Agilent 4155C Sample Application Programs Guide Book

Sample Application Programs Guide Book
Agilent 4155C Semiconductor Parameter Analyzer
Agilent 4156C Precision Semiconductor Parameter Analyzer
Agilent Part No. 04156-90070
Printed in Japan January 2001
Edition 1
Legal Notice
Copyright © 2001 Agilent Technologies
This document contains information which is protected by copyright. All rights are reserved. Reproduction, adaptation, or translation without prior written permission is prohibited, except as allowed under the copyright laws.
Product Warranty
Agilent Technologies warrant Agilent Technologies hardware, accessories and supplies against defects in materials and workmanship for the period of one year from the warranty start date specified below. If Agilent Technologies receive notice of such defects during the warranty period, Agilent Technologies will, at its option, either repair or replace products which prove to be defective. Replacement products may be either new or like-new.
Warranty service of this product will be performed at Agilent Technologies. Buyer shall prepay shipping charges to Agilent Technologies and Agilent Technologies shall pay shipping charges to return the product to Buyer. However, Buyer shall pay all shipping charges, duties, and taxes for products returned to Agilent Technologies from another country.
Agilent Technologies do not warrant that the operation of Agilent Technologies products will be uninterrupted or error free. If Agilent is unable, within a reasonable time, to repair or replace any product to a condition as warranted, customer will be entitled to a refund of the purchase price upon prompt return of the product.
The Agilent Technologies products may contain remanufactured parts equivalent to new in performance or may have been subject to incidental use.
The warranty period begins on the date of delivery or on the date of installation if installed by Agilent Technologies. If customer schedules or delays Agilent Technologies installation more than 30 days after delivery, warranty begins on the 31st day from delivery.
Warranty does not apply to defects resulting from (a) improper or inadequate maintenance or calibration, (b) software, interfacing, parts or supplies not supplied by Agilent Technologies, (c) unauthorized modification or misuse, (d) operation outside of the published environmental specifications for the product, or (e) improper site preparation or maintenance.
To the extent allowed by local law, the above warranties are exclusive and no other warranty or condition, whether written or oral, is expressed or implied and Agilent Technologies specifically disclaim any implied warranties or conditions of merchantability, satisfactory quality, and fitness for a particular purpose.
Agilent Technologies will be liable for damage to tangible property per incident up to the greater of $300,000 or the actual amount paid for the product that is the subject of the claim, and for damages for bodily injury or death, to the extent that all such damages are determined by a court of competent jurisdiction to have been directly caused by a defective Agilent Technologies product.
2 Agilent 4155C/4156C Sample Application Programs Guide Book, Edition 1
To the extent allowed by local law, the remedies in this warranty statement are customers sole and exclusive remedies. Expect as indicated above, in no event will Agilent Technologies or its suppliers be liable for loss of date or for direct, special, incidental, consequential (including lost profit or date), or other damage, whether based in contract, tort, or otherwise.
For consumer transactions in Australia and New Zealand: the warranty terms contained in this statement, except to the extent lawfully permitted, do not exclude, restrict or modify and are in addition to the mandatory statutory rights applicable to the sale of this product to you.
Assistance
Product maintenance agreements and other customer assistance agreements are available for Agilent Technologies products.
For any assistance, contact your nearest Agilent Technologies Sales Office.
Certification
Agilent Technologies Inc. certifies that this product met its published specifications at the time of shipment from the factory. Agilent further certifies that its calibration measurements are traceable to the National Institute of Standards and Technology (NIST), to the extent allowed by the Institutes calibration facility, and to the calibration facilities of other International Standards Organization members.
Printing History
Edition 1: January 2001
Agilent 4155C/4156C Sample Application Programs Guide Book, Edition 1 3
In This Manual
This manual describes some sample application programs and setup files, which will be helpful for creating your own applications using Agilent 4155C/4156C.
All programs and setup files described in this manual are stored on the Sample Application Program Disk (DOS formatted, 3.5-inch diskette) that is furnished with your 4155C/4156C. All programs are written in the Instrument BASIC, and ready to run in the 4155C/4156C’s built-in Instrument BASIC environment.
This manual covers the following applications:
V- RA M P
J-RAMP
SWEAT
GO/NO-GO Test
HCI Degradation Test
Charge Pumping
Flash EEPROM Test
TDDB
Electromigration
CAUTION These programs are only examples, so you may need to modify these programs and setup
files for your own application before executing. If these example programs damage your devices, Agilent Technologies is NOT LIABLE for the damage.
NOTE You should copy all files in the Sample Application Program Disk to a diskette that you
will use as your working diskette, and keep the original diskette as backup.
4 Agilent 4155C/4156C Sample Application Programs Guide Book, Edition 1
Contents
1. V-RAMP
Theory of V-Ramp Test Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-3
V-Ramp Test Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-3
Initial Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-4
Post Stress Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-4
Ramp Stress Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-5
Failure Categorization and Data Recording . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-7
Basic Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-8
Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-8
Required Equipment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-16
Files on the Diskette . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-16
Executing the VRAMP Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-17
Flowchart of Sample VRAMP Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-18
Customization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-20
Using an External Computer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-20
Specifying Setup File to Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-21
File for Saving Measurement Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-21
Setting up Input Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-22
Searching for 10 ¥ Iexpect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-23
Measurement Setups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-24
Setups for Initial and Post Stress Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-24
Setups for Ramped Stress Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-24
2. J-RAMP
Theory of J-Ramp Test Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3
J-Ramp Test Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3
Initial Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-4
J-Ramp Stress Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-5
Post Stress Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-7
Failure Categorization and Data Recording . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-8
Basic Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-9
Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-9
Required Equipment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-20
Program Files Required . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-20
Executing the JRAMP Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-20
Flowchart of Sample JRAMP Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-22
Customization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-24
Using an External Computer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-24
Specifying Setup File to Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-25
Agilent 4155C/4156C Sample Application Programs Guide Book, Edition 1 Contents - 1
Contents
File for Saving Measurement Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-25
Setting up Input Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-26
When SMU Lacks Power to Break Oxide . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-27
Measurement Setups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-28
Setups for Initial and Post Stress Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-28
Setups for Ramped Stress Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-28
Proof of Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-36
Step Increase Factor (F). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-36
Step Time (Step_time) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-36
Current Stop Value (Istop) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-36
3. SWEAT
SWEAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3
Input Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-4
Initial Resistance (Rinit) Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-5
CTTF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-5
Rfail . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-5
Exit Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-5
Output Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-6
Basic Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-7
Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-7
Required Equipment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-10
Files on the Diskette . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-10
Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-11
Sample SWEAT Program Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-12
Customization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-13
Using External Computer or Built-in Controller . . . . . . . . . . . . . . . . . . . . . . 3-13
Specifying Setup File to Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-13
File for Saving Measurement Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-14
Setting up Input Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-15
Setting up Input Parameters Related to CTTF Calculation . . . . . . . . . . . . . . . 3-15
How to Reduce the Settling Time of CTTF . . . . . . . . . . . . . . . . . . . . . . . . . . 3-16
Defining JSTART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-18
Current Adjustment Routine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-18
Setup files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-19
Setup File for Initial Resistance Measurement . . . . . . . . . . . . . . . . . . . . . . . . 3-19
Setup File for Stress/Resistance Measurement . . . . . . . . . . . . . . . . . . . . . . . . 3-19
Contents - 2 Agilent 4155C/4156C Sample Application Programs Guide Book, Edition 1
Contents
4. Go/NO-GO
GONOGO Sample Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-3
Basic Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-5
Required Equipment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-5
Files on the Diskette . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-5
Sample Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-6
Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-6
Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-7
Viewing All Curves while Measurement is in Progress . . . . . . . . . . . . . . . . . 4-10
Viewing Only Results while Measurement is in Progress . . . . . . . . . . . . . . . . 4-11
Viewing a Particular Measurement Curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-12
Changing Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-13
Displaying Statistical Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-13
Exporting Data to Spreadsheet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-14
Customization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-15
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-15
Hints to Use with Handler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-21
5. HCI Degradation Test
Hot-Carrier-Induced (HCI) Degradation Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-3
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-3
Determining Stress Bias Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-4
Selecting Test Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-4
Initial Characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-4
Parameter Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-5
Stress Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-6
Interim Characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-6
Stress Termination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-6
Precautions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-6
Technical Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-7
HCI Degradation Test Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-8
Basic Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-11
Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-11
Input Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-11
HCI Degradation Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-15
HCI Degradation Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-16
Required Equipment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-17
Files on the Diskette . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-18
Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-19
Sample HCI Degradation Test Program (DCDAHC) Overview . . . . . . . . . . . 5-27
Agilent 4155C/4156C Sample Application Programs Guide Book, Edition 1 Contents - 3
Contents
Sample HCI Degradation Test Data Analysis Program (ANALYSIS) Overview 5-30
Customization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-32
Using External Computer or Built-in Controller . . . . . . . . . . . . . . . . . . . . . . 5-32
Modifying and Specifying Setup File to Load . . . . . . . . . . . . . . . . . . . . . . . . 5-33
Changing File for Saving Measurement Results . . . . . . . . . . . . . . . . . . . . . . . 5-34
Changing Input Parameters for HCI Degradation Test . . . . . . . . . . . . . . . . . . 5-35
To Change Pin Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-37
To Change Number of Test Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-37
Changing the Cumulative Stress Times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-38
Skipping Determination of Gate Stress Bias Condition . . . . . . . . . . . . . . . . . 5-38
Reducing the Interval between Stress and Interim Measurement . . . . . . . . . . 5-39
Selecting Parameter Shift Graphs to Draw . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-39
If You Don't Use Switching Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-40
Using Another Switching Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-40
Performing HCI Degradation Test with AC Stress . . . . . . . . . . . . . . . . . . . . . 5-41
Performing Reverse Mode Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-42
Changing Input Parameters for Test Data Analysis . . . . . . . . . . . . . . . . . . . . 5-43
Not to Pause Program after each Tdc Extraction . . . . . . . . . . . . . . . . . . . . . . 5-43
Changing File Name to save Calculated Average Tdc . . . . . . . . . . . . . . . . . . 5-43
Setup Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-44
Setup File for Id-Vd Measurement to Determine Drain Stress Voltage . . . . . 5-44
Setup File for Ib-Vg Measurement to Determine Gate Stress Voltage . . . . . . 5-46
Setup File for Gate Leakage Current Measurement . . . . . . . . . . . . . . . . . . . . 5-49
Setup File for Initial/Interim Characterization . . . . . . . . . . . . . . . . . . . . . . . . 5-52
Setup File for DC Stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-55
Setup File for AC Stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-56
6. Charge Pumping
Charge Pumping Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-3
Square Pulse Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-3
Triangular Pulse Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-3
Trapezoidal Pulse Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-3
Equipment Required . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-4
Square Pulse Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-5
To Extract Interface-state Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-5
Program Files Required . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-7
Sample Setup File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-7
To Execute the Sample Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-10
Square Pulse Method without Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-13
Requirement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-13
Contents - 4 Agilent 4155C/4156C Sample Application Programs Guide Book, Edition 1
Contents
Sample Setup File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-13
To Execute the Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-16
Triangular Pulse Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-17
To Extract Interface-state Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-18
To Extract Capture Cross Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-19
Program Files Required . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-20
Sample Setup File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-20
To Execute the Sample Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-24
Trapezoidal Pulse Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-27
To Extract Interface-state Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-28
Program Files Required . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-30
Sample Setup File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-30
To Execute the Sample Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-33
Program Modification Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-36
To Change the Initial Value of Input Parameters . . . . . . . . . . . . . . . . . . . . . . . 6-36
To Change the Measurement Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-42
To Change the Destination of the File Operation . . . . . . . . . . . . . . . . . . . . . . 6-45
7. Flash EEPROM Test
Program Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-3
Device Connection for NOR type flash EEPROM . . . . . . . . . . . . . . . . . . . . . . 7-3
Device Connection for NAND type flash EEPROM . . . . . . . . . . . . . . . . . . . . . 7-4
Main Program. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-5
Stress_loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-7
Vth_meas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-8
Program Customization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-9
Subprogram Test_setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-9
Measurement setup file for Vth measurement (for NOR type) . . . . . . . . . . . . 7-10
Stress setup file for write pulse of NOR type. . . . . . . . . . . . . . . . . . . . . . . . . . 7-11
Stress setup file for erase pulse of NOR type. . . . . . . . . . . . . . . . . . . . . . . . . . 7-11
Stress setup file for write pulse of NAND type . . . . . . . . . . . . . . . . . . . . . . . . 7-12
Stress setup file for erase pulse of NAND type . . . . . . . . . . . . . . . . . . . . . . . . 7-12
Program Listing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-13
8. Time Dependent Dielectric Breakdown (TDDB)
Application Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-3
Customization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-4
Agilent 4155C/4156C Sample Application Programs Guide Book, Edition 1 Contents - 5
Contents
9. Electromigration
Application Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-3
Customization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-4
Contents - 6 Agilent 4155C/4156C Sample Application Programs Guide Book, Edition 1

1V-RAMP

V-RAMP
Voltage-Ramped (V-Ramp) test is one of the Wafer Level Reliability (WLR) tests, which is used to evaluate device reliability on a wafer. This test can provide quick evaluation data for estimating the overall reliability of thin oxides, and this data can be used to improve the thin oxide manufacturing process.
With the thickness of oxide shrinking along with device geometries, creating a reliable thin oxide has become an important issue. The integrity of the thin oxide in a MOS device is a dominant factor in determining the overall reliability of a micro-circuit. The V-Ramp test can promptly give useful feedback to the manufacturing process about oxide reliability.
This operation manual covers a sample V-Ramp program running on Agilent 4155/4156, and how to use and customize the program. The program is written in the Instrument BASIC (IBASIC), and is ready to run on the built-in IBASIC controller of the 4155/4156.
Theory of V-Ramp Test Procedure describes basic theory, procedure, and terminology of the V-Ramp test.
Basic Operation describes the V-Ramp sample program. Included are V-Ramp methodology using the 4155/4156, how to execute the sample program, and program overview.
Customization describes how to customize the sample program. This is very helpful because you probably need to modify the sample program to suit your test device.
Measurement Setups shows the 4155/4156 page settings that are stored in the setup files.
1-2 Agilent 4155C/4156C Sample Application Programs Guide Book, Edition 1
V-RAMP

Theory of V-Ramp Test Procedure

Theory of V-Ramp Test Procedure
This section describes the Voltage-Ramped (V-Ramp) Test procedure. Included are basic theory, procedure, and terminology of V-Ramp test. The V-Ramp test procedure is based on JEDEC standard No.35.

V-Ramp Test Overview

V-Ramp test measures the breakdown voltage (Vbd) and breakdown charge (Qbd) of thin oxide capacitors, which you designed as test structures on the wafer. These results are used to evaluate the oxide integrity. The higher the Vbd and Qbd measured by this test, the better the integrity of the oxide on wafer.
You extract these two parameters from a large amount of test structures and extracted parameters are used for standard process control to quickly evaluate oxide integrity.
In the V-Ramp test, an increasing voltage is forced to the oxide capacitor until the oxide layer is broken. Breakdown voltage (Vbd) is defined as the voltage at which breakdown occurs. And breakdown charge (Qbd) is the total charge forced through the oxide until the breakdown occurs.
Figure 1-1 shows a simplified flowchart of V-Ramp test.
Figure 1-1 Simplified Flow Diagram of V-Ramp Test
Agilent 4155C/4156C Sample Application Programs Guide Book, Edition 1 1-3
V-RAMP Theory of V-Ramp Test Procedure
The V-Ramp test consists of three tests: initial test, ramp stress test, and post stress test.
In the initial test, normal operating voltage is applied to the oxide capacitor, then leakage current through the capacitor is measured to check for initial failure.
In the ramp stress test, linear ramped voltage is applied to the capacitor, and the current is measured.
The post stress test is for confirming that failure occurred during the ramp stress test. The normal operating voltage is applied to the oxide capacitor again, and leakage current is measured under the same conditions as the initial test.
After the tests, the test results must be analyzed and saved (data recording).
Before performing the V-Ramp test, test conditions must satisfy the following:
Gate bias polarity is in accumulated direction. That is, negative (minus) voltage is applied to gate conductor for P-type bulk, and positive (plus) voltage is applied for N-type bulk.
Diffusions and wells (if any) must be connected to substrate.
Temperature is in 25 ± 5 °C range.

Initial Test

Initial test is to confirm that the oxide capacitor is initially good. If leakage current of that capacitor exceeds 1 mA, it is categorized as initial failure.
For example, when you test a TTL-level oxide capacitor, constant voltage of -5 V is applied to that capacitor, and leakage current is measured. If the leakage current is more than 1 mA, that capacitor is an initial failure.

Post Stress Test

The post stress test checks the oxide status after the ramp stress test. If the oxide is broken, proper ramp stress was applied to the oxide capacitor. If not, maybe the ramp stress was not applied correctly.
To check the oxide status, the normal operating voltage is applied to the oxide capacitor (same as initial test), then leakage current is measured. The leakage current (I indicates the following:
If I
If I
> 1 mA:
leak
The oxide was broken by the applied ramped voltage.
< 1 mA:
leak
The oxide was not broken by the applied ramped voltage.
If the applied ramped voltage reached the maximum electric field, the testing was probably faulty: for example, the ramped voltage was not applied to the oxide due to an open circuit.
leak
) value
For example, if you test a TTL level oxide capacitor, constant voltage of -5 V is applied to that capacitor, then leakage current is measured. If the leakage current is more than 1 mA, the capacitor was properly broken.
1-4 Agilent 4155C/4156C Sample Application Programs Guide Book, Edition 1
V-RAMP
Theory of V-Ramp Test Procedure

Ramp Stress Test

A linear ramped voltage or a linear stepped voltage, which is approximately ramped voltage, is applied to the oxide capacitor. While the ramped voltage is forced, the current through the oxide is measured.
The ramped voltage is stopped when one of the following conditions occurs:
Current through the oxide exceeds ten times the expected current. The expected current is calculated from the applied voltage and structure of oxide capacitor. For example, the expected current density J for a 200 angstrom oxide capacitor is calculated from the equation for Fowler-Nordheim current as follows:
2 B
æö
JAE
Where, A and B are constants in terms of effective mass and barrier height.E is electric field.
exp×=
---
èø
E
Current through the oxide exceeds the current compliance determined by the current density compliance limit of 20 A/cm
2
.
Electric field generated by the applied voltage exceeds 15 MV/cm. This typically indicates faulty testing.
Figure 1-2 shows the concept of Vbd and Qbd. In the graph, left vertical axis shows current through the oxide, right vertical axis shows voltage applied to the oxide capacitor, and horizontal axis shows time.
When the current through the oxide reaches 10 times the expected current, the ramped voltage is stopped, and the applied voltage at this point is the breakdown voltage (Vbd). Breakdown charge (Qbd) is calculated by integrating the current through the oxide:
Tbd
=
Qbd Imeas t() td
ò
Tstart
Figure 1-2 Concept of Breakdown Voltage and Charge
Agilent 4155C/4156C Sample Application Programs Guide Book, Edition 1 1-5
V-RAMP Theory of V-Ramp Test Procedure
Figure 1-3 shows the two ways to apply the voltage: linear ramped voltage or linear stepped voltage.
Note that the applied ramped voltage must satisfy the following conditions:
Ramp rate is in range from 0.1 MV/cm×s to 1.0 MV/cm×s.
Current measurement interval is 0.1 s or less.
Ramped voltage starts at normal operating voltage or lower.
Ramped voltage stops if electric field reaches 15 MV/cm.
If you use the linear stepped voltage, the following conditions must be satisfied also:
Step value of ramped voltage is 0.1 MV/cm or less.
Current measurement must be performed at least once for every step.
Figure 1-3 Linear Ramped and Linear Stepped Voltage
1-6 Agilent 4155C/4156C Sample Application Programs Guide Book, Edition 1

Failure Categorization and Data Recording

According to the measurement results, the oxide status is categorized as follows and recorded:
Initial Failure: Failed the initial test. Indicates initially defective oxide
Catastrophic Failure: Failed ramped and post stress tests. Indicates that oxide
Masked Catastrophic Failure: Did not fail ramped stress test, but failed post stress test.
Non-catastrophic Failure: Failed ramped stress test, but not post stress test.
Other Did not fail ramped stress test or post stress test.
The failure category is recorded for each test device. If the catastrophic failure is observed, breakdown voltage (Vbd) and breakdown charge density (q recorded.
Table 1-1 shows the oxide failure categories.
Table 1-1 Oxide Failure Categories
V-RAMP
Theory of V-Ramp Test Procedure
capacitor. Other tests should not be performed.
capacitor was properly broken by the ramped stress test.
= Qbd/Area) are also
bd
Failure Category Initial Test
Ramp Stress
Test
Post Stress Test
Initial Fail n.a. n.a.
Catastrophic
a
Pass Fail Fail
Masked Catastrophic Pass Pass Fail
Non-catastrophic Pass Fail Pass
Other Pass Pass Pass
a. Vbd and qbd are also recorded.
Agilent 4155C/4156C Sample Application Programs Guide Book, Edition 1 1-7
V-RAMP Basic Operation

Basic Operation

This section covers the following for using an 4155/4156 to perform V-Ramp Test: required equipment, required files, methodology, how to execute the sample program, and sample program overview.

Methodology

The entire V-Ramp Test procedure can be performed by executing the VRAMP sample program on the built-in IBASIC controller of the 4155/4156.
As explained in Theory of V-Ramp Test Procedure, the V-Ramp test consists of three measurement parts and an analysis part. Each measurement part executes three steps as follows:
1. Loads the measurement setup file into the 4155/4156 execution environment.
2. Changes some of the measurement or analysis parameters on the setup pages.
3. Executes the measurement.
The VRAMP program executes the above three steps for each test: initial test, ramp stress test, and post stress test. Using the measurement setups (step 1 above) loaded from a file reduces the length and complexity of the program. For details, see Programmer's Guide.
Measurement setups, which are loaded into the 4155/4156 execution environment, were previously developed and saved to measurement setup files on the diskette. You can easily modify the measurement setup information in fill-in-the-blank manner in the 4155/4156 execution environment. The VRAMP sample program is also saved to the diskette. You can easily modify the sample program by using the editor in the built-in IBASIC environment.
The VRAMP sample program assumes that the built-in IBASIC controller of the 4155/4156 is used, but you can also use another controller, such as HP BASIC running on an external computer. To do so, you must modify the sample program for your environment. See “Customization” on how to modify the program to run on an external controller.
Initial Test
The initial test makes sure the oxide capacitor is initially good by applying the normal operating voltage (Vuse), then measuring the leakage current (I I
exceeds 1 mA, the oxide capacitor is categorized as "initial failure".
leak
The sample program assumes that SMU1 and SMU4 are connected to the oxide capacitor as shown in Figure 1-4.
) through the oxide. If
leak
1-8 Agilent 4155C/4156C Sample Application Programs Guide Book, Edition 1
V-RAMP
Basic Operation
For the initial test, the sample program does as follows:
1. Sets up the 4155/4156 according to the VRSPOT.MES setup file, which the sample program previously loaded from the diskette into internal memory MEM1.
2. Sets up SMU1 to constant voltage Vuse for PMOS device, or -Vuse for NMOS device. Vuse value is specified previously in the sample program, and reset on the MEASURE: SAMPLING SETUP page by OUTPUT statement (line 2550 of the sample program).
3. Forces voltage from SMU1, then measures current after the HOLD TIME, which was setup by VRSPOT.MES setup file described next.
4. Checks if current through the oxide Ig exceeds 1 mA. If so, the sample program aborts further testing.
The following are main points about the setup by the VRSPOT.MES setup file:
On CHANNELS: CHANNEL DEFINITION page (see Figure 1-13)
MEASUREMENT MODE is set to SAMPLING.
SMU1 and SMU4 are set to be constant voltage sources.
Ig is defined as name of current measured by SMU1.
On MEASURE: SAMPLING SETUP page (see Figure 1-5)
NO. OF SAMPLES is set to 1 to execute the measurement once.
HOLD TIME is set to 2.00 s to allow the output voltage to stabilize.
SMU4 is set to force a constant 0 V.
STOP CONDITION is enabled, NAME is set to Ig, THRESHOLD is set to 1 mA,
and EVENT is set to Val > Th. So, the measurement will stop if the current through the oxide (Ig) exceeds 1 mA.
If so, the sample program will abort further testing.
Figure 1-4 Simplified Measurement Circuit and Output Voltage of Initial Test
Agilent 4155C/4156C Sample Application Programs Guide Book, Edition 1 1-9
V-RAMP Basic Operation
Figure 1-5 MEASURE: SAMPLING SETUP Page for Initial Test
Ramp Stress Test
After the initial test, the sample program executes the ramp stress test. Linear stepped voltage is applied to the oxide.
The measurement setup for the ramp stress test is stored in the VRSWEP.MES setup file on the diskette. At the beginning of the sample program, this setup is loaded into internal memory (MEM2). Then, at the beginning of the ramp stress test, the sample program loads this setup into the 4155/4156.
To force proper stepped voltage, the sample program and VRSWEP.MES set the following:
SMU channel definition (see Figure 1-6):
SMU4 is set to force a constant 0 V, and SMU1 is set to voltage sweep mode.
Constant step interval time (see Figure 1-8):
Step interval time of output sweep voltage must be constant.
Measurement stop mode:
If the current through the oxide reaches the specified compliance, the voltage sweep and measurement stops.
Auto-analysis and user functions:
After the measurement, the 4155/4156 executes analysis automatically to search for Vbd, and to calculate Qbd.
1-10 Agilent 4155C/4156C Sample Application Programs Guide Book, Edition 1
SMU Channel Definition.
The sample program assumes the connection between the SMUs and the oxide capacitor as shown in Figure 1-6. SMU4 is set to force a constant 0 V, and SMU1 is set to voltage sweep mode by the VRSWEP.MES setup as shown in Figure 1-7.
Figure 1-6 Simplified Measurement Circuit of Ramp Stress Test
V-RAMP
Basic Operation
Figure 1-7 CHANNELS: CHANNEL DEFINITION Page for Ramp Stress Test
Agilent 4155C/4156C Sample Application Programs Guide Book, Edition 1 1-11
V-RAMP Basic Operation
Constant step interval time.
To keep a constant step interval time for the voltage sweep and measurement, triggering and measurement ranging techniques are used. VRSWEP.MES sets the measurement ranging mode to FIXED, so the time between measurements does not vary due to range changing.
VRSWEP.MES enables the TRIG OUT function, and the sample program calculates and sets values so that the step interval time becomes constant as shown in Figure 1-8. The step interval time (Step_time) is the delay time (Step_delay_t) plus step delay time (Step_keep_t). Strictly speaking, the sample program calculates these as follows:
Step_time=Vstep/(Ramp_rate*Tox)-1.2ms+0.1ms Step_delay_t=Step_time/2 Step_keep_t=Step_time-Step_delay_t
Where,
1.2 ms is overhead time associated with the delay time for voltage sweep measurement, when the WAIT TIME field is set to 0 (zero). So, do not set another value in this field.
0.1 ms is overhead time associated with the TRIG OUT function.
Ramp rate (Ramp_rate), oxide thickness (Tox), and step voltage (Vstep) are
specified in lines 1800 to 1840 of the sample program.
The start voltage (Vstart), stop voltage (Vstop), and step voltage (Vstep) are specified in sample program in lines 1830 to 1850. For NMOS devices, the ramp stress test subprogram actually sets the opposite polarity for these values by using the Tp variable.
Measurement stop mode.
NOTE The JEDEC standard says that the ramp stress test should abort when the current through
the oxide reaches 10 times the expected current (Iexpect). But this sample program aborts when the current reaches current compliance (Igcomp). The Iexpect and Igcomp values are specified in lines 1860 and 1870 of the sample program, and must meet the following condition: Igcomp ³ Iexpect ´ 10.
VRSWEP.MES file sets the sweep stop condition to SWEEP STOP AT COMPLIANCE as shown in the Figure 1-10.
Figure 1-8 Output Sweep Voltage for Ramp Stress Test
1-12 Agilent 4155C/4156C Sample Application Programs Guide Book, Edition 1
V-RAMP
Basic Operation
Figure 1-9 MEASURE: MEASURE SETUP and OUTPUT SEQUENCE Pages for Ramp Stress
Test
Figure 1-10 MEASURE: SWEEP SETUP Page for Ramp Stress Test
Agilent 4155C/4156C Sample Application Programs Guide Book, Edition 1 1-13
V-RAMP Basic Operation
Auto-analysis and user functions.
The sample program does the following:
1. Sets up the maximum and minimum values for graph axes: X, Y1, and Y2. Lines 2940 to 2980.
2. Performs the measurement. Line 3020.
3. Moves marker to maximum Ig, and saves value to Igmax. Lines 3100 to 3170.
4. Moves marker to position where Ig = Iexpect*10. Line 3200.
5. If compliance was reached or if Igmax ³ Iexpect*10, the sample program reads the value of Vbd and Qbd at present marker position. Lines 3250 to 3320. Where Vdb and Qbd are specified as described below.
The VRSWEP.MES setup file defines user functions on the CHANNELS: USER FUNCTION DEFINITION page (see Figure 1-20) as follows:
Table 1-2 User Functions for Ramp Stress Test
Name Units Definition
Time (sec)
@INDEX * 1
a
Vbd (V) @MY2
Qbd (Q) INTEG(Ig,Time)
a. This is a temporary value. Value of Time is redefined by line 2810 of the
sample program.
The above user function calculates Qbd as follows:
Tbd
Qbd Imeas t() td
==
ò
Tstart
N
1
-- - Imeas
å
2
i 2=
Imeas
+()TiT
i
i 1–
()´
i 1–
Where, N is step number when the breakdown occurs.
1-14 Agilent 4155C/4156C Sample Application Programs Guide Book, Edition 1
Post Stress Test
Post stress test checks the oxide status after the ramp stress test.
The methodology of the post stress test is the same as for initial test. The normal operating voltage (Vuse) is applied to the oxide, then the leakage current (I
For the measurement circuit, connections, and measurement setups, see Initial Test”.
Failure Categorization
Table 1-3 shows the oxide failure categories that are determined by the sample program. The failure category is displayed for each device, and Vbd, Qbd, and qbd are also displayed.
The measured data and measurement settings are saved in a file.
Table 1-3 Oxide Failure Categories
Basic Operation
) is measured.
leak
V-RAMP
Category Initial Test Ramp Stress Test
Initial I
Catastrophic I
> 1 mA n.a. n.a.
meas
£ 1 mAI
meas
meas
³ I
expect
I compliance reached.
Masked Catastrophic I
£ 1 mAI
meas
meas
< I
expect
I compliance not reached.
Non-catastrophic I
£ 1 mAI
meas
meas
³ I
expect
I compliance reached.
Other I
£ 1 mAI
meas
meas
< I
expect
I compliance not reached.
´ 10, or
´ 10, and
´ 10, or
´ 10, and
Post Stress
Test
I
> 1 mA
meas
I
> 1 mA
meas
I
£ 1 mA
meas
I
£ 1 mA
meas
Agilent 4155C/4156C Sample Application Programs Guide Book, Edition 1 1-15
V-RAMP Basic Operation

Required Equipment

The following equipment is required to use the V-Ramp sample program:
Agilent 4155 or Agilent 4156 Semiconductor Parameter Analyzer
Two triaxial cables
Probe station
This operation manual
Diskette that contains sample program file and two setup files

Files on the Diskette

The following files are stored in the sample diskette:
VRAMP V-Ramp sample program. This is an IBASIC program file saved in
ASCII format.
VRSPOT.MES Measurement setup file for initial and post stress test.
VRSWEP.MES Measurement setup file for ramp stress test.
1-16 Agilent 4155C/4156C Sample Application Programs Guide Book, Edition 1
V-RAMP
V
Basic Operation

Executing the VRAMP Program

Before executing the program, you may need to customize the program to suit your test device. See “Customization”.
To execute the sample program, use the following procedure:
1. Connect your 4155/4156 to your test device. See Figure 1-4.
2. Turn on your 4155/4156.
3. Insert the diskette containing the VRAMP program into the built-in 3.5 inch flexible disk drive.
4. Press
Display key in the IBASIC area of the front panel until All IBASIC screen is
displayed.
5. Load the VRAMP program. Type: GET "VRAMP" and press
6. Press
RUN key in the IBASIC area of the front panel to start the program.
Measurement results similar to Figure 1-11 will be displayed on the GRAPHICS page of the 4155/4156.
Figure 1-11 An Example of Measurement Results
GRAPH/ LI ST: GRAPHI CS SHORT 9 4OCT 23 1 0: 5 3A M
ol t ag e Ramp Sweep Meas ur emen t
MARKER( 28. 1250 000 sec - 50. 0048mA - 27. 450 V )
( A) Qbd - 13. 059987500mQ ( V)
-1.00 -40. 0
Ig Vg
decade ------
/div /div
Vbd - 27. 4 50000000 V
Enter key.
Vs ub
0. 00 V
100. mA
VSU1
0. 00 V
o
VSU2
0. 00 V
*
- 1. 00p -5. 00
0. 00 Ti me ( sec) 5. 00 / di v 43. *
STATUS:008000(8------- -)
AXI S
Y1
MA R K E R/ CURSOR
L I NE SCAL I NG DI SPL AY
SETUP
SWEEP SETUP
TI MI NG SET UP
B
CONST SETUP
Note that this example is obtained when the maximum electric field is set to 50 MV/cm.
Agilent 4155C/4156C Sample Application Programs Guide Book, Edition 1 1-17
V-RAMP Basic Operation

Flowchart of Sample VRAMP Program

Figure 1-12 shows flowchart of sample VRAMP program and corresponding subprogram names.
Figure 1-12 Flowchart of Sample VRAMP Program
1-18 Agilent 4155C/4156C Sample Application Programs Guide Book, Edition 1
V-RAMP
Basic Operation
The following provides a brief description for each subprogram.
Test_setting Specifies and checks the parameter values. These are values that the
program will set directly instead of some of the setup file values.
Get_file Loads measurement setup files from the diskette into internal memory:
spot measurement setup into MEM1, and sweep measurement setup into MEM2. Having the measurement setups in internal memory reduces the measurement time.
Init_fin_test Executes the spot measurement for initial test or for post stress test.
First parameter specifies the test: Init is for initial test, and Fin is for post stress test. The measurement results are returned to the second parameter.
Judge Categorizes failure according to measurement results of initial, ramped
stress, and post stress tests. If the failure is initial failure, this subprogram aborts the program.
Sweep_test Executes sweep measurement for ramped stress test, then returns the
result flag, Vbd, and Qbd to the three parameters. The measurement result data is temporarily stored in internal memory (MEM3).
Save_data Saves measurement result data (that is in MEM3) to a file on the
diskette.
Agilent 4155C/4156C Sample Application Programs Guide Book, Edition 1 1-19
V-RAMP Customization

Customization

This section describes how to customize the sample program to suit your test device.

Using an External Computer

This sample program (VRAMP) is assumed to run on the Instrument BASIC that is built into the 4155/4156. The 4155/4156 is used as both the measurement instrument and the controller running IBASIC, so VRAMP sets device selector 800. On the following three lines, the 4155/4156 is assigned and interrupt from it is enabled as follows:
1470 ASSIGN @Hp4155 TO 800
: 1540 ON INTR 8 CALL Err_check 1550 ENABLE INTR 8;2
If you use an external controller (that can run HP BASIC environment) to control the 4155/4156, you need to modify a few lines of the sample program. For example, if you use HP BASIC/WS on an HP 9000 Series 300 computer, you only need to modify lines the above three lines as follows:
In this case, the 4155/4156 has GPIB address 17 and is not used as the system controller, and is connected to the built-in GPIB of the HP 9000 series 300 controller with an GPIB cable. Use the following procedure to set the GPIB address and system mode:
1. Turn on your 4155/4156.
2. Press
3. Select MISCELLANEOUS softkey.
4. Move the field pointer to the "415x is " field, then select the NOT CONTROLLER
5. Move the field pointer to the "415x" field in the GPIB ADDRESS area, then enter: 17.
1-20 Agilent 4155C/4156C Sample Application Programs Guide Book, Edition 1
System key.
softkey.
Loading...
+ 224 hidden pages