BY
K.H. Oh / Manager [C]
Y.S. Chung / Manager [M]
E.S. Kim / Manager [O]
DATE
D.H. Kang / Manager [P]
/
Please return 1 copy for your confirmation With your signature and comments.
Ver 1.1 June. 14. 2012
One step solution for LCD / PDP / OLED panel application: Datasheet, inventory and accessory!
PREPARED BY
B.S. An / Engineer
Product Engineering Dept.
LG Display Co., Ltd
1 / 36
www.panelook.com
Global LCD Panel Exchange Center
www.panelook.com
LM270WF5
Liquid Crystal Display
Product Specification
Contents
No ITEM Page
COVER 1
CONTENTS 2
RECORD OF REVISIONS 3
1 GENERAL DESCRIPTION 4
2 ABSOLUTE MAXIMUM RATINGS 5
3 ELECTRICAL SPECIFICATIONS 6
1) ELECTRICAL CHARACTERISTICS 6
2) INTERFACE CONNECTIONS 9
3) SIGNAL TIMING SPECIFICATIONS 14
4) SIGNAL TIMING WAVEFORMS 15
5) COLOR INPUT DATA REFERNECE 16
6) POWER SEQUENCE 17
7) POWER DIP CONDITION 18
4 OPTICAL SPECIFICATIONS 19
5 MECHANICAL CHARACTERISTICS 29
6 RELIABILITY 32
7 INTERNATIONAL STANDARDS 33
1) SAFETY 33
2) EMC 33
3) Environment 33
8 PACKING 34
1) DESIGNATION OF LOT MARK 34
2) PACKING FORM 34
9 PRECAUTIONS 35
1) MOUNTING PRECAUTIONS 35
2) OPERATING PRECAUTIONS 35
3) ELECTROSTATIC DISCHARGE CONTROL 36
4) PRECAUTIONS FOR STRONG LIGHT EXPOSURE 36
5) STROAGE 36
6) HANDLING PRECAUTIONS FOR PROTECTION FILM 36
Ver 1.1 June. 14. 2012
One step solution for LCD / PDP / OLED panel application: Datasheet, inventory and accessory!
2 / 36
www.panelook.com
Global LCD Panel Exchange Center
www.panelook.com
LM270WF5
Liquid Crystal Display
Product Specification
RECORD OF REVISIONS
Revision
No
0.0 Dec. 8. 2011 - First Draft, Preliminary Specifications
0.1 Feb. 1. 2011 28,29 Update the Front & Rear View
0.2 Mar. 5. 2012 6 Update the Table 2-1. ELECTRICAL CHARACTERISTICS
0.3 Mar. 26. 2012 8 Table 2-2. LED Bar ELECTRICAL CHARACTERISTICS
0.4 May. 2. 2012 13 Update the mating connector
0.5 May. 24. 2012 6 Modify Rush Current
Revision
Date
Page Description
13 Update the mating connector
24 Update the Table 11. Gray Scale Specification
27 Update the Rear View
13 Update the mating connector
19 Update Color Coordinates
28,29 Update the Front & Rear View
33 9-1. MOUNTING PRECAUTIONS
28,29 Update the Front & Rear View
1.0 May. 31. 2012 - Final Specifications
1.1 June. 14. 2012 29 Update the Rear View
Ver 1.1 June. 14. 2012
One step solution for LCD / PDP / OLED panel application: Datasheet, inventory and accessory!
3 / 36
www.panelook.com
Global LCD Panel Exchange Center
www.panelook.com
LM270WF5
Liquid Crystal Display
Product Specification
1. General Description
LM270WF5-SSA1 is a Color Active Matrix Liquid Crystal Display with an integral Light Emitting Diode (White LED) backlight system. The matrix employs a-Si Thin Film Transistor as the active element. It is a transmissive type display operating in the normally white mode. It has a 27 inch diagonally measured active display area with Full HD resolution (1080 vertical by 1920 horizontal pixel array) Each pixel is divided into Red, Green and Blue sub­pixels or dots which are arranged in vertical stripes. Gray scale or the brightness of the sub-pixel color is determined with a 8-bit gray scale signal for each dot, thus, presenting a palette of more than 16,7M colors with Advanced-FRC(Frame Rate Control). It has been designed to apply the interface method that enables low power, high speed, low EMI. FPD Link or compatible must be used as a LVDS(Low Voltage Differential Signaling) chip. It is intended to support applications where thin thickness, wide viewing angle, low power are critical factors and graphic displays are important. It is intended to support displays where high brightness, super wide viewing angle, high color saturation, and high color are important.
RGB, Dclk, DE
Hsync, Vsync
(LVDS 2 port)
(5.0V)
V
LCD
CN1
(30pin)
Timing Control
Block
Source Driver Circuit
G1
TFT-LCD Panel
(1920 1080 pixels)
G1080
V
LED (4ch)
Power Circuit Block
Back light System (White LED)
Figure 1. Block diagram
General Features
Active Screen Size 27 inches(68.6cm) diagonal
Outline Dimension
Pixel Pitch 0.3114 mm x 0.3114 mm Pixel Format 1920 horiz. By 1080 vert. Pixels RGB stripes arrangement Color Depth 16,7M colors Luminance, White 250 cd/m Viewing Angle(CR>10) View Angle Free (R/L 178(Typ.), U/D 178(Typ.)) Power Consumption Total 23.23 Watt (Typ.) (3.83 Watt Weight 3,300 g(Typ.) Display Operating Mode Transmissive mode, normally Black Surface Treatment 25% Haze
UP : 616.7(H) x 361.3(V) x 9.8(D)mm(Typ.) DOWN : 617.1(H) x 361.3(V) x 13.85(D) mm(Typ.)
2
(Center 1 point)
@ VLCD, 19.4 Watt @250cd/༇)
treatment of the front polarizer
S1920 S1
Ver 1.1 June. 14. 2012
One step solution for LCD / PDP / OLED panel application: Datasheet, inventory and accessory!
4 / 36
www.panelook.com
Global LCD Panel Exchange Center
www.panelook.com
Product Specification
2. Absolute maximum ratings
The following are maximum values which, if exceeded, may cause faulty operation or damage to the unit.
Table 1. Absolute maximum ratings
LM270WF5
Liquid Crystal Display
Parameter Symbol
Units Notes
Min Max
Values
Power Supply Input Voltage V
Operating Temperature T
Storage Temperature T
Operating Ambient Humidity H
Storage Humidity H
LCM Surface Temperature
(Operation)
T
LCD
OP
ST
OP
ST
surface
-0.3 +6.0 Vdc
0 50
-20 60
C
C
10 90 %RH
10 90 %RH
0 65
Note : 1. Temperature and relative humidity range are shown in the figure below. Wet bulb temperature should be 39 C Max, and no condensation of water.
2. Maximum Storage Humidity is up to 40, 70% RH only for 4 corner light leakage Mura.
3. Storage condition is guaranteed under packing condition
4. LCM Surface Temperature should be Min. 0 and Max. 65 under the VLCD=5.0V,
fV=60Hz, 25 ambient Temp. no humidity control and LED string current is typical value.
FIG. 2 Temperature and relative humidity
At 25
1,2,,3
1, 4
60
50
Wet Bulb Temperature [୅]
40
30
20
10
0
10 20 30 40 50 60 70 800 -20
Dry Bulb Temperature [୅]
Ver 1.1 June. 14. 2012
90%
60%
40%
10%
Storage
Operation
Humidity [(%)RH]
5 / 36
One step solution for LCD / PDP / OLED panel application: Datasheet, inventory and accessory!
www.panelook.com
Global LCD Panel Exchange Center
www.panelook.com
LM270WF5
Liquid Crystal Display
Product Specification
3. Electrical Specifications
3-1. Electrical Characteristics
It requires two power inputs. One is employed to power the LCD electronics and to drive the TFT array and liquid crystal. The second input power for the LED/Backlight, is typically generated by a LED Driver. The LED Driver is an external unit to the LCDs.
Table 2-1. ELECTRICAL CHARACTERISTICS
Parameter Symbol
MODULE :
Power Supply Input Voltage V
Permissive Power Input Ripple V
Power Supply Input Current
Power Consumption
Rush current I
LCD
LCD
ILCD_Mosaic
I
LCD_White
P
c_Mosaic
cLCD_White
P
RUSH
Min Typ Max
4.5 5 5.5
- 765 955
- 920 1150
- 3.83 4.78
- 4.60 5.75
- 3
Values
400
Unit Notes
Vdc
mVp-p 1
mA 2
mA 3
Watt 2
Watt 3
A 4
Note :
1. Permissive power ripple should be measured under V
=5.0V, 25C, fV(frame frequency)=MAX
LCD
condition and At that time, we recommend the bandwidth configuration of oscilloscope is to be under 20Mhz. See the next page.
2. The specified current and power consumption are under the V
=5.0V, 25· 2¶C,fV=60Hz condition
LCD
whereas Typical Power Pattern [Mosaic] shown in the [ Figure 3 ] is displayed.
3. The current is specified at the maximum current pattern.
4. Maximum Condition of Inrush current : The duration of rush current is about 5ms and rising time of power Input is 500us 20%.(min.).
Ver 1.1 June. 14. 2012
One step solution for LCD / PDP / OLED panel application: Datasheet, inventory and accessory!
6 / 36
www.panelook.com
Global LCD Panel Exchange Center
www.panelook.com
LM270WF5
Liquid Crystal Display
Product Specification
Permissive Power input ripple (V
White pattern
Power consumption (V
=5V, 25C, fV (frame frequency=60Hz condition)
LCD
=5.0V, 25C, fv (frame frequency)=MAX condition)
LCD
Black pattern
Typical power Pattern
Maximum power Pattern
FIG.3 Mosaic pattern & White Pattern for power consumption measurement
Ver 1.1 June. 14. 2012
One step solution for LCD / PDP / OLED panel application: Datasheet, inventory and accessory!
7 / 36
www.panelook.com
Global LCD Panel Exchange Center
www.panelook.com
Product Specification
Table 2-2. LED Bar ELECTRICAL CHARACTERISTICS
LM270WF5
Liquid Crystal Display
Parameter Symbol
LED String Current Is - 110 115 mA 1, 2, 5
LED String Voltage Vs 41.3 44.1 46.9 V 1, 5
Power Consumption
LED Life Time LED_LT 30,000 - - Hrs 3
PBar - 19.4 20.6 Watt 1, 2, 4
Min. Typ. Max.
Values
Unit Notes
Notes) The LED Bar consists of 56 LED packages, 4 strings (parallel) x 14 packages (serial)
LED driver design guide : The design of the LED driver must have specifications for the LED in LCD Assembly. The performance of the LED in LCM, for example life time or brightness, is extremely influenced by the characteristics of the LED driver. So all the parameters of an LED driver should be carefully designed and output current should be Constant current control. Please control feedback current of each string individually to compensate the current variation among the strings of LEDs. When you design or order the LED driver, please make sure unwanted lighting caused by the mismatch of the LED and the LED driver (no lighting, flicker, etc) never occurs. When you confirm it, the LCD module should be operated in the same condition as installed in your instrument.
1. The specified values are for a single LED bar.
2. The specified current is defined as the input current for a single LED string with 100% duty cycle.
3. The LED life time is defined as the time when brightness of LED packages become 50% or less than the initial value under the conditions at Ta = 25  2C and LED string current is typical value.
4. The power consumption shown above does not include loss of external driver. The typical power consumption is calculated as P The maximum power consumption is calculated as P
Bar = Vs(Typ.) x Is(Typ.) x No. of strings.
Bar = Vs(Max.) x Is(Typ.) x No. of strings.
5. LED operating conditions are must not exceed Max. ratings.
Ver 1.1 June. 14. 2012
One step solution for LCD / PDP / OLED panel application: Datasheet, inventory and accessory!
8 / 36
www.panelook.com
Global LCD Panel Exchange Center
www.panelook.com
Liquid Crystal Display
Product Specification
3-2. Interface Connections
3-2-1. LCD Module
- LCD Connector(CN1) : GT103-30S-HF15-E2500 (LSM), IS100-L30O-C23 (UJU)
- Mating Connector : FI-X30H and FI-X30HL (Manufactured by JAE) or Equivalent
Table 3. MODULE CONNECTOR(CN1) PIN CONFIGURATION
No Symbol Description No Symbol Symbol
LM270WF5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
FR0M
FR0P
FR1M
FR1P
FR2M
FR2P
GND
FCLKINM
FCLKINP
FR3M
FR3P
SR0M
SR0P
GND
SR1M
Minus signal of odd channel 0 (LVDS)
Plus signal of odd channel 0 (LVDS)
Minus signal of odd channel 1 (LVDS)
Plus signal of odd channel 1 (LVDS)
Minus signal of odd channel 2 (LVDS)
Plus signal of odd channel 2 (LVDS)
Ground
Minus signal of odd clock channel (LVDS)
Plus signal of odd clock channel (LVDS)
Minus signal of odd channel 3 (LVDS)
Plus signal of odd channel 3 (LVDS)
Minus signal of even channel 0 (LVDS)
Plus signal of even channel 0 (LVDS)
Ground
Minus signal of even channel 1 (LVDS)
16
SR1P
17
GND
18
SR2M
19
SR2P
20
SCLKINM
21
SCLKINP
22
SR3M
23
SR3P
24
GND
25
NC
26
NC
PWM_OUT For Control Burst frequency of Inverter
27
28
VLCD
29
VLCD
30
VLCD
Plus signal of even channel 1 (LVDS)
Ground
Minus signal of even channel 2 (LVDS)
Plus signal of even channel 2 (LVDS)
Minus signal of even clock channel (LVDS)
Plus signal of even clock channel (LVDS)
Minus signal of even channel 3 (LVDS)
Plus signal of even channel 3 (LVDS)
Ground
No Connection (I2C Serial interface for LCM)
No Connection.(I2C Serial interface for LCM)
Power Supply +5.0V
Power Supply +5.0V
Power Supply +5.0V
Note: 1. All GND(ground) pins should be connected together and to Vss which should also be connected to the LCD’s metal frame.
LCD
2. All V
(power input) pins should be connected together.
3. Input Level of LVDS signal is based on the IEA 664 Standard.
4. PWM_OUT signal controls the burst frequency of a inverter. This signal is synchronized with vertical frequency. It’s frequency is 3 times of vertical frequency, and it’s duty ratio is 50%. If you don’t use this pin, it is no connection.
GT103-30S-HF15-E2500
#1 #30
#1
#30
Rear view of LCM
FIG.4 Connector diagram
Ver 1.1 June. 14. 2012
One step solution for LCD / PDP / OLED panel application: Datasheet, inventory and accessory!
www.panelook.com
9 / 36
Global LCD Panel Exchange Center
www.panelook.com
Liquid Crystal Display
Product Specification
Table 4. REQUIRED SIGNAL ASSIGNMENT FOR Flat Link (TI:SN75LVDS83) Transmitter
Pin # Require Signal Pin Name Pin # Require Signal Pin Name
1 Power Supply for TTL Input VCC 29 Ground pin for TTL GND
2 TTL Input (R7) D5 30 TTL Input (DE) D26
3 TTL Input (R5) D6 31 TTL Level clock Input TX CLKIN
4 TTL Input (G0) D7 32 Power Down Input PWR DWN
5 Ground pin for TTL GND 33 Ground pin for PLL PLL GND
6 TTL Input (G1) D8 34 Power Supply for PLL PLL VCC
7 TTL Input (G2) D9 35 Ground pin for PLL PLL GND
LM270WF5
8 TTL Input (G6) D10 36 Ground pin for LVDS LVDS GND
9 Power Supply for TTL Input VCC 37 Positive LVDS differential data output 3 TxOUT3
10 TTL Input (G7) D11 38 Negative LVDS differential data output 3 TxOUT3
11 TTL Input (G3) D12 39 Positive LVDS differential clock output TX CLKOUT
12 TTL Input (G4) D13 40 Negative LVDS differential clock output TX CLKOUT
13 Ground pin for TTL GND 41 Positive LVDS differential data output 2 TX OUT2
14 TTL Input (G5) D14 42 Negative LVDS differential data output 2 TX OUT2
15 TTL Input (B0) D15 43 Ground pin for LVDS LVDS GND
16 TTL Input (B6) D16 44 Power Supply for LVDS LVDS VCC
17 Power Supply for TTL Input VCC 45 Positive LVDS differential data output 1 TX OUT1
46 Negative LVDS differential data output 1 TX OUT118 TTL Input (B7) D17
19 TTL Input (B1) D18
20 TTL Input (B2) D19
22 TTL Input (B3) D20
47 Positive LVDS differential data output 0 TX OUT0
48 Negative LVDS differential data output 0 TX OUT0
49 Ground pin for LVDS LVDS GND 21 Ground pin for TTL Input GND
50 TTL Input (R6) D27
23 TTL Input (B4) D21
24 TTL Input (B5) D22
25 TTL Input (RSVD) D23
26 Power Supply for TTL Input VCC 54 TTL Input (R2) D2
51 TTL Input (R0) D0
52 TTL Input (R1) D1
53 Ground pin for TTL GND
55 TTL Input (R3) D3 27 TTL Input (HSYNC) D24
56 TTL Input (R4) D4 28 TTL Input (VSYNC) D25
Notes : 1. Refer to LVDS Transmitter Data Sheet for detail descriptions.
2. 7 means MSB and 0 means LSB at R,G,B pixel data
Ver 1.1 June. 14. 2012
One step solution for LCD / PDP / OLED panel application: Datasheet, inventory and accessory!
10 / 36
www.panelook.com
Global LCD Panel Exchange Center
LVDS Input characteristics
1. DC Specification
LVDS -
LVDS +
www.panelook.com
LM270WF5
Liquid Crystal Display
Product Specification
|VID|
#|VID| = |(LVDS+) ˀ (LVDS-)|
= {(LVDS+) + (LVDS-)}/2
#V
CM
0V
Description Symbol Min Max Unit Notes
LVDS Differential Voltage |V
LVDS Common mode Voltage V
LVDS Input Voltage Range V
Change in common mode Voltage ΔV
2. AC Specification
LVDS Clock
LVDS Data
SKEW
t
V
CM
| 200 600 mV -
ID
CM
IN
CM - 250 mV -
SKEW
clk
t
( F
= 1 / T
1 ) 95 MHz > Fclk ≥ 85 MHz : - 300 ~ + 300 2 ) 85 MHz > Fclk ≥ 65 MHz : - 400 ~ + 400 3 ) 65 MHz > Fclk ≥ 30 MHz : - 600 ~ + 600
1.0 1.5 V -
0.7 1.8 V -
T
clk
clk
)
V
IN_MAXVIN_MIN
Description Symbol Min Max Unit Notes
LVDS Clock to Data Skew Margin
LVDS Clock to Clock Skew Margin (Even to Odd)
t
SKEW
t
SKEW
t
SKEW
t
SKEW_EO
- 300 + 300 ps
- 400 + 400 ps
- 600 + 600 ps
- 1/7 + 1/7 T
95MHz > Fclk ≥ 85MHz
85MHz > Fclk ≥ 65MHz
65MHz > Fclk ≥ 30MHz
clk
Ver 1.1 June. 14. 2012
One step solution for LCD / PDP / OLED panel application: Datasheet, inventory and accessory!
-
11 / 36
www.panelook.com
Loading...
+ 23 hidden pages