Lenze EVF9333−xV User Manual

Page 1
EDSVF9333V
.Cn:
Ä.Cn:ä
System Manual
9300 vector 0.37 ... 90 kW
EVF9321−xV ... EVF9333−xV
Frequency inverter
Page 2
Page 3

Contents i

1 Preface 1−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.1 How to use this System Manual 1.1−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.1.1 Information provided by the System Manual 1.1−1 . . . . . . . . . . . .
1.1.2 Document history 1.1−2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.1.3 Products to which the System Manual applies 1.1−3 . . . . . . . . . . .
1.2 Legal regulations 1.2−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.3 Conventions used 1.3−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.4 Notes used 1.4−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2 Safety instructions 2−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.1 General safety information 2.1−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.2 Thermal motor monitoring 2.2−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.2.1 Description 2.2−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.2.2 Parameter setting 2.2−2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.3 Residual hazards 2.3−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.4 Safety instructions for the installation according to UL or UR 2.4−1 . . . . . . .
3 Technical data 3−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.1 General data and operating conditions 3.1−1 . . . . . . . . . . . . . . . . . . . . . . . .
3.2 Open and closed loop control 3.2−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.3 Safety relay KSR 3.3−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.4 Operation with rated power (normal operation) 3.4−1 . . . . . . . . . . . . . . . . .
3.4.1 Rated data for 400 V mains voltage 3.4−1 . . . . . . . . . . . . . . . . . . . .
3.4.2 Rated data for 480 V mains voltage 3.4−3 . . . . . . . . . . . . . . . . . . . .
3.5 Operation with increased rated power 3.5−1 . . . . . . . . . . . . . . . . . . . . . . . . .
3.5.1 Rated data for 400 V mains voltage 3.5−1 . . . . . . . . . . . . . . . . . . . .
3.6 Current characteristics 3.6−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4 Installation of the standard device 4−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.1 Standard devices in the power range 0.37 ... 11 kW 4.1−1 . . . . . . . . . . . . . . .
4.1.1 Important notes 4.1−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.1.2 Mounting with fixing rails (standard) 4.1−2 . . . . . . . . . . . . . . . . . . .
4.1.3 Thermally separated mounting (push−through technique) 4.1−3 .
4.1.4 Mounting in "cold plate" technique 4.1−4 . . . . . . . . . . . . . . . . . . . .
4.2 Standard devices in the power range 15 ... 30 kW 4.2−1 . . . . . . . . . . . . . . . .
EDSVF9333V EN 6.2−04/2012
4.2.1 Important notes 4.2−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.2.2 Mounting with fixing brackets (standard) 4.2−2 . . . . . . . . . . . . . . .
4.2.3 Thermally separated mounting (push−through technique) 4.2−3 .
4.2.4 Mounting in "cold plate" technique 4.2−4 . . . . . . . . . . . . . . . . . . . .
i
Page 4
Contentsi
4.3 Standard devices with a power of 45 kW 4.3−1 . . . . . . . . . . . . . . . . . . . . . . . .
4.3.1 Important notes 4.3−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.3.2 Mounting with fixing brackets (standard) 4.3−2 . . . . . . . . . . . . . . .
4.3.3 Thermally separated mounting (push−through technique) 4.3−3 .
4.4 Standard devices in the power range of 55 kW 4.4−1 . . . . . . . . . . . . . . . . . . .
4.4.1 Important notes 4.4−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.4.2 Mounting with fixing brackets (standard) 4.4−2 . . . . . . . . . . . . . . .
4.4.3 Thermally separated mounting (push−through technique) 4.4−3 .
4.4.4 Modification of the fan module for push−through technique 4.4−4
4.5 Standard devices in the power range 75 ... 90 kW 4.5−1 . . . . . . . . . . . . . . . .
4.5.1 Important notes 4.5−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.5.2 Mounting with fixing brackets (standard) 4.5−2 . . . . . . . . . . . . . . .
4.5.3 Thermally separated mounting (push−through technique) 4.5−3 .
5 Wiring of the standard device 5−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.1 Important notes 5.1−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.1.1 Protection of persons 5.1−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.1.2 Device protection 5.1−3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.1.3 Motor protection 5.1−3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.2 Notes on project planning 5.2−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.2.1 Supply forms / electrical supply conditions 5.2−1 . . . . . . . . . . . . . .
5.2.2 Operation on public supply systems
(compliance with EN 61000−3−2) 5.2−1 . . . . . . . . . . . . . . . . . . . . . . .
5.2.3 Controllers in the IT system 5.2−2 . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.2.4 Operation at earth−leakage circuit breaker (e.l.c.b.) 5.2−3 . . . . . . .
5.2.5 Interaction with compensation equipment 5.2−3 . . . . . . . . . . . . . .
5.2.6 Discharge current for mobile systems 5.2−4 . . . . . . . . . . . . . . . . . .
5.2.7 Optimisation of the controller and mains load 5.2−5 . . . . . . . . . . .
5.2.8 Reduction of noise emissions 5.2−6 . . . . . . . . . . . . . . . . . . . . . . . . . .
5.2.9 Mains choke/mains filter assignment 5.2−8 . . . . . . . . . . . . . . . . . .
5.2.10 Motor cable 5.2−10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.3 Basics for wiring according to EMC 5.3−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.3.1 Shielding 5.3−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.3.2 Mains connection, DC supply 5.3−1 . . . . . . . . . . . . . . . . . . . . . . . . . .
5.3.3 Motor cable 5.3−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.3.4 Control cables 5.3−3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.3.5 Installation in the control cabinet 5.3−4 . . . . . . . . . . . . . . . . . . . . . .
5.3.6 Wiring outside of the control cabinet 5.3−5 . . . . . . . . . . . . . . . . . . .
5.3.7 Detecting and eliminating EMC interferences 5.3−6 . . . . . . . . . . . .
ii
EDSVF9333V EN 6.2−04/2012
Page 5
Contents i
5.4 Standard devices in the power range 0.37 ... 11 kW 5.4−1 . . . . . . . . . . . . . . .
5.4.1 Wiring according to EMC (CE−typical drive system) 5.4−1 . . . . . . . .
5.4.2 Important notes 5.4−3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.4.3 Mains connection, DC supply 5.4−4 . . . . . . . . . . . . . . . . . . . . . . . . . .
5.4.4 Mains connection: Fuses and cable cross−sections 5.4−5 . . . . . . . .
5.4.5 Mains choke/mains filter assignment 5.4−8 . . . . . . . . . . . . . . . . . .
5.4.6 Motor connection 5.4−9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.5 Standard devices in the power range 15 ... 30 kW 5.5−1 . . . . . . . . . . . . . . . .
5.5.1 Wiring according to EMC (CE−typical drive system) 5.5−1 . . . . . . . .
5.5.2 Important notes 5.5−3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.5.3 Mains connection, DC supply 5.5−4 . . . . . . . . . . . . . . . . . . . . . . . . . .
5.5.4 Mains connection: Fuses and cable cross−sections 5.5−5 . . . . . . . .
5.5.5 Mains choke/mains filter assignment 5.5−7 . . . . . . . . . . . . . . . . . .
5.5.6 Motor connection 5.5−8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.6 Standard devices in the power range of 55 kW 5.6−1 . . . . . . . . . . . . . . . . . . .
5.6.1 Wiring according to EMC (CE−typical drive system) 5.6−1 . . . . . . . .
5.6.2 Important notes 5.6−3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.6.3 Mains connection, DC supply 5.6−4 . . . . . . . . . . . . . . . . . . . . . . . . . .
5.6.4 Mains connection: Fuses and cable cross−sections 5.6−5 . . . . . . . .
5.6.5 Mains choke/mains filter assignment 5.6−6 . . . . . . . . . . . . . . . . . .
5.6.6 Motor connection 5.6−7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.7 Standard devices in the power range 75 ... 90 kW 5.7−1 . . . . . . . . . . . . . . . .
5.7.1 Wiring according to EMC (CE−typical drive system) 5.7−1 . . . . . . . .
5.7.2 Important notes 5.7−3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.7.3 Mains connection, DC supply 5.7−4 . . . . . . . . . . . . . . . . . . . . . . . . . .
5.7.4 Mains connection: Fuses and cable cross−sections 5.7−5 . . . . . . . .
5.7.5 Mains choke/mains filter assignment 5.7−6 . . . . . . . . . . . . . . . . . .
5.7.6 Motor connection 5.7−7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.8 Control terminals 5.8−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.8.1 Important notes 5.8−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.8.2 Connection terminal of the control card 5.8−3 . . . . . . . . . . . . . . . . .
5.8.3 Device variant without "Safe torque off" function 5.8−4 . . . . . . . .
5.8.4 Device variant with "Safe torque off" function 5.8−5 . . . . . . . . . . .
5.8.5 Terminal assignment 5.8−8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.9 Wiring of the system bus (CAN) 5.9−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.10 Wiring of the feedback system 5.10−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.10.1 Important notes 5.10−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.10.2 Incremental encoder with TTL level at X8 5.10−2 . . . . . . . . . . . . . . . .
5.10.3 Incremental encoder with HTL level at X9 5.10−3 . . . . . . . . . . . . . . .
5.11 Wiring of digital frequency input / digital frequency output 5.11−1 . . . . . .
5.12 Communication modules 5.12−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
EDSVF9333V EN 6.2−04/2012
iii
Page 6
Contentsi
6 Commissioning 6−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.1 Before switching on 6.1−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.2 Selection of the correct operating mode 6.2−1 . . . . . . . . . . . . . . . . . . . . . . . .
6.3 Parameter setting with the XT EMZ9371BC keypad 6.3−1 . . . . . . . . . . . . . . .
6.3.1 Commissioning example in V/f characteristic control mode 6.3−1
6.3.2 Commissioning example in vector control mode 6.3−5 . . . . . . . . .
6.4 Controller inhibit 6.4−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.5 Changing the assignment of the control terminals X5 and X6 6.5−1 . . . . . .
6.5.1 Free configuration of digital input signals 6.5−1 . . . . . . . . . . . . . . .
6.5.2 Free configuration of digital outputs 6.5−3 . . . . . . . . . . . . . . . . . . .
6.5.3 Free configuration of analog input signals 6.5−4 . . . . . . . . . . . . . . .
6.5.4 Free configuration of analog outputs 6.5−6 . . . . . . . . . . . . . . . . . .
6.6 Adjusting the motor 6.6−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.6.1 Entry of motor data 6.6−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.6.2 Motor selection list 6.6−4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.6.3 Motor temperature monitoring with PTC or thermal contact 6.6−8
6.6.4 Motor temperature monitoring with KTY 6.6−10 . . . . . . . . . . . . . . .
6.6.5 Current limits 6.6−13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.6.6 Automatic collection of motor data 6.6−14 . . . . . . . . . . . . . . . . . . . .
6.7 Setting the speed feedback 6.7−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.7.1 Incremental encoder with TTL level at X8 6.7−2 . . . . . . . . . . . . . . . .
6.7.2 Incremental encoder with HTL level at X9 6.7−3 . . . . . . . . . . . . . . .
6.8 Operating mode 6.8−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.8.1 V/f characteristic control 6.8−4 . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.8.2 Vector control 6.8−8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.9 Switching frequency of the inverter 6.9−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.10 Acceleration, deceleration, braking, stopping 6.10−1 . . . . . . . . . . . . . . . . . . .
6.10.1 Speed range 6.10−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.10.2 Setting acceleration times and deceleration times in
speed mode 6.10−3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.10.3 Quick stop 6.10−4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.10.4 Changing the direction of rotation 6.10−5 . . . . . . . . . . . . . . . . . . . .
6.11 Optimising the operating behaviour 6.11−1 . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.11.1 Slip compensation 6.11−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.11.2 Oscillation damping 6.11−3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.11.3 Boost correction with V/f characteristic control 6.11−5 . . . . . . . . . .
6.11.4 Motor magnetising current with vector control 6.11−9 . . . . . . . . . .
iv
EDSVF9333V EN 6.2−04/2012
Page 7
Contents i
7 Parameter setting 7−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.1 Important notes 7.1−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.2 Parameter setting with the XT EMZ9371BC keypad 7.2−1 . . . . . . . . . . . . . . .
7.2.1 General data and operating conditions 7.2−1 . . . . . . . . . . . . . . . . .
7.2.2 Installation and commissioning 7.2−2 . . . . . . . . . . . . . . . . . . . . . . .
7.2.3 Display elements and function keys 7.2−2 . . . . . . . . . . . . . . . . . . . .
7.2.4 Changing and saving parameters 7.2−4 . . . . . . . . . . . . . . . . . . . . . .
7.2.5 Loading a parameter set 7.2−6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.2.6 Transferring parameters to other standard devices 7.2−7 . . . . . . .
7.2.7 Activating password protection 7.2−9 . . . . . . . . . . . . . . . . . . . . . . . .
7.2.8 Diagnostics 7.2−10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.2.9 Menu structure 7.2−11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8 Configuration 8−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8.1 Important notes 8.1−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8.2 Function blocks 8.2−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8.2.1 Diameter calculator (DCALC) 8.2−1 . . . . . . . . . . . . . . . . . . . . . . . . . .
8.2.2 Master frequency input (DFIN) 8.2−5 . . . . . . . . . . . . . . . . . . . . . . . .
8.2.3 Master frequency output (DFOUT) 8.2−8 . . . . . . . . . . . . . . . . . . . . .
8.2.4 Master frequency ramp−function generator (DFRFG) 8.2−13 . . . . . .
8.2.5 Master frequency processing (DFSET) 8.2−18 . . . . . . . . . . . . . . . . . . .
8.2.6 Internal motor control with
V/f characteristic control (MCTRL1) 8.2−25 . . . . . . . . . . . . . . . . . . . . .
8.2.7 Internal motor control with vector control (MCTRL2) 8.2−48 . . . . . .
8.3 Monitoring 8.3−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8.3.1 Fault responses 8.3−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8.3.2 Monitoring times for process data input objects 8.3−2 . . . . . . . . . .
8.3.3 Maximum speed 8.3−3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8.3.4 Motor 8.3−3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8.3.5 Controller current load (I x t monitoring) 8.3−4 . . . . . . . . . . . . . . . .
8.3.6 Motor temperature 8.3−5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2
8.3.7 Current load of motor (I
8.3.8 Heatsink temperature 8.3−7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8.3.9 DC−bus voltage 8.3−8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8.3.10 External error (EEr) 8.3−8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
x t monitoring: OC6, OC8) 8.3−6 . . . . . . .
8.4 Overview of monitoring functions 8.41 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8.5 Code table 8.5−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
EDSVF9333V EN 6.2−04/2012
v
Page 8
Contentsi
8.6 Selection lists 8.6−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8.6.1 Selection list 1: Analog output signals 8.6−1 . . . . . . . . . . . . . . . . . .
8.6.2 Selection list 2: Digital output signals 8.6−3 . . . . . . . . . . . . . . . . . . .
8.6.3 Selection list 3: Angle signals 8.6−6 . . . . . . . . . . . . . . . . . . . . . . . . . .
8.6.4 Selection list 4: Speed signals 8.6−6 . . . . . . . . . . . . . . . . . . . . . . . . .
8.6.5 Selection list 5: Function blocks 8.6−7 . . . . . . . . . . . . . . . . . . . . . . . .
8.7 Table of attributes 8.7−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9 Troubleshooting and fault elimination 9−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.1 Display of operating data, diagnostics 9.1−1 . . . . . . . . . . . . . . . . . . . . . . . . .
9.1.1 Display of operating data 9.1−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.1.2 Diagnostics 9.1−2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.2 Troubleshooting 9.2−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.2.1 Status display via controller LEDs 9.2−1 . . . . . . . . . . . . . . . . . . . . . .
9.2.2 Fault analysis with the history buffer 9.2−1 . . . . . . . . . . . . . . . . . . .
9.3 Drive behaviour in the event of faults 9.3−1 . . . . . . . . . . . . . . . . . . . . . . . . . .
9.4 Fault elimination 9.4−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.4.1 Drive errors 9.4−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.4.2 Controller in clamp operation 9.4−2 . . . . . . . . . . . . . . . . . . . . . . . . .
9.4.3 Behaviour in case of overvoltage in the DC bus
(OU message) 9.4−3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10 DC−bus operation 10−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
11 Safety engineering 11−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.5 System error messages 9.5−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.5.1 General error messages 9.5−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.5.2 Resetting system error messages 9.5−5 . . . . . . . . . . . . . . . . . . . . . .
10.1 Function 10.1−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10.2 Conditions for trouble−free DC−bus operation 10.2−1 . . . . . . . . . . . . . . . . . . .
10.3 Fuses and cable cross−sections 10.3−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10.4 Distributed supply (several supply points) 10.4−1 . . . . . . . . . . . . . . . . . . . . . . .
10.5 Central supply (one supply point) 10.5−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
11.1 Important notes 11.1−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
vi
11.2 Operating mode 11.2−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
11.3 Safety relay KSR 11.3−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
11.4 Functional test 11.4−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
11.4.1 Important notes 11.4−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
11.4.2 Manual safety function check 11.4−2 . . . . . . . . . . . . . . . . . . . . . . . . .
11.4.3 Monitoring the safety function with a PLC 11.4−3 . . . . . . . . . . . . . . .
EDSVF9333V EN 6.2−04/2012
Page 9
Contents i
12 Accessories (overview) 12−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
12.1 General accessories 12.1−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
12.2 Type−specific accessories 12.2−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
12.2.1 Operation with rated power 12.2−1 . . . . . . . . . . . . . . . . . . . . . . . . . .
12.2.2 Operation with increased rated power 12.2−3 . . . . . . . . . . . . . . . . . .
13 Appendix 13−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
13.1 Glossary 13.1−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
13.1.1 Terminology and abbreviations used 13.1−1 . . . . . . . . . . . . . . . . . . .
13.2 Index 13.2−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
EDSVF9333V EN 6.2−04/2012
vii
Page 10
Page 11

1 Preface

Contents
1.1 How to use this System Manual 1.1−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.1.1 Information provided by the System Manual 1.1−1 . . . . . . . . . . . .
1.1.2 Document history 1.1−2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.1.3 Products to which the System Manual applies 1.1−3 . . . . . . . . . . .
1.2 Legal regulations 1.2−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.3 Conventions used 1.3−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.4 Notes used 1.4−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Preface and general information
Contents
1
EDSVF9333V EN 6.2−04/2012
1−1
Page 12
Page 13
Preface and general information
(
)
Information provided by the System Manual

1.1 How to use this System Manual

1.1.1 Information provided by the System Manual

How to use this System Manual
1
1.1
1.1.1
Target group
Contents
This System Manual is intended for all persons who design, install, commission, and adjust the 9300 vector frequency inverter.
Together with the System Manual (extension), document number EDSV9383V−EXT and the catalog it forms the basis for project planning for the manufacturer of plants and machinery.
The System Manual is the basis for the description of the 9300 vector frequency inverter. Together with the System Manual (extension), document number EDSVF9383V−EXT, a complete System Manual is available:
ƒ The features and functions are described in detail.
ƒ Examples describe how to set the parameters for typical applications.
ƒ In case of doubt, the Operating Instructions delivered together with the
9300 vector frequency inverter always apply.
Contents of the System Manual Contents of the System Manual (extension)
1 Preface 1 Preface
Safety ˘
2
3 Technical data ˘
4 Installing the standard device ˘
5 Wiring the standard device ˘
6 Commissioning ˘
7 Parameter setting ˘
8
Configuration
8.1 Description of function blocks Diameter calculator (DCALC) Master frequency input (DFIN) Master frequency output (DFOUT) Master frequency ramp function generator (DFRFG) Master frequency processing (DFSET) Internal motor control with V/f characteristic control (MCTRL1) Internal motor control with vector control
8.2 Code table
8.3 Selection lists
8.4 Table of attributes
9 Troubleshooting and fault elimination ˘
10 DC−bus operation ˘
11 Safety engineering ˘
˘ 3 Application examples
˘ 4 Signal flow diagrams
12 Accessories ˘
13 Appendix 5 Appendix
MCTRL2
2
Configuration
2.1 Configuring with Global Drive Control
Basic configurations
2.2
2.3 How to use function blocks
2.4 Function blocks (Description of the other function blocks)
2.5 Monitoring
EDSVF9333V EN 6.2−04/2012
1.1−1
Page 14
1
1.1
1.1.2
Preface and general information
How to use this System Manual Document history
How to find information
Use the System Manual as the basis. It contains references to the corresponding chapters in the System Manual Supplement:
ƒ Each chapter is a complete unit and comprehensively informs about a
ƒ The Table of Contents and Index help you to find all information about
ƒ Descriptions and data of other Lenze products (Drive PLC, Lenze geared
Tip!

1.1.2 Document history

subject.
a certain topic.
motors, Lenze motors, ...) can be found in the corresponding catalogs, Operating Instructions and manuals. The required documentation can be ordered at your Lenze sales partner or downloaded as PDF file from the Internet.
Information and auxiliary devices related to the Lenze products can be found in the download area at
http://www.Lenze.com
What is new / what has changed?
Material number Version Description
.Cn: 6.2 04/2012 TD23 Error corrections
13347725 6.0 09/2010 TD23 Revision for software version 8.0.
Error corrections
13189122 3.0 06/2005 TD23 The documentation is divided into 2 parts:
System Manual and System Manual (extension). Complete revision for software version 7.0.
00410591 2.0 05/1999 Documentation for hardware version 3.x
and software version 2.x.
1.1−2
EDSVF9333V EN 6.2−04/2012
Page 15
Preface and general information
How to use this System Manual
Products to which the System Manual applies
1
1.1
1.1.3

1.1.3 Products to which the System Manual applies

This documentation applies to 9300 frequency inverters as of version:
Nameplate
EVF 93xx ˘ E V Vxxx 6x 8x
Product range
EVF Frequency inverter
Type no. / power
400 V 480 V
9321 0.37 kW 0.37 kW
9322 0.75 kW 0.75 kW
9323 1.5 kW 1.5 kW
9324 3.0 kW 3.0 kW
9325 5.5 kW 5.5 kW
9326 11 kW 11 kW
9327 15 kW 18.5 kW
9328 22 kW 30 kW
9329 30 kW 37 kW
9330 45 kW 55 kW
9331 55 kW 75 kW
9332 75 kW 90 kW
9333 90 kW 110 kW
Design
E Built−in unit (standard mounting)
C Cold plate technique
Version
V Vector−controlled frequency inverter
Variant
˘ Standard
V003 Cold plate
V004 Safe standstill
V024 Safe standstill and IT system
V100 IT system
Hardware version
Software version
EDSVF9333V EN 6.2−04/2012
1.1−3
Page 16
Page 17

1.2 Legal regulations

Preface and general information
Legal regulations
1
1.2
Labelling
Manufacturer
CE conformity
Application as directed
Lenze controllers are unambiguously designated by the contents of the nameplate.
Lenze Automation GmbH, Hans−Lenze−Str. 1, D−31855 Aerzen, Germany
Conforms to the EC Low−Voltage Directive
9300 vector frequency inverter and accessories
ƒ must only be operated under the conditions prescribed in this System
Manual.
ƒ are components
– for open and closed loop control of variable speed drives with
asynchronous standard motor or asynchronous servo motors – for installation in a machine – for assembly with other components to form a machine.
ƒ comply with the requirements of the Low−Voltage Directive.
ƒ are not machines for the purpose of the Machinery Directive.
ƒ are not to be used as domestic appliances, but only for industrial
purposes.
Drives with 9300 vector frequency inverters
ƒ comply with the EMC Directive if they are installed according to the
guidelines of CE−typical drive systems.
ƒ can be used
– for operation on public and non−public mains – for operation in industrial premises and residential areas.
ƒ The user is responsible for the compliance of his application with the
EC directives.
Any other use shall be deemed as inappropriate!
EDSVF9333V EN 6.2−04/2012
1.2−1
Page 18
1
1.2
Preface and general information
Legal regulations
Liability
Warranty
The information, data, and notes in this System Manual met the state of the art at the time of printing. Claims on modifications referring to controllers and components which have already been supplied cannot be derived from the information, illustrations, and descriptions.
The specifications, processes, and circuitry described in this System Manual are for guidance only and must be adapted to your own specific application. Lenze does not take responsibility for the suitability of the process and circuit proposals.
The specifications in this System Manual describe the product features without guaranteeing them.
Lenze does not accept any liability for damage and operating interference caused by:
ƒ Disregarding the System Manual
ƒ Unauthorised modifications to the controller
ƒ Operating errors
ƒ Improper working on and with the controller
See terms of sales and delivery of the Lenze Automation GmbH.
Warranty claims must be made to Lenze immediately after detecting the deficiency or fault.
The warranty is void in all cases where liability claims cannot be made.
1.2−2
EDSVF9333V EN 6.2−04/2012
Page 19

1.3 Conventions used

This documentation uses the following conventions to distinguish between different types of information:
Type of information Identification Examples/notes
Spelling of numbers
Decimal separator language−depen
Warnings
UL warnings
UR warnings
Text
Program name » « PC software
Icons
Page reference
Preface and general information
Conventions used
dent
 
In each case, the signs typical for the target language are used as decimal separators. For example: 1234.56 or 1234,56
Are only given in English.
For example: »Engineer«, »Global Drive Control« (GDC)
Reference to another page with additional information
For instance:
16 = see page 16
1
1.3
EDSVF9333V EN 6.2−04/2012
1.3−1
Page 20
Page 21

1.4 Notes used

Preface and general information
Notes used
The following pictographs and signal words are used in this documentation to indicate dangers and important information:
1.4
1
Safety instructions
Structure of safety instructions:
Danger!
(characterises the type and severity of danger)
Note
(describes the danger and gives information about how to prevent dangerous situations)
Pictograph and signal word Meaning
Danger of personal injury through dangerous electrical voltage.
Danger!
Danger!
Stop!
Reference to an imminent danger that may result in death or serious personal injury if the corresponding measures are not taken.
Danger of personal injury through a general source of danger.
Reference to an imminent danger that may result in death or serious personal injury if the corresponding measures are not taken.
Danger of property damage.
Reference to a possible danger that may result in property damage if the corresponding measures are not taken.
Application notes
Special safety instructions and application notes for UL and UR
Pictograph and signal word Meaning
Note! Tip!
Pictograph and signal word Meaning
Warnings!
Warnings!
Important note to ensure troublefree operation
Useful tip for simple handling
Reference to another documentation
Safety or application note for the operation of a UL−approved device in UL−approved systems.
Possibly the drive system is not operated in compliance with UL if the corresponding measures are not taken.
Safety or application note for the operation of a UR−approved device in UL−approved systems.
Possibly the drive system is not operated in compliance with UL if the corresponding measures are not taken.
EDSVF9333V EN 6.2−04/2012
1.4−1
Page 22
Page 23

2 Safety instructions

Contents
2.1 General safety information 2.1−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.2 Thermal motor monitoring 2.2−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.2.1 Description 2.2−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.2.2 Parameter setting 2.2−2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.3 Residual hazards 2.3−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.4 Safety instructions for the installation according to UL or UR 2.4−1 . . . . . . .
Safety instructions
Contents
2
EDSVF9333V EN 6.2−04/2012
2−1
Page 24
Page 25

2.1 General safety information

Safety instructions
General safety information
2
2.1
Scope
For your own safety
The following general safety instructions apply to all Lenze drive and automation components.
The product−specific safety and application notes given in this documentation must be observed!
Note for UL−approved systems: UL warnings are notes which only apply to
UL systems. The documentation contains specific notes with regard to UL.
Danger!
Disregarding the following basic safety measures may lead to severe personal injury and damage to material assets!
ƒ Lenze drive and automation components ...
... must only be used for the intended purpose. ... must never be operated if damaged. ... must never be subjected to technical modifications. ... must never be operated unless completely assembled. ... must never be operated without the covers/guards. ... can − depending on their degree of protection − have live, movable or
rotating parts during or after operation. Surfaces can be hot.
Transport, storage
ƒ All specifications of the corresponding enclosed documentation must
be observed. This is vital for a safe and trouble−free operation and for achieving the
specified product features. The procedural notes and circuit details provided in this document are
proposals which the user must check for suitability for his application. The manufacturer does not accept any liability for the suitability of the specified procedures and circuit proposals.
ƒ Only qualified skilled personnel are permitted to work with or on Lenze
drive and automation components. According to IEC 60364 or CENELEC HD 384, these are persons ... ... who are familiar with the installation, assembly, commissioning and
operation of the product, ... possess the appropriate qualifications for their work, ... and are acquainted with and can apply all the accident prevent
regulations, directives and laws applicable at the place of use.
ƒ Transport and storage in a dry, low−vibration environment without
aggressive atmosphere; preferably in the packaging provided by the manufacturer.
– Protect against dust and shocks. – Comply with climatic conditions according to the technical data.
EDSVF9333V EN 6.2−04/2012
2.1−1
Page 26
2
2.1
Safety instructions
General safety information
Mechanical installation
Electrical installation
ƒ Install the product according to the regulations of the corresponding
documentation. In particular observe the section "Operating conditions" in the chapter "Technical data".
ƒ Provide for a careful handling and avoid mechanical overload. During
handling neither bend components, nor change the insulation distances.
ƒ The product contains electrostatic sensitive devices which can easily be
damaged by short circuit or static discharge (ESD). Thus, electronic components and contacts must not be touched unless ESD measures are taken beforehand.
ƒ Carry out the electrical installation according to the relevant
regulations (e. g. cable cross−sections, fusing, connection to the PE conductor). Additional notes are included in the documentation.
ƒ When working on live products, observe the applicable national
regulations for the prevention of accidents (e.g. BGV 3).
ƒ The documentation contains information about EMC−compliant
installation (shielding, earthing, arrangement of filters and laying cables). The system or machine manufacturer is responsible for compliance with the limit values required by EMC legislation.
Warning: The controllers are products which can be used in category C2 drive systems as per EN 61800−3. These products may cause radio interference in residential areas. If this happens, the operator may need to take appropriate action.
ƒ For compliance with the limit values for radio interference emission at
the site of installation, the components − if specified in the technical data − have to be mounted in housings (e. g. control cabinets). The housings have to enable an EMC−compliant installation. In particular observe that for example control cabinet doors preferably have a circumferential metallic connection to the housing. Reduce openings or cutouts through the housing to a minimum.
ƒ Only plug in or remove pluggable terminals in the deenergised state!
Commissioning
Operation
Safety functions
2.1−2
ƒ If required, you have to equip the system with additional monitoring
and protective devices in accordance with the respective valid safety regulations (e. g. law on technical equipment, regulations for the prevention of accidents).
ƒ Before commissioning remove transport locking devices and keep them
for later transports.
ƒ Keep all protective covers and doors closed during operation.
ƒ Without a higher−level safety system, the described product must
neither be used for the protection of machines nor persons.
ƒ Certain controller versions support safety functions (e.g. "Safe torque
off", formerly "Safe standstill"). The notes on the safety functions provided in the documentation of the
versions must be observed.
EDSVF9333V EN 6.2−04/2012
Page 27
Safety instructions
General safety information
2
2.1
Maintenance and servicing
Disposal
ƒ The components are maintenance−free if the required operating
conditions are observed.
ƒ If the cooling air is polluted, the cooling surfaces may be contaminated
or the air vents may be blocked. Under these operating conditions, the cooling surfaces and air vents must be cleaned at regular intervals. Never use sharp objects for this purpose!
ƒ Only replace defective fuses in the deenergised state to the type
specified.
ƒ After the system has been disconnected from the supply voltage, live
components and power connections must not be touched immediately because capacitors may be charged. Please observe the corresponding notes on the device.
ƒ Recycle metals and plastic materials. Ensure professional disposal of
assembled PCBs.
EDSVF9333V EN 6.2−04/2012
2.1−3
Page 28
Page 29

2.2 Thermal motor monitoring

2.2.1 Description

Note!
From software version 8.0 onwards, the 9300 controllers are provided with an I of the connected motor.
2
ƒ I
calculates a thermal motor utilisation from the detected motor currents.
ƒ The calculated motor utilisation is saved when the mains is
switched off.
ƒ The function is UL−certified, i.e. additional protective measures
for the motor are not required in UL−approved systems.
ƒ Nevertheless, I
protection because other influences on the motor utilisation such as changes in the cooling conditions (e.g. cooling air flow interrupted or too warm) cannot be detected.
Safety instructions
Thermal motor monitoring
Description
2
xt function for sensorless thermal monitoring
xt monitoring is based on a mathematical model which
2
xt monitoring does not provide full motor
2
2.2
2.2.1
2
× t−load of the motor is constantly calculated by the drive controller
The I and displayed in C0066.
2
The I
x t−monitoring is designed in a way, that a motor with a thermal motor
time factor of 5 min, a motor current of 1.5 x I
and a trigger threshold of
r
100 % releases the monitoring after 179 s.
You can set different reactions with two adjustable trigger thresholds.
ƒ Adjustable reaction OC8 (TRIP, Warning, Off).
– The reaction is set in C0606. – The trigger threshold is set in C0127. – The reaction OC8 can be used for example for an advance warning.
ƒ Fixed reaction OC6−TRIP.
– The trigger threshold is set in C0120.
Response of the I2 x t−monitoring Condition
The I2 x t−monitoring is deactivated. C0066 = 0 % and MCTRL−LOAD−I2XT = 0,00 % is set.
The I2 x t−monitoring is stopped. The actual value in C0066 and at the MCTRL−LOAD−I2XT output is held.
The I2 x t−monitoring is deactivated. The motor load is displayed in C0066.
Set the controller inhibit at C0120 = 0 % and C0127 = 0 %.
Allow controller release at C0120 = 0 % and C0127 = 0 %.
Set C0606 = 3 (Off) and C0127 > 0 %.
EDSVF9333V EN 6.2−04/2012
Note!
An OC6 or OC8 error message can only be reset if the I2 × t−monitoring has fallen below the set trigger threshold by 5 %.
2.2−1
Page 30
2
2.2
2.2.2
Safety instructions
Thermal motor monitoring Parameter setting

2.2.2 Parameter setting

Parameter setting
Code Meaning Value range Lenze setting
C0066 Display of the I2xt utilisation of the
C0120 Threshold: Triggering of an "OC6" error 0 ... 120 % 0 %
C0127 Threshold: Triggering of an "OC8" error 0 ... 120 % 0 %
C0128 Thermal time constant of the motor 0.1 ... 50.0 min 5.0 min
C0606 Response to "OC8" error Trip, warning, off Warning
motor
0 ... 250 %
Calculating the release time
Reading the release time off the diagram
IMActual motor current
I
Rated motor current
r
y C0120 or C0127
t +*(C0128) @ ln
ȡ ȧ Ȣ
1 *
ǒ
I
M I
r
y ) 1
2
Ǔ
@ 100
ȣ ȧ Ȥ
ƒ The thermal capacity of the motor is expressed by the thermal motor
time factor (C0128). Please see the rated data of the motor for the value or ask the manufacturer of the motor.
Diagram for the determination of the release times of a motor with a thermal motor time factor of 5 min:
2
I t [%]
120
100
50
Fig. 2.2−1 I2 × t−monitoring: Release times for different motor currents and trigger
I =3×I
mot r
0
0 100 200 300 400 500 600 700 800 900
I=2×I
mot r
thresholds
Imot Motor current I
r 2
tI
I T Time
I =1.5×I
mot r
Rated motor current
2
t load
I =1×I
mot r
t [s]
1000
9300std105
2.2−2
EDSVF9333V EN 6.2−04/2012
Page 31

2.3 Residual hazards

Safety instructions
Residual hazards
2
2.3
Protection of persons
ƒ According to their enclosure, Lenze controllers (frequency inverters,
servo inverters, DC speed controllers) and their components can carry a voltage, or parts of the controllers can move or rotate during operation. Surfaces can be hot.
– If the required cover is removed, the controllers are used
inappropriately or installed or operated incorrectly, severe damage to
persons or material assets can occur. – For more detailed information please see the documentation.
ƒ There is a high amount of energy within the controller. Therefore
always wear personal protective equipment (body protection, headgear, eye protection, ear protection, hand guard) when working on the controller when it is live.
ƒ Before working on the controller, check if no voltage is applied to the
power terminals. – the power terminals U, V, W, +UG and −UG still carry dangerous
voltage for at least 3 minutes after power−off. – the power terminals L1, L2, L3; U, V, W, +UG and −UG carry dangerous
voltage when the motor is stopped.
ƒ Before power−off during DC−bus operation, all controllers must be
inhibited and disconnected from the mains.
ƒ The discharge current to PE potential is > 3.5 mA. In accordance with
EN 61800−5−1 – a fixed installation is required. – the design of the PE conductor has to be double or, in the case of a
single design, must have a cable cross−section of at least 10 mm
ƒ The controller can only be safely disconnected from the mains via a
contactor on the input side.
ƒ During parameter set transfer the control terminals of the controller
can have undefined states. – Therefore the connectors X5 and X6 must be disconnected from the
controller before the transfer takes place. This ensures that the
controller is inhibited and all control terminals have the defined state
"LOW".
ƒ If you use the "flying−restart circuit" function (C0142 = 2, 3) for
machines with a low moment of inertia and minimum friction: – After controller enable in standstill, the motor may start or change its
direction of rotation for a short time, because the flying restart
process also is carried out at a speed of 0.
2
.
EDSVF9333V EN 6.2−04/2012
2.3−1
Page 32
2
2.3
Safety instructions
Residual hazards
ƒ Controllers can cause a DC current in the PE conductor. If a residual
current device (RCD) or a fault current monitoring unit (RCM) is used for protection in the case of direct or indirect contact, only one RCD/RCM of the following type can be used on the current supply side:
– Type B for the connection to a three−phase system – Type A or type B for the connection to a single phase system Alternatively another protective measure can be used, like for instance
isolation from the environment by means of double or reinforced insulation, or isolation from the supply system by using a transformer.
Device protection
Motor protection
ƒ Frequent mains switching (e.g. inching mode via mains contactor) can
overload and destroy the input current limitation of the drive controller:
– At least 3 minutes must pass between switching off and restarting
the devices EVF9321−xV and EVF9322−xV. – At least 3 minutes must pass between two starting procedures of the
devices EVF9323−xV ... EVF9333−xV. – Use the "safe torque off" safety function (STO) if safety−related mains
disconnections occur frequently. The drive variants Vxx4 are
equipped with this function.
ƒ For some controller settings, the connected motor may overheat (e.g.
when operating the DC injection brake or a self−ventilated motor at low speed for longer periods).
– Using an overcurrent relay or a temperature monitoring device
provides a large degree of protection against overload. – We recommend to use PTC thermistors or thermal contacts for motor
temperature monitoring. (Lenze three−phase AC motors are equipped
with thermal contacts (NC contacts) as standard) – PTC thermistors or thermal contacts can be connected to the
controller.
2.3−2
ƒ Drives can attain dangerous overspeeds (e.g. setting of high output
frequencies with motors and machines not qualified for this purpose).
EDSVF9333V EN 6.2−04/2012
Page 33
Safety instructions

Safety instructions for the installation according to UL or UR

2
2.4
2.4 Safety instructions for the installation according to UL or U
Warnings!
ƒ Motor Overload Protection
– For information on the protection level of the internal
overload protection for a motor load, see the corresponding manuals or software helps.
– If the integral solid state motor overload protection is not
used, external or remote overload protection must be provided.
ƒ Branch Circuit Protection
– The integral solid state protection does not provide branch
circuit protection.
– Branch circuit protection has to be provided externally in
accordance with corresponding instructions, the National Electrical Code and any additional codes.
ƒ Please observe the specifications for fuses and
screw−tightening torques in these instructions.
ƒ EVF9321  EVF9326:
– Suitable for use on a circuit capable of delivering not more
than 5000 rms symmetrical amperes, 480 V maximum, when protected by fuses.
– Suitable for use on a circuit capable of delivering not more
than 50000 rms symmetrical amperes, 480 V maximum,
when protected by CC, J, T or R class fuses. – Maximum surrounding air temperature: 0 ... +55 °C – > +40 °C: reduce the rated output current by 2.5 %/°C – Use 75 °C copper wire only.
ƒ EVF9327  EVF9329:
– Suitable for use on a circuit capable of delivering not more
than 5000 rms symmetrical amperes, 480 V maximum,
when protected by fuses. – Suitable for use on a circuit capable of delivering not more
than 50000 rms symmetrical amperes, 480 V maximum,
when protected by J, T or R class fuses. – Maximum surrounding air temperature: 0 ... +50 °C – > +40 °C: reduce the rated output current by 2.5 %/°C – Use 60/75 °C or 75 °C copper wire only.
R
EDSVF9333V EN 6.2−04/2012
2.4−1
Page 34
2
2.4
Safety instructions
Safety instructions for the installation according to UL or UR
ƒ EVF9330  EVF9333:
– Suitable for use on a circuit capable of delivering not more
than 10000 rms symmetrical amperes, 480 V maximum,
when protected by fuses. – Suitable for use on a circuit capable of delivering not more
than 50000 rms symmetrical amperes, 480 V maximum,
when protected by J, T or R class fuses. – Maximum surrounding air temperature: 0 ... +50 °C – > +40 °C: reduce the rated output current by 2.5 %/°C – Use 60/75 °C or 75 °C copper wire only.
2.4−2
EDSVF9333V EN 6.2−04/2012
Page 35

3 Technical data

Contents
3.1 General data and operating conditions 3.1−1 . . . . . . . . . . . . . . . . . . . . . . . .
3.2 Open and closed loop control 3.2−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.3 Safety relay KSR 3.3−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.4 Operation with rated power (normal operation) 3.4−1 . . . . . . . . . . . . . . . . .
3.4.1 Rated data for 400 V mains voltage 3.4−1 . . . . . . . . . . . . . . . . . . . .
3.4.2 Rated data for 480 V mains voltage 3.4−3 . . . . . . . . . . . . . . . . . . . .
3.5 Operation with increased rated power 3.5−1 . . . . . . . . . . . . . . . . . . . . . . . . .
3.5.1 Rated data for 400 V mains voltage 3.5−1 . . . . . . . . . . . . . . . . . . . .
3.6 Current characteristics 3.6−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Technical data
Contents
3
EDSVF9333V EN 6.2−04/2012
3−1
Page 36
Page 37
General data and operating conditions

3.1 General data and operating conditions

Technical data
3
3.1
General data
Conformity and approval
Conformity
CE
Approval
UL cULus Power Conversion Equipment (File No. E132659)
Protection of persons and equipment
Type of protection EN 60529
Earth leakage current IEC/EN 61800−5−1 > 3.5 mA Observe regulations and
Insulation of control circuits
Insulation resistance EN 61800−5−1
Protective measures Against short circuit, earth fault (earth−fault
2006/95/EC Low−Voltage Directive
2004/108/EG EMC Directive
IP20
IP41 in case of thermally separated installation (push−through technique) between the control cabinet (inside) and the environment.
NEMA 250 Protection against accidental contact in accordance
with type 1
safety instructions!
IEC/EN 61800−5−1 Safe mains isolation by double (reinforced)
insulation for the terminals X1 and X5. Basic insulation (single isolating distance) for the terminals X3, X4, X6, X8, X9, X10 and X11.
< 2000 m site altitude: Overvoltage category III
> 2000 m site altitude: Overvoltage category II
protected during operation, limited earth−fault protection during operation), overvoltage, motor stalling, motor overtemperature (input for PTC or thermal contact)
Operating conditions
EMC
Noise emission IEC/EN 61800−3
Interference immunity
Ambient conditions
Climatic
Storage
Transport IEC/EN 60721−3−2 2K3 (−25 ... +70 °C)
Operation
EVF9321 ... EVF9326
EVF9327 ... EVF9333
Pollution IEC/EN 61800−5−1 Degree of pollution 2
IEC/EN 61800−3 Category C3
IEC/EN 60721−3−1
IEC/EN 60721−3−3
Cable−guided, up to 10 m motor cable length with mains filter A: category C2.
Radiation, with mains filter A and installation in control cabinet: category C2
1K3 (−25 ... +55 °C) < 6 months
1K3 (−25 ... +40 °C) > 6 months
3K3 (0 ... +55 °C) > +40 °C: reduce the rated output current by
2.5 %/°C. 3K3 (0 ... +50 °C)
> +40 °C: reduce the rated output current by
2.5 %/°C.
> 2 years: form DC bus capacitors
EDSVF9333V EN 6.2−04/2012
3.1−1
Page 38
3
3.1
Technical data
General data and operating conditions
Ambient conditions
Site altitude < 4000 m amsl
Mechanical
Vibration resistance
2
(9.81 m/s
Electrical
AC−mains connection
Max. mains voltage range
Mains frequency 45 Hz − 0 % ... 65 Hz + 0 %
Power system TT, TN
Power system IT Operation only permitted with the device variants
Operation on public supply systems
DC−mains connection
Max. mains voltage range
Operating conditions
Motor connection
Length of the motor cable
= 1 g)
Germanischer Lloyd 5 ... 13.2 Hz
IEC/EN 60068−2−6 10 ... 57 Hz
EN 61000−3−2
> 1000 m amsl: reduce the rated output current by 5 %/ 1000 m.
Amplitude ±1 mm 13.2 ... 100 Hz: acceleration resistant up to 0.7 g
Amplitude 0.075 mm 57 ... 150 Hz: acceleration resistant up to 1 g
320 V − 0 % ... 528 V + 0 %
Operation permitted without restrictions with earthed neutral.
V024 or V100. Operation permitted without restrictions with insulated neutral. Observe instructions on specific measures!
Limitation of harmonic currents
Total output at the mains
< 1 kW With mains choke.
> 1 kW Without additional
1)
The additional measures mentioned have the effect that solely the controllers meet the requirements of EN 61000−3−2. The machine/system manufacturer is responsible for the compliance with the requirements for the machine/system!
450 V − 0 % ... 740 V + 0 %
DC voltage must be symmetrical to PE. The controller will be destroyed when +U are earthed.
< 50 m shielded
< 100 m unshielded
At rated mains voltage and a switching frequency of £ 8 kHz without additional output filter. For compliance with EMC regulations, the permissible cable length might change.
Compliance with the requirements
measures.
1)
or −U
G
G
3.1−2
Mounting conditions
Mounting place In the control cabinet
Mounting position Vertical
Free spaces Dimensions Weights
4−1
EDSVF9333V EN 6.2−04/2012
Page 39
Technical data
Open and closed loop control

3.2 Open and closed loop control

Field Values
Control methods V/f characteristic control (linear, square), vector control
Switching frequency 1 kHz, 2 kHz or 4 kHz
Torque behaviour in case of vector control
Maximum torque 1.5 × Mr for 60 s if rated motor power = rated 9300 vector power
Setting range to 1:10
(1 : 20 with feedback)
Speed control without feedback
Min. mechanical motor frequency 1 % f
Setting range 1 : 100 relating to fr and M
Accuracy ± 0.5 % f
Speed control without feedback
Min. mechanical motor frequency 0.1 % f
Setting range 1 : 1000 relating to fr and M
Accuracy ± 0.1 % of f
Output frequency
Field − 300 Hz ... + 300 Hz
Absolute resolution 0.06 Hz
Standardised resolution Parameter data: 0.01 %,
Digital setpoint selection
Accuracy ± 0.005 Hz (= ± 100 ppm)
Analog setpoint selection
Linearity ± 0.15 % signal level: 5 V or 10 V
Temperature sensitivity ± 0.1 % 0 ... 50 °C
Offset ± 0.1 %
Analog inputs/outputs l 2 inputs (bipolar)
Digital inputs/outputs l 6 inputs (freely assignable)
Cycle times
Digital inputs 1 ms
Digital outputs 1 ms
Analog inputs 1 ms Analog outputs 1 ms (smoothing time: tt = 2 ms)
Operation in generator mode Integrated brake transistor (optional)
frrated motor frequency M
r
r
N
N
r
14
Process data: 0.006 % (= 2
l 2 outputs (bipolar)
l 1 input for controller inhibit l 4 outputs freely assignable) l 1 incremental encoder input (500 kHz, TTL level); Design: 9−pole Sub−D socket l 1 digital frequency input (500 kHz, TTL level or 200 kHz, HTL level); type: 9−pole Sub−D
socket; can be alternatively used as incremental encoder input (200 kHz, HTL level)
l 1 master frequency output (500 kHz, TTL level); Design: 9−pole Sub−D socket
rated motor torque
)
in the range of 6 ... 100 % f
Torque 0 ... M
in the range of 6 ... 100 % f
Torque 0 ... M
N
N
3
3.2
r
r
N
r
EDSVF9333V EN 6.2−04/2012
3.2−1
Page 40
Page 41
Technical data

Safety relay KSR

3
3.3
3.3 Safety relay K
Terminal Description Field Values
X11/K32 X11/K31 X11/33 X11/34
Safety relay K 1st disconnecting path
SR
SR
Coil voltage at +20 °C DC 24 V (20 ... 30 V) Coil resistance at +20 °C 823 W ±10 %
Rated coil power Approx. 700 mW
Max. switching voltage AC 250 V, DC 250 V (0.45 A)
Max. AC switching capacity 1500 VA
Max. switching current (ohmic load) AC 6 A (250 V), DC 6 A (50 V)
Recommended minimum load > 50 mW
Max. switching rate 6 switchings per minute
Mechanical service life 107 switching cycles
Electrical service life
at 250 V AC (ohmic load)
at 24 V DC (ohmic load)
105 switching cycles at 6 A
6
10
7
10 6 × 103 switching cycles at 6 A
6
10
1.5 × 10
7
10
switching cycles at 1 A switching cycles at 0.25 A
switching cycles at 3 A
6
switching cycles at 1 A
switching cycles at 0.1 A
EDSVF9333V EN 6.2−04/2012
3.3−1
Page 42
Page 43
Operation with rated power (normal operation)
Rated data for 400 V mains voltage

3.4 Operation with rated power (normal operation)

Note!
The controllers EVF9324, EVF9326 and EVF9328  EVF9333 may only be operated with the prescribed mains chokes and mains filters.

3.4.1 Rated data for 400 V mains voltage

Basis of the data
Voltage Frequency
AC mains connection [V
DC−mains connection (alternatively)
Output voltage
With mains choke 3 ~ 0 approx. 94 % V
Without mains choke 3 ~ 0 ... U
rate
]
d
[UDC] DC 450 V − 0 % ... 620 V + 0 % ˘
3/PE AC 320 V − 0 % ... 440 V + 0 %
rated
N
Technical data
45 Hz − 0 % ... 65 Hz + 0 %
˘
˘
3
3.4
3.4.1
9300 Mains current
With
Mains choke
Type Ir [A] Ir [A] P
EVF9321−xV 1.5 2.1 0.37 0.5 1.0 1.0 1.9 50
EVF9322−xV 2.5 3.5 0.75 1.0 1.7 1.7 0.7 65
EVF9323−xV 3.9 5.5 1.5 2.0 2.7 2.7 0 100
EVF9324−xV 7.0 ˘ 3.0 4.0 4.8 4.8 2.0 150
EVF9325−xV 12.0 16.8 5.5 7.5 9.0 9.0 0 210
EVF9326−xV 20.5 ˘ 11.0 15.0 16.3 16.3 0 390
EVF9327−xV 29.0 43.5 15.0 20.0 22.2 22.2 10.2 430
EVF9328−xV 42.0 ˘ 22.0 30.0 32.6 32.6 4.0 640
EVF9329−xV 55.0 ˘ 30.0 40.0 41.6 41.6 0 810
EVF9330−xV 80.0 ˘ 45.0 60.0 61.7 61.7 5.1 1100
EVF9331−xV 100 ˘ 55.0 75.0 76.2 76.2 0 1470
EVF9332−xV 135 ˘ 75.0 100 103.9 103.9 28.1 1960
EVF9333−xV 165 ˘ 90.0 125 131.2 124.7 40.6 2400
1)
Without
Mains choke
1)
Mains currents at a switching frequency of 8 kHz
2)
Switching frequency of the inverter
3)
Power supplied by the DC bus when operating with power−adapted motor
Typical motor power Output power Power loss
rated
ASM
(4−pole)
[kW] P
rated
[hp] S
2/4 kHz
2)
U, V, W U, V, W +UG, −UG
[kVA] S
rated
2)
8 kHz
[kVA] PDC [kW] P
rated
3)
[W]
loss
EDSVF9333V EN 6.2−04/2012
3.4−1
Page 44
3
3.4
3.4.1
Technical data
Operation with rated power (normal operation) Rated data for 400 V mains voltage
9300 Rated output current at switching frequency Max. permissible output current at switching
2/4 kHz
Type Ir [A] Ir [A] Ir [A] Ir [A] Ir [A] I
EVF9321−xV 1.5 1.5 1.5 1.5 1.1 2.2 2.2 2.2 2.2 1.6
EVF9322−xV 2.5 2.5 2.5 2.5 1.8 3.7 3.7 3.7 3.7 2.7
EVF9323−xV 3.9 3.9 3.9 3.9 2.9 5.8 5.8 5.8 5.8 4.3
EVF9324−xV 7.0 7.0 7.0 7.0 5.2 10.5 10.5 10.5 10.5 1.8
EVF9325−xV 13.0 13.0 13.0 13.0 9.7 19.5 19.5 19.5 19.5 14.5
EVF9326−xV 23.5 23.5 23.5 23.5 15.2 35.0 35.0 35.0 35.0 22.9
EVF9327−xV 32.0 32.0 29.0 32.0 21.0 48.0 48.0 43.0 48.0 31.0
EVF9328−xV 47.0 47.0 43.0 47.0 30.0 70.5 70.5 64.0 70.5 46.0
EVF9329−xV 59.0 59.0 47.0 59.0 35.0 89.0 89.0 70.0 89.0 53.0
EVF9330−xV 89.0 89.0 59.0 89.0 46.0 134 134 88.0 134 69.0
EVF9331−xV 110 110 76.0 110 52.0 165 165 114 165 165
EVF9332−xV 150 147 92.0 150 58.0 225 221 138 225 87.0
EVF9333−xV 180 147 100 180 63.0 270 221 150 270 94.0
3)
8 kHz 8 kHz sin 8/2 kHz 2)16 kHz 2/4 kHz 8 kHz 8 kHz sin 8/2 kHz 2)16 kHz
[A] I
max
Bold print = Lenze setting
1)
The currents apply to a periodic load change with an overcurrent time of maximally 1 minute and a base load time of 2 minutes with maximally 75 % I
2)
Power−optimised operation with automatic switching frequency reduction. When the max. permissible output current is exceeded, the switching frequency is reduced to 2 kHz.
3)
Possible for some types in case of other operating conditions: Operation with increased rated output current at the same load change (see chapter "Operation with increased rated power")
max
frequency
[A] I
rated
max
1)
[A] I
max
[A] I
max
[A]
3.4−2
EDSVF9333V EN 6.2−04/2012
Page 45
Technical data
Operation with rated power (normal operation)
Rated data for 480 V mains voltage
3
3.4
3.4.2

3.4.2 Rated data for 480 V mains voltage

Basis of the data
Voltage Frequency
AC mains connection [UN] 3/PE AC 384 V − 0 % ... 528 V + 0 % 45 Hz − 0 % ... 65 Hz + 0 %
DC−mains connection (alternatively)
Output voltage
With mains choke 3 ~ 0 approx. 94 % V
Without mains choke 3 ~ 0 ... U
9300 Mains current
With
Mains choke
Type Ir [A] Ir [A] P
EVF9321−xV 1.5 2.1 0.37 0.5 1.2 1.2 2.3 50
EVF9322−xV 2.5 3.5 0.75 1.0 2.1 2.1 0.9 65
EVF9323−xV 3.9 5.5 1.5 2.0 3.2 3.2 0 100
EVF9324−xV 7.0 ˘ 3.0 4.0 5.8 5.8 2.5 150
EVF9325−xV 12.0 16.8 5.5 7.5 10.8 10.8 0 210
EVF9326−xV 20.5 ˘ 11.0 15.0 18.5 18.5 0 390
EVF9327−xV 29.0 43.5 18.5 25.0 26.6 26.6 11.8 430
EVF9328−xV 42.0 ˘ 30.0 40.0 39.1 39.1 4.6 640
EVF9329−xV 55.0 ˘ 37.0 50.0 49.9 49.9 0 810
EVF9330−xV 80.0 ˘ 55.0 75.0 69.8 69.8 5.9 1100
EVF9331−xV 100 ˘ 75.0 100 91.4 91.4 0 1470
EVF9332−xV 135 ˘ 90.0 125 124 124 32.4 1960
EVF9333−xV 165 ˘ 110.0 150 158.2 149 47.1 2400
[UDC] DC 540 V − 0 % ... 740 V + 0 % ˘
rated
N
1)
Without
Mains choke
1)
2)
3)
Typical motor power Output power Power loss
ASM
(4−pole)
[kW] P
rated
Mains currents at a switching frequency of 8 kHz Switching frequency of the inverter Power supplied by the DC bus when operating with power−adapted motor
rated
[hp] S
2/4 kHz
2)
U, V, W U, V, W +UG, −UG
[kVA] S
rated
2)
8 kHz
[kVA] PDC [kW] P
rated
˘
˘
3)
loss
[W]
EDSVF9333V EN 6.2−04/2012
3.4−3
Page 46
3
3.4
3.4.2
Technical data
Operation with rated power (normal operation) Rated data for 480 V mains voltage
9300 Rated output current at switching frequency Max. permissible output current at switching
2/4 kHz 8 kHz 8 kHz sin 8/2 kHz 2)16 kHz 2/4 kHz 8 kHz 8 kHz sin 8/2 kHz 2)16 kHz
Type Ir [A] Ir [A] Ir [A] Ir [A] Ir [A] I
EVF9321−xV 1.5 1.5 1.5 1.5 1.1 2.2 2.2 2.2 2.2 1.6
EVF9322−xV 2.5 2.5 2.5 2.5 1.8 3.7 3.7 3.7 3.7 2.7
EVF9323−xV 3.9 3.9 3.9 3.9 2.9 5.8 5.8 5.8 5.8 4.3
EVF9324−xV 7.0 7.0 7.0 7.0 5.2 10.5 10.5 10.5 10.5 7.8
EVF9325−xV 13.0 13.0 13.0 13.0 9.7 19.5 19.5 19.5 19.5 14.5
EVF9326−xV 22.3 22.3 22.3 22.3 14.6 33.5 33.5 33.5 33.5 21.8
EVF9327−xV 30.4 30.4 27.0 30.4 19.0 45.6 45.6 41.0 45.6 29.0
EVF9328−xV 44.7 44.7 41.0 44.7 29.0 67.0 67.0 61.0 67.0 43.5
EVF9329−xV 56.0 56.0 44.0 560 33.0 84.0 84.0 66.0 84.0 49.0
EVF9330−xV 84.0 84.0 55.0 84.0 43.7 126 126 82.0 126 65.6
EVF9331−xV 105 105 71.0 105 49.5 157 157 107 157 74.0
EVF9332−xV 142 142 87.0 142 55.0 213 213 130 213 83.0
EVF9333−xV 171 171 94.0 171 59.0 256 211 141 256 89.0
Bold print = Lenze setting
1)
The currents apply to a periodic load change with an overcurrent time of maximally 1 minute and a base load time of 2 minutes with maximally 75 % I
2)
Power−optimised operation with automatic switching frequency reduction. When the max. permissible output current is exceeded, the switching frequency is reduced to 2 kHz.
max
[A] I
max
frequency
[A] I
rated
max
1)
[A] I
max
[A] I
max
[A]
3.4−4
EDSVF9333V EN 6.2−04/2012
Page 47
Operation with increased rated power

3.5 Operation with increased rated power

Under the operating conditions described here, the drive controller can be operated in continuous operation with a more powerful motor. The overload capacity is reduced to 120 %.
Typical applications are pumps with quadratic load characteristic or fan.
Note!
ƒ The operation with increased rated power is not UL−certified. ƒ Operation with increased rated power is only allowed:
– In the listed mains voltage range – With the listed switching frequencies – With the specified fuses, cable cross−sections and mains
chokes or mains filters
Technical data
Rated data for 400 V mains voltage
3
3.5
3.5.1

3.5.1 Rated data for 400 V mains voltage

Basis of the data
Voltage Frequency
AC mains connection [UN] 3/PE AC 320 V − 0 % ... 440 V + 0 % 45 Hz − 0 % ... 65 Hz + 0 %
DC−mains connection (alternatively)
Output voltage
With mains choke 3 ~ 0 approx. 94 % V
9300 Mains current
Type Ir [A] P
EVF9321−xV 1.7 0.55 0.75 1.3 1.72 50
EVF9322−xV 2.8 1.1 1.5 2.1 0.35 65
EVF9323−xV 5.0 2.2 3.0 3.8 0 115
EVF9324−xV 8.8 4.0 5.0 6.5 1.0 165
EVF9325−xV 15.0 7.5 10.0 11.1 0 260
EVF9327−xV 39.0 22.0 30.0 29.8 3.2 640
EVF9328−xV 50.0 30.0 40.0 39.5 0 810
EVF9329−xV 60.0 37.0 50.0 46.4 0 950
EVF9330−xV 97.0 55.0 75.0 74.8 0 1350
EVF9331−xV 119 75.0 100 91.5 0 1470
EVF9332−xV 144 90.0 125 110 13.1 2100
EVF9333−xV 185 110.0 150 142 20.6 2400
[UDC] DC 450 V − 0 % ... 620 V + 0 % ˘
rated
1)
Typical motor power Output power Power loss
ASM
(4−pole)
[kW] P
rated
1)
Mains currents at a switching frequency of 2/4 kHz
2)
Switching frequency of the inverter
3)
Power supplied by the DC bus when operating with power−adapted motor
[hp] S
rated
2/4 kHz
2)
U, V, W +UG, −UG
[kVA] PDC [kW] P
rated
˘
3)
loss
[W]
EDSVF9333V EN 6.2−04/2012
3.5−1
Page 48
3
3.5
3.5.1
Technical data
Operation with increased rated power Rated data for 400 V mains voltage
9300 Rated output current at switching frequency Max. permissible output current at switching
2/4 kHz 2/8 kHz
Type Ir [A] Ir [A] I
EVF9321−xV 1.8 1.8 2.2 2.2
EVF9322−xV 3.0 3.0 3.7 3.7
EVF9323−xV 5.5 5.5 5.8 5.8
EVF9324−xV 9.2 9.2 10.5 10.5
EVF9325−xV 15.0 15.0 19.5 19.5
EVF9327−xV 43.0 43.0 48.0 48.0
EVF9328−xV 56.0 56.0 70.5 70.5
EVF9329−xV 66.0 66.0 89.0 89.0
EVF9330−xV 100 100 134 134
EVF9331−xV 135 135 165 165
EVF9332−xV 159 159 225 225
EVF9333−xV 205 205 270 270
Bold print = Lenze setting
1)
The currents apply to a periodic load change with an overcurrent time of maximally 1 minute and a base load time of 2 minutes with maximally 75 % I
2)
Power−optimised operation with automatic switching frequency reduction. During operation with increased rated power, the switching frequency is reduced to 2 kHz.
2)
2/4 kHz 2/8 kHz
max
rated
frequency
[A] I
1)
2)
[A]
max
3.5−2
EDSVF9333V EN 6.2−04/2012
Page 49

3.6 Current characteristics

On some operating conditions, the maximum output current is limited for the devices EVF9326 ... EVF9333:
Technical data
Current characteristics
3
3.6
ƒ For output frequencies f
> 40° C.
J
K
< |5 Hz| and a heatsink temperature
out
ƒ The current limitation depends on the chopper frequency.
01
I
OUT
I
max
I
0max
00
0055
<40°C
K
=80°C
K
fout [Hz] fout [Hz]
Fig. 3.6−1 Current derating characteristics
Operation with chopper frequency f
8/2 kHz (C0018 = 0, 1, 2, 3, 4, 6) The current limitation follows the characteristic At output frequencies f
J
= 40 ... 80 °C the current limit is adjusted steplessly in the range .
K
Operation with chopper frequency f
The current limitation follows the characteristic and does not depend on the heatsink temperature
I
OUT
I
max
I
0max
= 16/8/2 kHz, 2 kHz, 4 kHz, 8 kHz or
chop
< |5 Hz| and heatsink temperatures
out
= 16 kHz (C0018 = 5)
chop
9300vec132
9300 vector
[A]
1)
I
0max
I
0max
C0018 = 0, 1, 2, 6 C0018 = 3 C0018 = 4 C0018 = 5
U
mains
U
mains
U
mains
U
[A]
mains
2)
400 V 480 V 400 V 480 V 400 V 480 V 400 V 480 V
EVF9326 35.0 21.6 21.6 32.0 22.7 21.6 11.2 10.6
EVF9327 48.0 45.6 32.0 32.0 28.8 27.3 11.2 10.6
EVF9328 70.5 67.0 47.0 47.0 42.3 40.2 16.5 15.6
EVF9329 89.0 84.6 59.3 59.3 53.4 50.7 17.8 16.9
EVF9330 134 125 89.4 89.4 80.4 76.3 22.0 22.0
EVF9331 143 135 115 115 103 98.8 22.0 22.0
EVF9332 194 185 157 157 138 131 30.0 30.0
EVF9333 197 188 158 158 142 135 35.9 35.9
1)
Maximum available output current at an output frequency f
J
= 80 °C
K
2)
Maximum available output current at an output frequency f
= |0 Hz| and heatsink temperature
out
= |0 Hz|
out
EDSVF9333V EN 6.2−04/2012
3.6−1
Page 50
Page 51
Installing of the standard device

4 Installation of the standard device

4
Contents
Contents
4.1 Standard devices in the power range 0.37 ... 11 kW 4.1−1 . . . . . . . . . . . . . . .
4.1.1 Important notes 4.1−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.1.2 Mounting with fixing rails (standard) 4.1−2 . . . . . . . . . . . . . . . . . . .
4.1.3 Thermally separated mounting (push−through technique) 4.1−3 .
4.1.4 Mounting in "cold plate" technique 4.1−4 . . . . . . . . . . . . . . . . . . . .
4.2 Standard devices in the power range 15 ... 30 kW 4.2−1 . . . . . . . . . . . . . . . .
4.2.1 Important notes 4.2−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.2.2 Mounting with fixing brackets (standard) 4.2−2 . . . . . . . . . . . . . . .
4.2.3 Thermally separated mounting (push−through technique) 4.2−3 .
4.2.4 Mounting in "cold plate" technique 4.2−4 . . . . . . . . . . . . . . . . . . . .
4.3 Standard devices with a power of 45 kW 4.3−1 . . . . . . . . . . . . . . . . . . . . . . . .
4.3.1 Important notes 4.3−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.3.2 Mounting with fixing brackets (standard) 4.3−2 . . . . . . . . . . . . . . .
4.3.3 Thermally separated mounting (push−through technique) 4.3−3 .
4.4 Standard devices in the power range of 55 kW 4.4−1 . . . . . . . . . . . . . . . . . . .
4.4.1 Important notes 4.4−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.4.2 Mounting with fixing brackets (standard) 4.4−2 . . . . . . . . . . . . . . .
4.4.3 Thermally separated mounting (push−through technique) 4.4−3 .
4.4.4 Modification of the fan module for push−through technique 4.4−4
4.5 Standard devices in the power range 75 ... 90 kW 4.5−1 . . . . . . . . . . . . . . . .
4.5.1 Important notes 4.5−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.5.2 Mounting with fixing brackets (standard) 4.5−2 . . . . . . . . . . . . . . .
4.5.3 Thermally separated mounting (push−through technique) 4.5−3 .
EDSVF9333V EN 6.2−04/2012
4−1
Page 52
Page 53
Installing of the standard device
Standard devices in the power range 0.37 ... 11 kW

4.1 Standard devices in the power range 0.37 ... 11 kW

4.1.1 Important notes

Important notes
4
4.1
4.1.1
Mass of the devices
9300 Standard device "Cold plate" device
Type EVF93xx−EV
[kg] EVF9321−xV 4.0 3.1
EVF9322−xV 4.0 3.1
EVF9323−xV 5.5 3.9
EVF9324−xV 5.5 3.9
EVF9325−xV 7.4 5.2
EVF9326−xV 7.4 5.2
EVF93xx−CV
[kg]
EDSVF9333V EN 6.2−04/2012
4.1−1
Page 54
4
4.1
4.1.2
Installing of the standard device
Standard devices in the power range 0.37 ... 11 kW Mounting with fixing rails (standard)

4.1.2 Mounting with fixing rails (standard)

Required mounting material from the scope of supply:
Description Use
Fixing rails Drive controller fixing 2 4
Dimensions
120
LL
b1
b1
d
b
d
b
³ 100mm
³ 100mm
EVF9321 ...
EVF9324
EVF9325,
EVF9326
Amount
Mounting
k
c
a
c1
a
c
Fig. 4.1−1 Standard mounting with fixing rails 0.37 ... 11 kW
Drive controllers can be mounted side by side without spacing
9300 vector Dimensions [mm]
Type a b b1 c c1 d d1 e
EVF9321−EV EVF9322−EV
EVF9323−EV EVF9324−EV
EVF9325−EV EVF9326−EV
1)
For a fieldbus module plugged onto X1, consider mounting space for connecting cables
97 384 350 48.5 365 ˘ 250 6.5 30
135 384 350 21.5 92 365 ˘ 250 6.5 30
e
78 384 350 39 365 ˘ 250 6.5 30
g
9300vec114
1)
g k
ƒ Attach the fixing rails to the housing of the drive controller.
4.1−2
EDSVF9333V EN 6.2−04/2012
Page 55
Installing of the standard device
Standard devices in the power range 0.37 ... 11 kW
Thermally separated mounting (push−through technique)
4.1.3 Thermally separated mounting (push−through technique)
For mounting in push−through technique, the drive controller of type EVF93xx−EV must be used. In addition, the mounting set for push−through technique is required.
Type Mounting set Type Mounting set
EVF9321−EV, EVF9322−EV
EVF9323−EV, EVF9324−EV
EJ0036
EJ0037 EVF9325−EV,
EVF9326−EV
4
4.1
4.1.3
EJ0038
Dimensions
10
LL
Fig. 4.1−2 Dimensions for thermally separated mounting 0.37 ... 11 kW
9300 vector Dimensions [mm]
Type a a1 b b1 c c1 d d1 e EVF9321−EV
EVF9322−EV EVF9323−EV
EVF9324−EV EVF9325−EV
EVF9326−EV
1)
For a fieldbus module plugged onto X1, consider mounting space for connecting cables
112.5 78 385.5 350 60 95.5 365.5 105.5 250 92 6.5
131.5 97 385.5 350 79 114.5 365.5 105.5 250 92 6.5
169.5 135 385.5 350 117 152.5 365.5 105.5 250 92 6.5
d1d1
b1b1
dd
gg
d1d1
cc
a1a1
c1c1
aa
bb
f
e
9300vec115
1)
f g
Mounting cutout in control cabinet
EDSVF9333V EN 6.2−04/2012
9300 vector Dimensions [mm]
Type Width Height
EVF9321−EV EVF9322−EV
EVF9323−EV EVF9324−EV
EVF9325−EV EVF9326−EV
101 350
139 350
82 350
4.1−3
Page 56
4
4.1
4.1.4
Installing of the standard device
Standard devices in the power range 0.37 ... 11 kW Mounting in "cold plate" technique

4.1.4 Mounting in "cold plate" technique

Note!
All 9300 vector frequency inverters are approved according to UL508C. To maintain the guaranteed features, controllers in "cold plate" must be mounted by the user. For this reason, these frequency inverters have the marking UR (instead of UL).
The drive controllers can be mounted in ˜cold plate˜ technique, e.g. on collective coolers. For this purpose, the drive controllers of type EVF93xx−CV must be used.
Required mounting material from the scope of supply:
Requirements for collective coolers
Description Use
Fixing bracket Drive controller fixing 2 2 2
Sheet metal screw
3.5 × 13 mm (DIN 7981)
Mounting of fixing bracket to the drive controller
EVF9321 EVF9322
6 6 6
EVF9323 EVF9324
Quantity
EVF9325 EVF9326
The following points are important for safe and reliable operation of the controller:
ƒ Good thermal connection to the cooler
– The contact surface between the collective cooler and the controller
must be at least as large as the cooling plate of the controller. – Plane contact surface, max. deviation 0.05 mm. – When attaching the collective cooler to the controller, make sure to
use all specified screw connections.
ƒ Observe the thermal resistance R
given in the table. The values are
th
valid for controller operation under rated conditions.
9300 Cooling path
Power to be dissipated Heatsink − environment
Type Pv [W] Rth [K/W]
EVF9321−CV 24 1.45
EVF9322−CV 42 0.85
EVF9323−CV 61 0.57
EVF9324−CV 105 0.33
EVF9325−CV 180 0.19
EVF9326−CV 360 0.10
Ambient conditions
4.1−4
ƒ The rated data and the derating factors at increased temperature also
apply to the ambient temperature of the drive controllers.
ƒ Temperature at the cooling plate of the drive controller: max. 75 °C.
EDSVF9333V EN 6.2−04/2012
Page 57
3
Dimensions
Installing of the standard device
Standard devices in the power range 0.37 ... 11 kW
Mounting in "cold plate" technique
LLL
dd d
b1 b1 b1
bb b
4
4.1
4.1.4
210
<75°C
Mounting
gg g
c a
Fig. 4.1−3 Dimensions for mounting in "cold plate" technique 0.37 ... 11 kW
9300 vector Dimensions [mm]
Type a b b1 c c1 d e EVF9321−CVV003
EVF9322−CVV003 EVF9323−CVV003
EVF9324−CVV003 EVF9325−CVV003
EVF9326−CVV003
1)
For a fieldbus module plugged onto X1, consider mounting space for connecting cables
78 381 350 48 ˘ 367 168 6.5
97 381 350 67 ˘ 367 168 6.5
135 381 350 105 38 367 168 6.5
c
a
c1
c a
e
9300vec120
1)
g
Apply heat conducting paste before screwing together the cooler and cooling plate of the drive controller so that the heat transfer resistance is as low as possible.
1. Fasten the fixing bracket with sheet metal screws 3.5 × 13 mm at the top and bottom of the drive controller .
2. Clean the contact surface of cooler and cooling plate with spirit.
3. Apply a thin coat of heat conducting paste with a filling knife or brush. – The heat conducting paste in the accessory kit is sufficient for an area
of approx. 1000 cm
2
.
EDSVF9333V EN 6.2−04/2012
4. Mount the drive controller on the cooler.
4.1−5
Page 58
Page 59
Installing of the standard device
Standard devices in the power range 15 ... 30 kW

4.2 Standard devices in the power range 15 ... 30 kW

4.2.1 Important notes

The accessory kit is located inside the controller.
Remove the cover of the drive controller
1. Remove the screws
2. Lift cover up and detach it
1
0
9300vec113
Important notes
4
4.2
4.2.1
Mass of the devices
9300 Standard device "Cold plate" device
Type EVF93xx−EV
[kg] EVF9327−xV 13.5 9.5
EVF9328−xV 15.0 9.5
EVF9329−xV 15.0 ˘
EVF93xx−CV
[kg]
EDSVF9333V EN 6.2−04/2012
4.2−1
Page 60
4
4.2
4.2.2
Installing of the standard device
Standard devices in the power range 15 ... 30 kW Mounting with fixing brackets (standard)

4.2.2 Mounting with fixing brackets (standard)

Mounting material required from the scope of supply:
Description Use Quantity
Fixing bracket Drive controller fixing 4
Raised countersunk head screw M5 × 10 mm (DIN 966)
Dimensions
L
d
b1
b
Mounting of fixing bracket to the drive controller
0
³ 100mm
³ 100mm
k
g
4
Mounting
d1
c1
a
c
Fig. 4.2−1 Standard mounting with fixing brackets 15 ... 30 kW
Drive controllers can be mounted side by side without spacing
9300 vector Dimensions [mm]
Type a b b1 c c1 d d1 e EVF9327−EV
EVF9328−EV EVF9329−EV
1)
For a fieldbus module plugged onto X1, consider mounting space for connecting cables
e
250 402 350 22 206 370 24 250 6.5 24 11
m
1)
9300vec111
g k m
ƒ Attach the fixing brackets to the heatsink plate of the drive controller.
4.2−2
EDSVF9333V EN 6.2−04/2012
Page 61
Installing of the standard device
Standard devices in the power range 15 ... 30 kW
Thermally separated mounting (push−through technique)
4.2.3 Thermally separated mounting (push−through technique)
For mounting in push−through technique, the drive controller of type EVF93xx−EV must be used. In addition, the mounting set EJ0011 for push−through technique is required.
4
4.2
4.2.3
Dimensions
a
a1
L
d2
d
b
d3
d2
d1
h
h
Fig. 4.2−2 Dimensions for thermally separated mounting 15 ... 30 kW
9300 vector Dimensions [mm]
Type a a1 b b1 c1 c2 c3 d d1 d2 d3 e 1)e1 g h EVF9327−EV
EVF9328−EV EVF9329−EV
1)
For a fieldbus module plugged onto X1, consider mounting space for connecting cables
c1
c2
c3
279.5 250 379.5 350 19 131 243 361.5 32 100 97 250 159.5 6 9
g
b1
e1
e
9300vec116
Mounting cutout in control cabinet
EDSVF9333V EN 6.2−04/2012
EVF9327−EV EVF9328−EV EVF9329−EV
236 336
4.2−3
Page 62
4
4.2
4.2.4

4.2.4 Mounting in "cold plate" technique

Installing of the standard device
Standard devices in the power range 15 ... 30 kW Mounting in "cold plate" technique
Note!
All 9300 vector frequency inverters are approved according to UL508C. To maintain the guaranteed features, controllers in "cold plate" must be mounted by the user. For this reason, these frequency inverters have the marking UR (instead of UL).
The drive controllers can be mounted in ˜cold plate˜ technique, e.g. on collective coolers. For this purpose, the drive controllers of type EVF93xx−CV must be used.
Requirements for collective coolers
Ambient conditions
The following points are important for safe and reliable operation of the controller:
ƒ Good thermal connection to the cooler
– The contact surface between the collective cooler and the controller
must be at least as large as the cooling plate of the controller. – Plane contact surface, max. deviation 0.05 mm. – When attaching the collective cooler to the controller, make sure to
use all specified screw connections.
ƒ Observe the thermal resistance R
valid for controller operation under rated conditions.
9300 Cooling path
Power to be dissipated Heatsink − environment
Type Pv [W] Rth [K/W]
EVF9327−CV 410 0.085
EVF9328−CV 610 0.057
ƒ The rated data and the derating factors at increased temperature also
apply to the ambient temperature of the drive controllers.
ƒ Temperature at the cooling plate of the drive controller: max. 75 °C.
given in the table. The values are
th
4.2−4
EDSVF9333V EN 6.2−04/2012
Page 63
Dimensions
Installing of the standard device
Standard devices in the power range 15 ... 30 kW
Mounting in "cold plate" technique
L
4
4.2
4.2.4
Mounting
b1
g
c
c1
a
a1
Fig. 4.2−3 Dimensions for mounting in "cold plate" technique 15 ... 22 kW
9300 vector Dimensions [mm]
Type a a1 b b1 c c1 d e EVF9327−CVV003
EVF9328−CVV003
1)
For a fieldbus module plugged onto X1, consider mounting space for connecting cables
234 250 381 350 110 220 367 171 6.5
d
b
<75°C
e
9300vec119
1)
g
Apply heat conducting paste before screwing together the cooler and cooling plate of the drive controller so that the heat transfer resistance is as low as possible.
1. Clean the contact surface of cooler and cooling plate with spirit.
2. Apply a thin coat of heat conducting paste with a filling knife or brush. – The heat conducting paste in the accessory kit is sufficient for an area
of approx. 1000 cm
2
.
3. Mount the drive controller on the cooler.
EDSVF9333V EN 6.2−04/2012
4.2−5
Page 64
Page 65
Installing of the standard device
Standard devices with a power of 45 kW

4.3 Standard devices with a power of 45 kW

4.3.1 Important notes

The accessory kit is located inside the controller.
Remove the cover of the drive controller
1
0
9300vec113
Important notes
1. Remove the screws
2. Lift cover up and detach it
4
4.3
4.3.1
Mass of the devices
9300 Standard device "Cold plate" device
Type EVF93xx−EV
[kg]
EVF9330−xV 36.0 ˘
EVF93xx−CV
[kg]
EDSVF9333V EN 6.2−04/2012
4.3−1
Page 66
4
4.3
4.3.2
Installing of the standard device
Standard devices with a power of 45 kW Mounting with fixing brackets (standard)

4.3.2 Mounting with fixing brackets (standard)

Mounting material required from the scope of supply:
Description Use Quantity
Fixing bracket Drive controller fixing 4
Hexagon head cap screw M8 × 16 mm (DIN 933)
Washer Æ 8.4 mm (DIN 125) For hexagon head cap screw 4 Spring washer Æ 8 mm (DIN 127) For hexagon head cap screw 4
Dimensions
l
d
b1
b
Mounting of fixing bracket to the drive controller
0
³ 100mm
³ 50mm
³ 100mm
4
³ 50mm
Mounting
k
g
d1
c
c1 a
Fig. 4.3−1 Standard mounting with fixing brackets 45 kW
Arrange drive controllers in a row with spacing to be able to remove eye
bolts
9300 vector Dimensions [mm]
Type a b b1 c c1 d d1 e EVF9330−EV 340 580 510 28.5 283 532 38 285 11 28 18
1)
For a fieldbus module plugged onto X1, consider mounting space for connecting cables
e
m
9300vec133
1)
g k m
ƒ Attach the fixing brackets to the heatsink plate of the drive controller.
4.3−2
EDSVF9333V EN 6.2−04/2012
Page 67
Installing of the standard device
Standard devices with a power of 45 kW
Thermally separated mounting (push−through technique)
4.3.3 Thermally separated mounting (push−through technique)
For mounting in push−through technique, the drive controller of type EVF93xx−EV must be used. In addition, the mounting set EJ0010 for push−through technique is required.
4
4.3
4.3.3
Dimensions
a
a1
d2
d
b
Fig. 4.3−2 Dimensions for thermally separated mounting 45 kW
d2
d2
d1
c1
h
h
g
c2
c3
c4
L
b1
e1
e
9300vec117
Mounting cutout in control cabinet
EDSVF9333V EN 6.2−04/2012
9300 vector Dimensions [mm]
Type a a1 b b1 c1 c2 c3 c4 d d1 d2 e 1)e1 g h EVF9330−EV 373 340 543 510 45 137.5 217.5 310 525 45 145 285 163.5 7 9
1)
For a fieldbus module plugged onto X1, consider mounting space for connecting cables
9300 vector Dimensions [mm]
Type Width Height
EVF9330−EV 320 492
4.3−3
Page 68
Page 69
Installing of the standard device
Standard devices in the power range of 55 kW

4.4 Standard devices in the power range of 55 kW

4.4.1 Important notes

The accessory kit is located inside the controller.
Remove the cover of the drive controller
1. Remove the screws
2. Lift cover up and detach it
1
0
9300vec113
Important notes
4
4.4
4.4.1
Mass of the devices
9300 Standard device "Cold plate" device
Type EVF93xx−EV
[kg]
EVF9331−xV 38.0 ˘
EVF93xx−CV
[kg]
EDSVF9333V EN 6.2−04/2012
4.4−1
Page 70
4
4.4
4.4.2
Installing of the standard device
Standard devices in the power range of 55 kW Mounting with fixing brackets (standard)

4.4.2 Mounting with fixing brackets (standard)

Mounting material required from the scope of supply:
Description Use Quantity
Fixing bracket Drive controller fixing 4
Hexagon head cap screw M8 × 16 mm (DIN 933)
Washer Æ 8.4 mm (DIN 125) For hexagon head cap screw 4 Spring washer Æ 8 mm (DIN 127) For hexagon head cap screw 4
Dimensions
l
b1
d
b
Mounting of fixing bracket to the drive controller
0
³ 100 mm
³ 50 mm
³ 100mm
4
³ 50 mm
Mounting
k
g
m
d1
c
c1
a
Fig. 4.4−1 Standard mounting with fixing brackets 55 kW
Arrange drive controllers in a row with spacing to be able to remove eye
9300 vector Dimensions [mm]
Type a b b1 c c1 d d1 e EVF9331−EV 340 672 591 28.5 283 615 38 285 11 28 18
1)
For a fieldbus module plugged onto X1, consider mounting space for connecting cables
bolts
e
9300vec175
1)
g k m
ƒ Attach the fixing brackets to the heatsink plate of the drive controller.
4.4−2
EDSVF9333V EN 6.2−04/2012
Page 71
Installing of the standard device
Standard devices in the power range of 55 kW
Thermally separated mounting (push−through technique)
4.4.3 Thermally separated mounting (push−through technique)
For mounting in push−through technique, the drive controller of type EVF93xx−EV must be used. In addition, the mounting set EJ0010 for push−through technique is required.
ƒ For thermally separated mounting you have to modify the fan module.
( 4.4−4)
4
4.4
4.4.3
Dimensions
a
a1
d3
d2
d
b
d2
d2
d1
c1
h
h
Fig. 4.4−2 Dimensions for thermally separated mounting 55 kW
g
c2
c3
c4
L
e2
e3
b1
e1
e
9300vec174
9300 vector Dimensions [mm]
Type a a1 b b1 c1 c2 c3 c4 d d1 d2 d3 e EVF9331−EV 373 340 543 591 45 137.5 217.5 310 525 45 145 81 285 163.5 185 66 7 9
1)
For a fieldbus module plugged onto X1, consider mounting space for connecting cables
Mounting cutout in control cabinet
EDSVF9333V EN 6.2−04/2012
9300 vector Dimensions [mm]
Type Width Height
EVF9331−EV 320 515
1)
e1 e2 e3 g h
4.4−3
Page 72
4
4.4
4.4.4
Installing of the standard device
Standard devices in the power range of 55 kW Modification of the fan module for push−through technique
4.4.4 Modification of the fan module for push−through technique
For thermally separated mounting the fan module has to be rotated by 180° so that the controller fits into the mounting cutout.
Removing the fan module
Fig. 4.4−3 Removing the fan module from the controller
1. Remove both screws. The screws connect the fans to the supply voltage.
2. Remove the 4 screws for fixing the fan module on each side.
9300vec170
Modifying the threaded sleeves on the fan module
3. Pull back the fan module and carefully remove it to the top. Make sure that the threaded sleeves do not touch the housing edge. They
may break off.
9300vec171
Fig. 4.4−4 Modifying the threaded sleeves for the voltage supply of the fans
1. Remove the threaded sleeves.
2. Screw−in the threaded sleeves on the opposite side and fasten them.
4.4−4
EDSVF9333V EN 6.2−04/2012
Page 73
Plugging the fan connecting cable to another terminal on the fan module
Installing of the standard device
Standard devices in the power range of 55 kW
Modification of the fan module for push−through technique
4
4.4
4.4.4
Mounting the fan module in a manner rotated by 180°
9300vec173
Fig. 4.4−5 Plugging the fan connecting cable for the voltage supply to another terminal
1. Remove the cable lugs of the two red connecting cables and plug them in again on the diagonally arranged side.
2. Remove the cable lugs of the two blue connecting cables and plug them in again on the diagonally arranged side.
9300vec172
Fig. 4.4−6 Mounting the fan module on the controller
1. Place the fan module onto the controller. Insert the lugs at the back into the base plate .
Make sure that the threaded sleeves do not touch the housing edge. They may break off.
EDSVF9333V EN 6.2−04/2012
2. Push the fan module to the front.
3. Screw−in and fasten the 4 screws for fixing the fan module on each side.
4. Screw−in and fasten the two screws for the supply voltage.
4.4−5
Page 74
Page 75
Installing of the standard device
Standard devices in the power range 75 ... 90 kW

4.5 Standard devices in the power range 75 ... 90 kW

4.5.1 Important notes

The accessory kit is located inside the controller.
Remove the cover of the drive controller
1. Remove the screws
2. Lift cover up and detach it
1
0
9300vec113
Important notes
4
4.5
4.5.1
Mass of the devices
9300 Standard device "Cold plate" device
Type EVF93xx−EV
[kg] EVF9332−xV 59.0 ˘
EVF9333−xV 59.0 ˘
EVF93xx−CV
[kg]
EDSVF9333V EN 6.2−04/2012
4.5−1
Page 76
4
4.5
4.5.2
Installing of the standard device
Standard devices in the power range 75 ... 90 kW Mounting with fixing brackets (standard)

4.5.2 Mounting with fixing brackets (standard)

Mounting material required from the scope of supply:
Description Use Quantity
Fixing bracket Drive controller fixing 4
Hexagon head cap screw M8 × 16 mm (DIN 933)
Washer Æ 8.4 mm (DIN 125) For hexagon head cap screw 8 Spring washer Æ 8 mm (DIN 127) For hexagon head cap screw 8
Dimensions
l
d
b1
b
For fixing bracket 8
0
³ 100mm
³ 100mm
³ 50mm
³ 50mm
Mounting
k
g
m
c
c1
a
Fig. 4.5−1 Standard mounting with fixing brackets 75 ... 90 kW
9300 vector Dimensions [mm]
Type a b b1 c c1 d d1 e EVF9332−EV
EVF9333−EV
1)
d1
Drive controllers can be mounted side by side without spacing
450 750 680 28.5 393 702 38 285 11 28 18
For a fieldbus module plugged onto X1, consider mounting space for connecting cables
e
9300vec134
1)
g k m
ƒ Attach the fixing brackets to the heatsink plate of the drive controller.
4.5−2
EDSVF9333V EN 6.2−04/2012
Page 77
Installing of the standard device
Standard devices in the power range 75 ... 90 kW
Thermally separated mounting (push−through technique)
4.5.3 Thermally separated mounting (push−through technique)
For mounting in push−through technique, the drive controller of type EVF93xx−EV must be used. In addition, the mounting set EJ0009 for push−through technique is required.
4
4.5
4.5.3
Dimensions
a
a1
d2
d
b
d2
d2
d1
h
Fig. 4.5−2 Dimensions for thermally separated mounting 75 ... 90 kW
c1
h
g
c2
c3
c4
L
b1
e1
e
9300vec118
Mounting cutout in control cabinet
EDSVF9333V EN 6.2−04/2012
9300 vector Dimensions [mm]
Type a a1 b b1 c1 c2 c3 c4 d d1 d2 e 1)e1 g h EVF9332−EV
EVF9333−EV
1)
For a fieldbus module plugged onto X1, consider mounting space for connecting cables
EVF9332−EV EVF9333−EV
48845
718
0
68
49 172.5 295.5 419.5
0
428.5 660
69
20028516
49
8
9 10
4
4.5−3
Page 78
Page 79

5 Wiring of the standard device

Contents
5.1 Important notes 5.1−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.1.1 Protection of persons 5.1−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.1.2 Device protection 5.1−3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.1.3 Motor protection 5.1−3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.2 Notes on project planning 5.2−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.2.1 Supply forms / electrical supply conditions 5.2−1 . . . . . . . . . . . . . .
5.2.2 Operation on public supply systems
(compliance with EN 61000−3−2) 5.2−1 . . . . . . . . . . . . . . . . . . . . . . .
5.2.3 Controllers in the IT system 5.2−2 . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.2.4 Operation at earth−leakage circuit breaker (e.l.c.b.) 5.2−3 . . . . . . .
5.2.5 Interaction with compensation equipment 5.2−3 . . . . . . . . . . . . . .
5.2.6 Discharge current for mobile systems 5.2−4 . . . . . . . . . . . . . . . . . .
5.2.7 Optimisation of the controller and mains load 5.2−5 . . . . . . . . . . .
5.2.8 Reduction of noise emissions 5.2−6 . . . . . . . . . . . . . . . . . . . . . . . . . .
5.2.9 Mains choke/mains filter assignment 5.2−8 . . . . . . . . . . . . . . . . . .
5.2.10 Motor cable 5.2−10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.3 Basics for wiring according to EMC 5.3−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.3.1 Shielding 5.3−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.3.2 Mains connection, DC supply 5.3−1 . . . . . . . . . . . . . . . . . . . . . . . . . .
5.3.3 Motor cable 5.3−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.3.4 Control cables 5.3−3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.3.5 Installation in the control cabinet 5.3−4 . . . . . . . . . . . . . . . . . . . . . .
5.3.6 Wiring outside of the control cabinet 5.3−5 . . . . . . . . . . . . . . . . . . .
5.3.7 Detecting and eliminating EMC interferences 5.3−6 . . . . . . . . . . . .
Wiring of the standard device
Contents
5
5.4 Standard devices in the power range 0.37 ... 11 kW 5.4−1 . . . . . . . . . . . . . . .
5.5 Standard devices in the power range 15 ... 30 kW 5.5−1 . . . . . . . . . . . . . . . .
EDSVF9333V EN 6.2−04/2012
5.4.1 Wiring according to EMC (CE−typical drive system) 5.4−1 . . . . . . . .
5.4.2 Important notes 5.4−3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.4.3 Mains connection, DC supply 5.4−4 . . . . . . . . . . . . . . . . . . . . . . . . . .
5.4.4 Mains connection: Fuses and cable cross−sections 5.4−5 . . . . . . . .
5.4.5 Mains choke/mains filter assignment 5.4−8 . . . . . . . . . . . . . . . . . .
5.4.6 Motor connection 5.4−9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.5.1 Wiring according to EMC (CE−typical drive system) 5.5−1 . . . . . . . .
5.5.2 Important notes 5.5−3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.5.3 Mains connection, DC supply 5.5−4 . . . . . . . . . . . . . . . . . . . . . . . . . .
5.5.4 Mains connection: Fuses and cable cross−sections 5.5−5 . . . . . . . .
5.5.5 Mains choke/mains filter assignment 5.5−7 . . . . . . . . . . . . . . . . . .
5.5.6 Motor connection 5.5−8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5−1
Page 80
5
Wiring of the standard device
Contents
5.6 Standard devices in the power range of 55 kW 5.6−1 . . . . . . . . . . . . . . . . . . .
5.6.1 Wiring according to EMC (CE−typical drive system) 5.6−1 . . . . . . . .
5.6.2 Important notes 5.6−3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.6.3 Mains connection, DC supply 5.6−4 . . . . . . . . . . . . . . . . . . . . . . . . . .
5.6.4 Mains connection: Fuses and cable cross−sections 5.6−5 . . . . . . . .
5.6.5 Mains choke/mains filter assignment 5.6−6 . . . . . . . . . . . . . . . . . .
5.6.6 Motor connection 5.6−7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.7 Standard devices in the power range 75 ... 90 kW 5.7−1 . . . . . . . . . . . . . . . .
5.7.1 Wiring according to EMC (CE−typical drive system) 5.7−1 . . . . . . . .
5.7.2 Important notes 5.7−3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.7.3 Mains connection, DC supply 5.7−4 . . . . . . . . . . . . . . . . . . . . . . . . . .
5.7.4 Mains connection: Fuses and cable cross−sections 5.7−5 . . . . . . . .
5.7.5 Mains choke/mains filter assignment 5.7−6 . . . . . . . . . . . . . . . . . .
5.7.6 Motor connection 5.7−7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.8 Control terminals 5.8−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.8.1 Important notes 5.8−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.8.2 Connection terminal of the control card 5.8−3 . . . . . . . . . . . . . . . . .
5.8.3 Device variant without "Safe torque off" function 5.8−4 . . . . . . . .
5.8.4 Device variant with "Safe torque off" function 5.8−5 . . . . . . . . . . .
5.8.5 Terminal assignment 5.8−8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.9 Wiring of the system bus (CAN) 5.9−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.10 Wiring of the feedback system 5.10−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.10.1 Important notes 5.10−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.10.2 Incremental encoder with TTL level at X8 5.10−2 . . . . . . . . . . . . . . . .
5.10.3 Incremental encoder with HTL level at X9 5.10−3 . . . . . . . . . . . . . . .
5.11 Wiring of digital frequency input / digital frequency output 5.11−1 . . . . . .
5.12 Communication modules 5.12−1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5−2
EDSVF9333V EN 6.2−04/2012
Page 81

5.1 Important notes

Stop!

5.1.1 Protection of persons

Danger!
Wiring of the standard device
Important notes
Protection of persons
The drive controller contains electrostatically sensitive components.
The personnel must be free of electrostatic charge when carrying out assembly and service operations.
Before working on the controller, check that all power terminals are deenergised:
ƒ The power terminals U, V, W, +U
least 3 minutes after disconnection from the mains.
ƒ The power terminals L1, L2, L3, U, V, W, +U
live when the motor is stopped.
and −UG remain live for at
G
and −UG remain
G
5.1
5.1.1
5
Pluggable terminal strips
All pluggable terminals must only be connected or disconnected when no voltage is applied!
EDSVF9333V EN 6.2−04/2012
5.1−1
Page 82
5
5.1
5.1.1
Wiring of the standard device
Important notes Protection of persons
Electrical isolation
The terminals X1 and X5 have a double (reinforced) insulation in accordance with EN 61800−5−1. The protection against accidental contact is ensured without any further measures.
Danger!
ƒ Terminals X3, X4, X6, X8, X9, X10, X11 have a single basic
insulation (single isolating distance).
ƒ Protection against accidental contact in case of a defective
isolating distance is only guaranteed through external measures, e.g. double insulation.
ƒ If an external DC 24 V voltage source is used, the insulation
level of the controller depends on the insulation level of the voltage source.
L1
Fig. 5.1−1 Electrical isolation between power terminals, control terminals and housing
24 VDC
N
ST1 ST2
39
L1
L2
L3
+U
-U
PE
U
V
W
PE
59
G
G
X3
X4
A3
A1 A2
A4
E1 E2
X6 X8 X9 X10
X11
Double (reinforced) insulation Basic insulation
E5
E3
E4
X5
28
X1
9300VEC050
Replacing defective fuses
Disconnecting the controller from the mains
5.1−2
Only replace defective fuses in the deenergised state to the type specified.
Only carry out the safety−related disconnection of the controller from the mains via a contactor on the input side or a manually operated toggle switch.
EDSVF9333V EN 6.2−04/2012
Page 83

5.1.2 Device protection

ƒ In the event of condensation, only connect the controller to the mains
ƒ The controller is protected by external fuses.
ƒ Drive controllers EVF9324−xV, EVF9326−xV and
ƒ Length of the screws for connecting the shield sheet for the control
ƒ Provide unused control inputs and outputs with terminal strips. Cover
ƒ Switching on the motor side of the controller is only permissible for
ƒ Frequent mains switching (e.g. inching mode via mains contactor) can
Wiring of the standard device
Important notes
Device protection
voltage after the humidity has evaporated.
EVF9328−xV ... EVF9333−xV must only be operated with assigned mains choke / mains filter.
cables: 12 mm.
unused Sub−D sockets with protective covers included in the scope of supply.
safety shutdown (emergency−off).
overload and destroy the input current limitation of the drive controller:
– At least 3 minutes must pass between switching off and restarting
the devices EVF9321−xV and EVF9322−xV.
– At least 3 minutes must pass between two starting procedures of the
devices EVF9323−xV ... EVF9333−xV.
– Use the "safe torque off" safety function (STO) if safety−related mains
disconnections occur frequently. The drive variants Vxx4 are equipped with this function.
5.1
5.1.2
5

5.1.3 Motor protection

ƒ Extensive protection against overload:
ƒ Only use motors with an insulation suitable for the inverter operation:
– By overcurrent relays or temperature monitoring. – We recommend the use of PTC thermistors or thermostats to monitor
the motor temperature. – PTC thermistors or thermostats can be connected to the controller. – For monitoring the motor, we recommend the use of the I
monitoring.
– Insulation resistance: min. û = 1.5 kV, min. du/dt = 5 kV/ms – When using motors with an unknown insulation resistance, please
contact your motor supplier.
2
xt
EDSVF9333V EN 6.2−04/2012
5.1−3
Page 84
Page 85
Wiring of the standard device
Supply forms / electrical supply conditions

5.2 Notes on project planning

5.2.1 Supply forms / electrical supply conditions

Observe the restrictions for the different supply forms!
Supply system Operation of controller Notes
Supply system: TT, TN (with earthed neutral)
Supply system: IT (with isolated neutral)
DC supply via +U
/−U
G
G
Permitted without restrictions.
Possible if the controller is protected in the event of an earth fault in the supply system
l by means of suitable devices
which detect the earth fault and
l immediately separate the
controller from the supply system.
Permitted if the DC voltage is symmetrical to PE.
Notes on project planning
l Observe the rated data of the
controller
l RMS mains current: see chapter
"Technical data".
l Safe operation in the event of an
earth fault at the inverter output cannot be guaranteed.
l The variants V024 / V104 and
V100 enable operation of the controller on IT systems.
Earthing of the +UG or −U conductor will destroy the controller.
5
5.2
5.2.1
G
5.2.2 Operation on public supply systems (compliance with EN 61000−3−2)
European standard EN 61000−3−2 defines limit values for the limitation of harmonic currents in the supply system. Non−linear consumers (e.g. frequency inverters) generate harmonic currents which "pollute" the supplying mains and may therefore interfere with other consumers. The standard aims at assuring the quality of public supply systems and reducing the mains load.
Note!
The standard only applies to public systems. Mains which are provided with a transformer substation of their own as in industrial plants are not public and not included in the application range of the standard.
If a device or machine consists of several components, the limit values of the standard apply to the entire unit.
Measures for compliance with the standard
With the measures described, the controllers comply with the limit values according to EN 61000−3−2.
Operation on public supply systems
1)
The additional measures mentioned have the effect that solely the controllers meet the requirements of EN 61000−3−2. The machine/system manufacturer is responsible for the compliance with the requirements for the machine/system!
EN 61000−3−2 Limitation of harmonic currents
Total power on the
mains
< 1 kW With mains choke
> 1 kW No measures required
Compliance with the requirements
1)
EDSVF9333V EN 6.2−04/2012
5.2−1
Page 86
5
5.2
5.2.3
Wiring of the standard device
Notes on project planning Controllers in the IT system

5.2.3 Controllers in the IT system

Controllers in the V024, V104 or V100 variants are suitable for operation on insulated supply systems (IT systems). The controllers also have an insulated design. This avoids the activation of the insulation monitoring, even if several controllers are installed.
The electric strength of the controllers is increased so that damage to the controller are avoided if insulation or earth faults in the supply system occur. The operational reliability of the system remains intact.
Stop!
Only operate the controllers with the mains chokes assigned.
Operation with mains filters or RFI filters by Lenze is not permitted, as these modules contain components that are interconnected against PE. By this the protective design of the IT system would be cancelled out. The components are destroyed in the case of an earth fault.
Protect the IT system against earth fault at the controller.
Due to physical conditions, an earth fault on the motor side at the controller can interfere with or damage other devices on the same IT system. Therefore appropriate measures have to be implemented, by means of which the earth fault is detected and which disconnect the controller from the mains.
Permissible supply forms and electrical supply conditions
DC−bus operation of several drives
Installation of the CE−typical drive system
Mains Operation of the controllers Notes
With isolated star point (IT systems)
Possible, if the controller is protected in the event of an earth fault in the supplying mains.
l Possible, if appropriate earth
fault detections are available and
l the controller is immediately
disconnected from the mains.
Safe operation in the event of an earth fault at the inverter output cannot be guaranteed.
Central supply with 9340 regenerative power supply module is not possible.
For the installation of drives on IT systems, the same conditions apply as for the installation on systems with an earthed neutral point.
According to the binding EMC product standard EN61800−3, no limit values are defined for IT systems for noise emission in the high−frequency range.
5.2−2
EDSVF9333V EN 6.2−04/2012
Page 87
Wiring of the standard device
Operation at earth−leakage circuit breaker (e.l.c.b.)
5.2.4 Operation at earth−leakage circuit breaker (e.l.c.b.)
Danger!
The controllers are internally fitted with a mains rectifier. In case of a short circuit to frame a pulsating DC residual current can prevent the AC sensitive or pulse current sensitive earth−leakage circuit breakers from being activated, thus cancelling the protective function for the entire equipment being operated on this earth−leakage circuit breaker.
ƒ For the protection of persons and farm animals (DIN VDE 0100), we
recommend – pulse current sensitive earth−leakage circuit breakers for plants
including controllers with a single−phase mains connection (L1/N). – universal−current sensitive earth−leakage circuit breakers for plants
including controllers with a three−phase mains connection (L1/L2/L3).
ƒ Only install the earth−leakage circuit breaker between supplying mains
and drive controller.
Notes on project planning
5
5.2
5.2.4
ƒ Earth−leakage circuit breakers may trigger a false alarm due to
– capacitive compensation currents flowing in the cable shields during
operation (particularly with long, shielded motor cables), – simultaneous connection of several inverters to the mains – the use of additional interference filters.

5.2.5 Interaction with compensation equipment

ƒ Controllers only consume very little reactive power of the fundamental
wave from the AC supply mains. Therefore, a compensation is not required.
ƒ If the controllers are connected to a supply system with compensation
equipment, this equipment must comprise chokes. – For this, contact the supplier of the compensation equipment.
EDSVF9333V EN 6.2−04/2012
5.2−3
Page 88
5
5.2
5.2.6
Wiring of the standard device
Notes on project planning Discharge current for mobile systems

5.2.6 Discharge current for mobile systems

Frequency inverters with internal or external RFI filters usually have a discharge current to PE potential that is higher than 3.5 mA AC or 10 mA DC.
Therefore, fixed installation as protection is required (see EN 61800−5−1). This must be indicated in the operational documents.
If a fixed installation is not possible for a mobile consumer although the discharge current to PE potential is higher than 3.5 mA AC or 10 mA DC, an additional two−winding transformer (isolating transformer) can be included in the current supply as a suitable countermeasure. Here, the PE conductor is connected to the PEs of the drive (filter, inverter, motor, shieldings) and also to one of the poles of the secondary winding of the isolating transformer.
Devices with a three−phase supply must have a corresponding isolating transformer with a secondary star connection, the star point being connected to the PE conductor.
filter inverter
L1
prim.
N
PE
Fig. 5.2−1 Installation of a two−winding transformer (isolating transformer)
L1L1 LL2
sec.
N1 NN2
U V
W
M
3~
8200vec017
5.2−4
EDSVF9333V EN 6.2−04/2012
Page 89
Wiring of the standard device
Optimisation of the controller and mains load

5.2.7 Optimisation of the controller and mains load

A mains choke is an inductance which can be included in the mains cable of the frequency inverter. As a result, the load of the supplying mains and the controller is optimised:
ƒ Reduced system perturbation: The curved shape of the mains current
approaches a sinusoidal shape.
ƒ Reduced mains current: The effective mains current is reduced, i.e. the
mains, cable, and fuse loads are reduced.
ƒ Increased service life of the controller: The electrolytic capacitors in the
DC bus have a considerably increased service life due to the reduced AC current load.
There are no restrictions for the combinations of mains chokes and RFI filters and/or motor filters. Alternatively, a mains filter can be used (combination of mains choke and RFI filter in a common housing).
Notes on project planning
5
5.2
5.2.7
Note!
ƒ Some controllers must generally be operated with a mains
choke or a mains filter.
ƒ If a mains choke or a mains filter is used, the maximum
possible output voltage does not reach the value of the mains voltage (typical voltage drop at the rated point 4 ... 6 %).
EDSVF9333V EN 6.2−04/2012
5.2−5
Page 90
5
5.2
5.2.8
Wiring of the standard device
Notes on project planning Reduction of noise emissions

5.2.8 Reduction of noise emissions

Due to internal switching operations, every controller causes noise emissions which may interfere with the functions of other consumers. Depending on the site of the frequency inverter, European standard EN 61800−3 defines limit values for these noise emissions:
Limit class C2: Limit class C2 is often required for industrial mains which are isolated from the mains of residential areas.
Limit class C1: If the controller is operated in a residential area, it may interfere with other devices such as radio and television receivers. Here, interference suppression measures according to limit class C1 are often required.
Limit class C1 is much more strict than limit class C2. Limit class C1 includes limit class C2.
For compliance with limit class C1 / C2, corresponding measures for the limitation of noise emissions are required, e.g. the use of RFI filters.
There are no restrictions for the combinations of RFI filters and mains chokes and/or motor filters. Alternatively, a mains filter can be used (combination of mains choke and RFI filter in a common housing).
The selection of the frequency inverter and the corresponding filters, if applicable, always depends on the application in question and is determined by e.g. the switching frequency of the controller, the motor cable length, or the protective circuit (e.g. earth−leakage circuit breakers).
Note!
ƒ Some controllers must generally be operated with a mains
choke or a mains filter.
ƒ If a mains choke or a mains filter is used, the maximum
possible output voltage does not reach the value of the mains voltage (typical voltage drop at the rated point 4 ... 6 %).
5.2−6
EDSVF9333V EN 6.2−04/2012
Page 91
Wiring of the standard device
Notes on project planning
Reduction of noise emissions
The graphics below illustrates the maximum possible motor cable length based on the type of filter and the resulting interference voltage category according to EN 61800−3. Depending on the used motor cable, the used controller, and its switching frequency, the mentioned maximum motor cable lengths may vary.
5.2
5.2.8
5
E82ZZxxxxxB230
E82ZNxxxxxB230
EZN3A... ( 15 kW)³
EZN3A... ( 11 kW)£
EZN3B...
E82ZNxxxxxB230
Fig. 5.2−2 Maximum motor cable lengths l
1) Use low−capacitance cables
1)
1)
5
1)
limit class C2 / C1
10 20 30 405010
10 20 30 405010
C2
l[m]
mot
C1
l[m]
mot
based on the type of filter for compliance with
mot
9300vec060
EDSVF9333V EN 6.2−04/2012
5.2−7
Page 92
5
5.2
5.2.9
Wiring of the standard device
Notes on project planning Mains choke/mains filter assignment

5.2.9 Mains choke/mains filter assignment

Operation with rated power (normal operation)
9300 Mains choke Interference voltage category according to EN 61800−3 and motor cable length
Component Component
Type C2 max. [m] C1 max. [m]
EVF9321−xV EZN3A2400H002 EZN3A2400H002 5 EZN3B2400H002 50
EVF9322−xV EZN3A1500H003 EZN3A1500H003 5 EZN3B1500H003 50
EVF9323−xV EZN3A0900H004 EZN3A0900H004 5 EZN3B0900H004 50
EVF9324−xV EZN3A0500H007 EZN3A0500H007 5 EZN3B0500H007 50
EVF9325−xV EZN3A0300H013 EZN3A0300H013 5 EZN3B0300H013 50
EVF9326−xV ELN3−0150H024−001 EZN3A0150H024 5 EZN3B0150H024 50
EVF9327−xV ELN3−0088H035−001 EZN3A0110H030 25
E82ZN22334B230 50
1)
EVF9328−xV ELN3−0075H045
EVF9329−xV ELN3−0055H055
EVF9330−xV ELN3−0038H085
EVF9331−xV ELN3−0027H105−001
EVF9332−xV ELN3−0022H130
EVF9333−xV ELN3−0017H170
E82ZZ15334B230
EZN3A0080H042 25 E82ZN22334B230 10
E82ZN22334B230 50 EZN3B0080H042 50
EZN3A0055H060 25 E82ZN30334B230 10
E82ZN30334B230 50 EZN3B0055H060 50
EZN3A0037H090 25 E82ZN45334B230 10
E82ZN45334B230 50 EZN3B0037H090 50
EZN3A0030H110 25
EZN3A0030H110N001
E82ZN55334B230 50 EZN3B0030H110 50
EZN3A0022H150 25 E82ZN75334B230 10
E82ZN75334B230 50 EZN3B0022H150 50
EZN3A0017H200 25 E82ZN90334B230 10
E82ZN90334B230 50 EZN3B0017H200 50
1)
RFI filter
2)
Footprint filter
3)
For controllers with thermal separation
50
3)
25
E82ZN22334B230 10
E82ZZ15334B230
EZN3B0110H030U
E82ZN55334B230 10
1)
2)
10
50
5.2−8
EDSVF9333V EN 6.2−04/2012
Page 93
Wiring of the standard device
Notes on project planning
Mains choke/mains filter assignment
Operation with increased rated power
9300 Mains choke Interference voltage category according to EN 61800−3 and motor cable length
Component Component
Type C2 max. [m] C1 max. [m]
EVF9321−xV EZN3A2400H002 EZN3A2400H002 5 EZN3B2400H002 50
EVF9322−xV EZN3A1500H003 EZN3A1500H003 5 EZN3B1500H003 50
EVF9323−xV EZN3A0750H005 EZN3A0750H005 5 EZN3B0750H005 50
EVF9324−xV EZN3A0400H009 EZN3A0400H009 5 EZN3B0400H009 50
EVF9325−xV EZN3A0300H013 EZN3A0300H013 5 EZN3B0250H015 50
EVF9327−xV ELN3−0075H045
EVF9328−xV ELN3−0055H055
EVF9329−xV ˘ EZN3B0055H060N003 50 EZN3B0055H060N003 50
EVF9330−xV ELN3−0027H105−001 EZN3A0030H110 25
EVF9331−xV ELN3−0027H105−001
EVF9332−xV ELN3−0017H170
EVF9333−xV ELN3−0014H200
3)
For controllers with thermal separation
EZN3A0080H042 25 E82ZN22334B230 10
E82ZN22334B230 50 EZN3B0080H042 50
EZN3A0055H060 25 E82ZN30334B230 10
E82ZN30334B230 50 EZN3B0055H060 50
E82ZN55334B230 10
EZN3B0030H110N001
E82ZN55334B230 50 EZN3B0030H110 50
EZN3A0030H110 25
EZN3A0030H110N001
EZN3A0017H200 25 E82ZN90334B230 10
E82ZN90334B230 50 EZN3B0017H200 50
EZN3A0015H230 25 EZN3B0015H230 50
EZN3A0017H200 25 EZN3B0017H200 50
3)
25
EZN3B0030H110 50
3)
5.2.9
25
5
5.2
EDSVF9333V EN 6.2−04/2012
5.2−9
Page 94
5
5.2
5.2.10
Wiring of the standard device
Notes on project planning Motor cable

5.2.10 Motor cable

Specification
Cable length
ƒ The used motor cables must
– meet the requirements on site (e.g. EN 60204−1, UL), – comply with the following voltage data: EN 0.6/1 kV, UL 600 V.
ƒ For shielded motor cables, only use cables with braid made of tinned or
nickel−plated copper. Shields made of steel braid are not suitable. – The overlap rate of the braid must be at least 70 % with an overlap
angle of 90°.
ƒ Use low−capacitance motor cables:
Power class
3 ... 11 kW 15 ... 30 kW £ 140 pF/m £ 230 pF/m 45 ... 55 kW £ 190 pF/m £ 320 pF/m 75 ... 90 kW £ 250 pF/m £ 410 pF/m
from 2.5 mm
Capacitance per unit length
Core/core Core/shield
2
£100 pF/m £ 150 pF/m
ƒ Ensure that the motor cable is as short as possible to have a positive
effect on the drive behaviour.
ƒ In group drives (multiple motors on one controller), the resulting cable
length l
I
[m] + (l1) l2) l3... ) li) @ i
res
is the crucial factor:
res
Ǹ
l
Length of the individual motor cable
x
l
Resulting length of the motor cable
res
i Number of individual motor cables
ƒ The "technical data" (chap. 3.1) provided for the motor cable length
must be observed.
5.2−10
EDSVF9333V EN 6.2−04/2012
Page 95
Cable cross−section
Note!
The cable cross−sections have been assigned to the permissible current loading of the motor cables under the following conditions:
ƒ Compliance with IEC/EN 60204−1 for fixed cable installation ƒ Compliance with IEC 60354−2−52, table A.52−5 when using the
cable in a trailing cable
ƒ Laying system C ƒ Ambient temperature 45 °C ƒ Continuous motor operation at a
– standstill current I – rated current I
The user is responsible for selecting a motor cable which complies with the requirements of the current conditions if different situations arise. Different situations may arise due to:
ƒ Laws, standards, national and regional regulations ƒ Type of application ƒ Motor utilisation ƒ Ambient and operating conditions ƒ Laying system and bundling of cables ƒ Cable type
Wiring of the standard device
Notes on project planning
Motor cable
for servo motors or a
0
for three−phase asynchronous motors
R
5
5.2
5.2.10
Motor cable
permanently installed for trailing cable Cable cross−section
IM [A] IM [A] [mm2] [AWG]
10.0 11.8 1.0 18
13.8 17.3 1.5 16
19.1 23.7 2.5 14
25.5 30.9 4.0 12
32.8 41.0 6.0 10
45.5 55.5 10 8
60.1 75.5 16 6
76.4 92.8 25 4
94.6 115 35 2
114 140 50 1
146 179 70 00
177 217 95 000
205 252 120 0000
Note!
Information on the design of the motor cable is provided in the "System cables and system connectors" manual.
EDSVF9333V EN 6.2−04/2012
5.2−11
Page 96
Page 97

5.3 Basics for wiring according to EMC

5.3.1 Shielding

The quality of shielding is determined by a good shield connection:
ƒ Connect the shield with a large surface.
ƒ Connect the shield directly to the intended shield sheet of the device.
ƒ In addition, connect the shield to the conductive and earthed mounting
plate with a large contact surface by using a conductive clamp.
ƒ Unshielded cable ends must be as short as possible.

5.3.2 Mains connection, DC supply

ƒ Controllers, mains chokes, or mains filters may only be connected to
the mains via unshielded single cores or unshielded cables.
Wiring of the standard device
Basics for wiring according to EMC
Shielding
5
5.3
5.3.1

5.3.3 Motor cable

ƒ When a mains filter or RFI filter is used, shield the cable between mains
filter or RFI filter and controller if its length exceeds 300 mm. Unshielded cores must be twisted.
ƒ In DC−bus operation or DC supply, use shielded cables.
ƒ The cable cross−section must be dimensioned for the assigned fusing
(observe national and regional regulations).
ƒ Only use shielded motor cables with braids made of tinned or
nickel−plated copper. Shields made of steel braids are not suitable. – The overlap rate of the braid must be at least 70 % with an overlap
angle of 90 °.
ƒ The cables used must correspond to the requirements at the location
(e.g. EN 60204−1).
ƒ Shield the cable for motor temperature monitoring (PTC or thermal
contact) and install it separately from the motor cable. – In Lenze system cables, the cable for brake control is integrated into
the motor cable. If this cable is not required for brake control, it can
also be used to connect the motor temperature monitoring up to a
length of 50 m.
EDSVF9333V EN 6.2−04/2012
ƒ Connect the shield with a large surface and fix it with metal cable
binders or a conductive clamp.
ƒ Connect the shield directly to the corresponding device shield sheet.
– If required, additionally connect the shield to the conductive and
earthed mounting plate in the control cabinet.
ƒ The motor cable is optimally installed if
– it is separated from mains cables and control cables, – it only crosses mains cables and control cables at right angles,
5.3−1
Page 98
5
5.3
5.3.3
Wiring of the standard device
Basics for wiring according to EMC Motor cable
– it is not interrupted.
ƒ If the motor cable must be opened all the same (e.g. due to chokes,
contactors, or terminals): – The unshielded cable ends may not be longer than 100 mm
(depending on the cable cross−section). – Install chokes, contactors, terminals etc. spatially separated from
other components (with a min. distance of 100 mm). – Install the shield of the motor cable directly before and behind the
point of separation to the mounting plate with a large surface.
ƒ Connect the shield with a large surface to PE in the terminal box of the
motor at the motor housing. – Metal EMC cable glands at the motor terminal box ensure a large
surface connection of the shield with the motor housing.
Motor supply cable Cable gland
Motor supply cable
max. 500mm
Braid
Cable gland
Large-surface contactof cable shield
Fig. 5.3−1 Shielding of the motor cable
Heat-shrinkable tube
8200EMV023 8200EMV024
Cablegland acc.toEMCwith high degree ofprotection
5.3−2
EDSVF9333V EN 6.2−04/2012
Page 99

5.3.4 Control cables

Wiring of the standard device
Basics for wiring according to EMC
Control cables
ƒ Control cables must be shielded to minimise interference injections.
ƒ For lengths of 200 mm and more, use only shielded cables for analog
and digital inputs and outputs. Under 200 mm, unshielded but twisted cables may be used.
ƒ Connect the shield correctly:
– The shield connections of the control cables must be at a distance of
at least 50 mm from the shield connections of the motor cables and
DC cables. – Connect the shield of digital input and output cables at both ends. – Connect the shield of analog input and output cables at one end (at
the drive controller).
ƒ To achieve an optimum shielding effect (in case of very long cables,
with high interference) one shield end of analog input and output cables can be connected to PE potential via a capacitor (e.g. 10 nF/250 V) (see sketch).
5.3.4
5
5.3
Fig. 5.3−2 Shielding of long, analog control cables
9300vec043
EDSVF9333V EN 6.2−04/2012
5.3−3
Page 100
5
5.3
5.3.5
Wiring of the standard device
Basics for wiring according to EMC Installation in the control cabinet

5.3.5 Installation in the control cabinet

Mounting plate requirements
Mounting of the components
Optimum cable routing
ƒ Only use mounting plates with conductive surfaces (zinc−coated or
V2A−steel).
ƒ Painted mounting plates are not suitable even if the paint is removed
from the contact surfaces.
ƒ If several mounting plates are used, ensure a large−surface connection
between the mounting plates (e.g. by using earthing strips).
ƒ Connect controllers, filters, and chokes to the earthed mounting plate
with a surface as large as possible.
ƒ The motor cable is optimally installed if
– it is separated from mains cables and control cables, – it crosses mains cables and control cables at right angles.
ƒ Always install cables close to the mounting plate (reference potential),
as freely suspended cables act like aerials.
ƒ Lead the cables to the terminals in a straight line (avoid tangles of
cables).
Earth connections
ƒ Use separated cable channels for motor cables and control cables. Do
not mix up different cable types in one cable channel.
ƒ Minimise coupling capacities and coupling inductances by avoiding
unnecessary cable lengths and reserve loops.
ƒ Short−circuit unused cores to the reference potential.
ƒ Install the positive and negative wires for DC 24 V close to each other
over the entire length to avoid loops.
ƒ Connect all components (drive controllers, chokes, filters) to a central
earthing point (PE rail).
ƒ Set up a star−shape earthing system.
ƒ Comply with the corresponding minimum cable cross−sections.
5.3−4
EDSVF9333V EN 6.2−04/2012
Loading...