Keysight N9030B Users guide

Keysight X-Series Signal Analyzers
This manual provides documentation for the following Analyzer:
N9030B PXA Signal Analyzer
PXA Specifications Guide
(Comprehensive Reference Data)

Notices

2016-2021
No part of this manual may be reproduced in any form or by any means (including electronic storage and retrieval or translation into a foreign language) without prior agreement and written consent from Keysight Technologies, Inc. as governed by United States and international copyright laws.
Trademark Acknowledgments
Manual Part Number
N9030-90089
Edition
Edition 2, March 2021
Supersedes: January 2021
Published by: Keysight Technologies
1400 Fountaingrove Parkway Santa Rosa, CA 95403
Warranty
THE MATERIAL CONTAINED IN THIS DOCUMENT IS PROVIDED “AS IS,” AND IS SUBJECT TO BEING CHANGED, WITHOUT NOTICE, IN FUTURE EDITIONS. FURTHER, TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, KEYSIGHT DISCLAIMS ALL WARRANTIES, EITHER EXPRESS OR IMPLIED WITH REGARD TO THIS MANUAL AND ANY INFORMATION CONTAINED HEREIN, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. KEYSIGHT SHALL NOT BE LIABLE FOR ERRORS OR FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH THE FURNISHING, USE, OR PERFORMANCE OF THIS DOCUMENT OR ANY INFORMATION CONTAINED HEREIN. SHOULD KEYSIGHT AND THE USER HAVE A SEPARATE WRITTEN AGREEMENT WITH WARRANTY TERMS
COVERING THE MATERIAL IN THIS DOCUMENT THAT CONFLICT WITH THESE TERMS, THE WARRANTY TERMS IN THE SEPARATE AGREEMENT WILL CONTROL.
Technology Licenses
The hardware and/or software described in this document are furnished under a license and may be used or copied only in accordance with the terms of such license.
U.S. Government Rights
The Software is “commercial computer software,” as defined by Federal Acquisition Regulation (“FAR”) 2.101. Pursuant to FAR
12.212 and 27.405-3 and Department of Defense FAR Supplement (“DFARS”) 227.7202, the U.S. government acquires commercial computer software under the same terms by which the software is customarily provided to the public. Accordingly, Keysight provides the Software to U.S. government customers under its standard commercial license, which is embodied in its End User License Agreement (EULA), a copy of which can be found at
http://www.keysight.com/find/sweula
The license set forth in the EULA represents the exclusive authority by which the U.S. government may use, modify, distribute, or disclose the Software. The EULA and the license set forth therein, does not require or permit, among other things, that Keysight: (1) Furnish technical information related to commercial computer software or commercial computer software documentation that is not customarily provided to the public; or (2) Relinquish to, or otherwise provide, the government rights in excess of these rights customarily provided to the public to use, modify, reproduce, release, perform, display, or disclose commercial computer software or commercial computer software
documentation. No additional government requirements beyond those set forth in the EULA shall apply, except to the extent that those terms, rights, or licenses are explicitly required from all providers of commercial computer software pursuant to the FAR and the DFARS and are set forth specifically in writing elsewhere in the EULA. Keysight shall be under no obligation to update, revise or otherwise modify the Software. With respect to any technical data as defined by FAR 2.101, pursuant to FAR 12.211 and 27.404.2 and DFARS 227.7102, the U.S. government acquires no greater than Limited Rights as defined in FAR 27.401 or DFAR 227.7103-5 (c), as applicable in any technical data.
Safety Notices
A CAUTION notice denotes a hazard. It calls attention to an operating procedure, practice, or the like that, if not correctly performed or adhered to, could result in damage to the product or loss of important data. Do not proceed beyond a CAUTION notice until the indicated conditions are fully understood and met.
A WARNING notice denotes a hazard. It calls attention to an operating procedure, practice, or the like that, if not correctly performed or adhered to, could result in personal injury or death. Do not proceed beyond a WARNING notice until the indicated conditions are fully understood and met.

Where to Find the Latest Information

Documentation is updated periodically. For the latest information about these products, including instrument software upgrades, application information, and product information, browse to one of the following URLs, according to the name of your product:
http://www.keysight.com/find/pxa
To receive the latest updates by email, subscribe to Keysight Email Updates at the following URL:
http://www.keysight.com/find/MyKeysight
Information on preventing instrument damage can be found at:
www.keysight.com/find/PreventingInstrumentRepair
Is your product software up-to-date?
Periodically, Keysight releases software updates to fix known defects and incorporate product enhancements. To search for software updates for your product, go to the Keysight Technical Support website at:
http://www.keysight.com/find/techsupport
3
4

Contents

1. PXA Signal Analyzer
Definitions and Requirements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Conditions Required to Meet Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Certification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Frequency and Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Frequency Range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Band. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Precision Frequency Reference (Option EP1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Precision Frequency Reference (Option EP0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Frequency Readout Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Frequency Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Frequency Span. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Sweep Time and Trigger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Triggers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Gated Sweep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Number of Frequency Sweep Points (buckets). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Resolution Bandwidth (RBW) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Analysis Bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Preselector Bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Video Bandwidth (VBW) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Amplitude Accuracy and Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Measurement Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Maximum Safe Input Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Display Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Marker Readout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Frequency Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Nominal Frequency Response Band 0 without Option EP0 [Plot] . . . . . . . . . . . . . . . . . . . . . . . . . 37
Nominal Frequency Response Band 0 with Option EP0 [Plot] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
IF Frequency Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
IF Phase Linearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Absolute Amplitude Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Input Attenuation Switching Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
RF Input VSWR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Nominal VSWR Low Band [Plot] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Nominal VSWR, above 3.5 GHz [Plot]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Resolution Bandwidth Switching Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Reference Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Display Scale Fidelity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Available Detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Dynamic Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Gain Compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
1 dB Gain Compression Point (Two-tone). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Displayed Average Noise Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
DANL without Noise Floor Extension and without Option EP0 . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
DANL without Noise Floor Extension, with Option EP0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Displayed Average Noise Level with Noise Floor Extension Improvement. . . . . . . . . . . . . . . . . . . 55
Displayed Average Noise Level with Noise Floor Extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Spurious Responses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5
Contents
Spurious Responses: Residual and Image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Spurious Responses: Other . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Second Harmonic Distortion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Third Order Intermodulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Nominal TOI vs. Input Frequency and Tone Separation [Plot] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Nominal Dynamic Range vs. Offset Frequency vs. RBW [Plot] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Nominal Dynamic Range vs. Offset Frequency vs. RBW [Plot] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Phase Noise. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Nominal Phase Noise of Different LO Optimizations without Option EP0 [Plot] . . . . . . . . . . . . . . . 70
Nominal Phase Noise at Different Center Frequencies without Option EP0 [Plot] . . . . . . . . . . . . . 71
Nominal Phase Noise at Different Carrier Frequencies, Phase Noise Optimized vs Offset Frequency
with Option EP0 [Plot]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Nominal Phase Noise at Different Phase Noise/Spurs Optimization with Option EP0 [Plot] . . . . . 73
Phase Noise Effects, Ext Ref vs. Loop BW without Option EP0 [Plot] . . . . . . . . . . . . . . . . . . . . . . . 74
Power Suite Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Channel Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Occupied Bandwidth. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Adjacent Channel Power (ACP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Multi-Carrier Adjacent Channel Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79
Power Statistics CCDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Burst Power. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
TOI (Third Order Intermodulation) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Harmonic Distortion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Spurious Emissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Spectrum Emission Mask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Inputs/Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Front Panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Rear Panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Regulatory Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
2. I/Q Analyzer
Specifications Affected by I/Q Analyzer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .99
Clipping-to-Noise Dynamic Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Data Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Time Record Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
ADC Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
3. Option B25 - 25 MHz Analysis Bandwidth
Specifications Affected by Analysis Bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Other Analysis Bandwidth Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
IF Spurious Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
IF Frequency Response. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
IF Phase Linearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Nominal Phase Linearity [Plot] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Data Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
6
Contents
Time Record Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
ADC Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
4. Option B40 - 40 MHz Analysis Bandwidth
Specifications Affected by Analysis Bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Other Analysis Bandwidth Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
SFDR (Spurious-Free Dynamic Range). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Spurious Responses: Residual and Image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Spurious Responses: Other . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
IF Frequency Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
IF Phase Linearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Nominal Phase Linearity [Plot] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
EVM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
Data Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Time Record Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
ADC Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
5. Option B85/B1X - 85/160 MHz Analysis Bandwidth
Specifications Affected by Analysis Bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
Other Analysis Bandwidth Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
SFDR (Spurious-Free Dynamic Range). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
Spurious Responses: Residual and Image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
Spurious Responses: Other . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
IF Residual Responses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
IF Frequency Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
IF Phase Linearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
EVM measurement floor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Noise Density with Preselector Bypass (Option MPB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
Data Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
Time Record Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
ADC Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
6. Option B2X - 255 MHz Analysis Bandwidth
Specifications Affected by Analysis Bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
Other Analysis Bandwidth Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
SFDR (Spurious-Free Dynamic Range). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
Spurious Responses: Residual and Image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
Spurious Responses: Other . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
IF Residual Responses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
IF Frequency Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
IF Phase Linearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
Full Scale (ADC Clipping) with Option EP0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
Full Scale (ADC Clipping) - Full Bypass Path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
Third Order Intermodulation Distortion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
Noise Density with Preselector Bypass. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
Noise Density - Full Bypass Path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
Signal to Noise Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
Data Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
7
Contents
Time Record Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
ADC Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
7. Option B5X - 510 MHz Analysis Bandwidth
Specifications Affected by Analysis Bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
Other Analysis Bandwidth Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
SFDR (Spurious-Free Dynamic Range) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
Spurious Responses: Residual and Image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
Spurious Responses: Other . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
IF Residual Responses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
IF Frequency Response. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
IF Phase Linearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
Full Scale (ADC Clipping) with Option EP0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
Full Scale (ADC Clipping) - Full Bypass Path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
Third Order Intermodulation Distortion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
Noise Density with Preselector Bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
Noise Density - Full Bypass Path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
Signal to Noise Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
Data Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
Time Record Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
ADC Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
8. Option FBP - Full Bypass Path
Specifications Affected by Full Bypass Path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
Other Specifications Affected by Full Bypass Path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
Maximum Safe Input Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
Additional Spurious Responses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
9. Option ALV - Log Video Out
Specifications Affected by Log Video Out . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
Other Log Video Out Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
Aux IF Out Port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
Fast Log Video Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
Nominal Output Voltage (Open Circuit) versus Input Level [Plot] . . . . . . . . . . . . . . . . . . . . . . . . . 174
10. Option BBA - Analog Baseband IQ (BBIQ) Inputs
Frequency and Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
Amplitude Accuracy and Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
Nominal Channel Match, 50 Input, Single-Ended input mode, 0.25V Range [Plot]. . . . . . . . . . 179
Nominal Phase Match, 50 Input, Single-Ended input mode, 0.25V Range [Plot] . . . . . . . . . . . 179
Dynamic Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
Application Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
Capture Length vs. Span, 2-channel with 89600 VSA, I+jQ Mode [Plot] . . . . . . . . . . . . . . . . . . .191
Inputs/Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
8
Contents
11. Option CR3 - Connector Rear, 2nd IF Output
Specifications Affected by Connector Rear, 2nd IF Output. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
Other Connector Rear, 2nd IF Output Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
Aux IF Out Port. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
Second IF Out . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
12. Option CRP - Connector Rear, Arbitrary IF Output
Specifications Affected by Connector Rear, Arbitrary IF Output. . . . . . . . . . . . . . . . . . . . . . . . . . . 198
Other Connector Rear, Arbitrary IF Output Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
Aux IF Out Port. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
Arbitrary IF Out . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
13. Option EA3 - Electronic Attenuator, 3.6 GHz
Specifications Affected by Electronic Attenuator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
Other Electronic Attenuator Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
Range (Frequency and Attenuation) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
Distortions and Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
Frequency Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
Absolute Amplitude Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
Electronic Attenuator Switching Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
14. Option EMC - Precompliance EMI Features
Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
Frequency Range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
EMI Resolution Bandwidths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
Amplitude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
EMI Average Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
Quasi-Peak Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
RMS Average Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
15. Option ESC - External Source Control
General Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
Frequency Range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
Dynamic Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
Power Sweep Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
Measurement Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
Supported External Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
16. Option EXM - External Mixing
Specifications Affected by External mixing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
Other External Mixing Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
Connection Port EXT MIXER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
Mixer Bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
IF Input. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
LO Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
9
Contents
17. Option LNP - Low Noise Path Specifications
Specifications Affected by Low Noise Path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
Displayed Average Noise Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
DANL with Noise Floor Extension Improvement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
Frequency Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
Second Harmonic Distortion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
18. Option MPB - Microwave Preselector Bypass
Specifications Affected by Microwave Preselector Bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
Other Microwave Preselector Bypass Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
Frequency Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
Additional Spurious Responses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
19. Options P03, P08, P13, P26, P44 and P50 - Preamplifiers
Specifications Affected by Preamp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
Other Preamp Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
Gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
Noise figure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
1 dB Gain Compression Point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
Displayed Average Noise Level (DANL) (without Noise Floor Extension) . . . . . . . . . . . . . . . . . . . 239
Frequency Response — Preamp On . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
RF Input VSWR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
Nominal VSWR — Preamp On, Low Band [Plot]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
Nominal VSWR — Preamp On, Above 3.5 GHz [Plot]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
Second Harmonic Distortion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
Third Order Intermodulation Distortion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
20. Options RT1, RT2 - Real-time Spectrum Analyzer (RTSA)
Real-time Spectrum Analyzer Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
General Frequency Domain Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
Density View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
Spectrogram View. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
Power vs. Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
Frequency Mask Trigger (FMT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
21. Option YAV - Y-Axis Video Output
Specifications Affected by Y-Axis Video Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256
Other Y-Axis Video Output Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
General Port Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
Screen Video . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
Continuity and Compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
Log Video Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260
Linear Video (AM Demod) Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260
22. 5G NR Measurement Application
Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262
Channel Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262
10
Contents
Spurious Emissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
Adjacent Channel Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
Spectrum Emission Mask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
Power Statistics CCDF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
Occupied Bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
Modulation Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
Frequency Ranges. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268
Frequency Range: FR1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268
Frequency Range: FR2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
23. Analog Demodulation Measurement Application
RF Carrier Frequency and Bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
Carrier Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
Maximum Information Bandwidth (Info BW). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
Capture Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
Post-Demodulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
Maximum Audio Frequency Span . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
Frequency Modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276
Conditions required to meet specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276
FM Measurement Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276
FM Deviation Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
FM Rate Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278
Carrier Frequency Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280
Frequency Modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
Post-Demod Distortion Residual. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
Post-Demod Distortion Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
AM Rejection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282
Residual FM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282
Amplitude Modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
Conditions required to meet specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
AM Measurement Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
AM Depth Accuracy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
Flatness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284
AM Rate Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284
Amplitude Modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
Post-Demod Distortion Residual. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
Post-Demod Distortion Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
FM Rejection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286
Residual AM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286
Phase Modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
Conditions required to meet specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
PM Measurement Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
PM Deviation Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
PM Rate Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
Carrier Frequency Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
Phase Modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292
Post-Demod Distortion Residual. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292
Post-Demod Distortion Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294
11
Contents
AM Rejection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295
Residual PM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296
Analog Out . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297
FM Stereo/Radio Data System (RDS) Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299
FM Stereo Modulation Analysis Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299
24. Avionics Measurement Application
Additional Definitions and Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302
RF Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304
General, RF Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304
VOR (VHF Omnidirectional Range), RF Input. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305
ILS (Instrument Landing System) - Localizer (LOC) and Glide-Slope (GS), RF Input . . . . . . . . . . 306
Markers - Beacons, RF input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307
ADF (Automatic Direction Finder), RF input. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307
Audio Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308
General, Audio input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308
VOR (VHF Omnidirectional Range), Audio Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309
ILS (Instrument Landing System) - Localizer (LOC) and Glide-Slope (GS), Audio Input . . . . . . . 310
Markers - Beacons, Audio input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311
ADF (Automatic Direction Finder), Audio input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311
25. Bluetooth Measurement Application
Basic Rate Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314
Output Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314
Modulation Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315
Initial Carrier Frequency Tolerance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316
Carrier Frequency Drift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316
Adjacent Channel Power. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317
Low Energy Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318
Output Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318
Modulation Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319
Initial Carrier Frequency Tolerance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320
Carrier Frequency Drift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
LE In-band Emission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
Enhanced Data Rate (EDR) Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322
EDR Relative Transmit Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322
EDR Modulation Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323
EDR Carrier Frequency Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324
EDR In-band Spurious Emissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325
In-Band Frequency Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326
Bluetooth Basic Rate and Enhanced Data Rate (EDR) System . . . . . . . . . . . . . . . . . . . . . . . . . . . 326
Bluetooth Low Energy System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326
26. GSM/EDGE Measurement Application
Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328
EDGE Error Vector Magnitude
(EVM). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328
Power vs. Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329
12
Contents
EDGE Power vs. Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329
Power Ramp Relative Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329
Phase and Frequency Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330
Output RF Spectrum (ORFS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331
Frequency Ranges. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336
In-Band Frequency Ranges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336
27. LTE/LTE-A Measurement Application
Supported Air Interface Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338
Measurements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339
Channel Power. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339
Power Statistics CCDF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340
Transmit On/Off Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341
Adjacent Channel Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342
Occupied Bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345
Spectrum Emission Mask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346
Spurious Emissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348
Modulation Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350
NB-IoT Modulation Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352
C-V2X Modulation Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353
In-Band Frequency Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355
C-V2X Operating Band . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355
NB-IoT Operating Band . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355
LTE FDD Operating Band. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355
LTE TDD Operating Band. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356
28. Measuring Receiver
Additional Definitions and Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360
N9030B PXA Conditions Required to Meet Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360
Definitions of terms used in this chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362
RF Carrier Frequency and Bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363
Carrier Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363
Maximum Information Bandwidth (Info BW). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363
Frequency Modulation (FM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364
Additional conditions required to meet specifications:. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364
Input Power Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364
FM Deviation Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364
AM Rejection (50 Hz to 3 kHz BW) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365
Residual FM (50 Hz to 3 kHz BW) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366
Amplitude Modulation (AM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367
Additional conditions required to meet specifications:. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367
Input Power Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367
AM Depth Accuracy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 368
Flatness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369
FM Rejection (50 Hz to 3 kHz BW) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369
Phase Modulation (PM). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370
Additional conditions required to meet specifications:. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370
Input Power Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370
13
Contents
Peak Phase Deviation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370
AM Rejection (50 Hz to 3 kHz BW). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372
Residual PM (50 Hz to 3 kHz BW) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372
Modulation Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373
Frequency Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373
Modulation Rate Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373
Modulation Distortion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376
Post-Demod Distortion Measurement Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376
Post-Demod Distortion Residual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377
Modulation SINAD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379
Post-Demod Distortion Residual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379
Modulation Filters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380
RF Frequency Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381
Audio Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382
Audio Frequency Counter Audio AC Level
Audio Distortion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383
Audio SINAD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 384
Audio Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385
RF Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386
Input SWR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388
Power Reference (P-Series, EPM and EPM-P Series Specifications) . . . . . . . . . . . . . . . . . . . . . . 391
Tuned RF Level Specification Nomenclature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392
Tuned RF Level (TRFL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393
Additional Definitions and Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393
Power Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394
Minimum power (dBm)
Frequency Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394
Minimum Power (dBm)
Frequency Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395
Absolute Measurement Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397
Information about Residuals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400
Graphical TRFL Measurement Accuracy (Nominal). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401
N9030B, Option 503/508/513/526, IF BW 10 Hz — Preamp On: Option P03/P08/P13/P26 [Plot] . . 401
N9030B, Option 544/550, IF BW 10 Hz — Preamp On: Option P44/P50 [Plot] . . . . . . . . . . . . . . 402
1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383
1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382
29. Multi-Standard Radio Measurement Application
Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404
Channel Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404
Power Statistics CCDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404
Occupied Bandwidth. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404
Spurious Emissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404
Conformance EVM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405
In-Band Frequency Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 406
30. Noise Figure Measurement Application
General Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 408
14
Contents
Noise Figure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 408
Gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409
Noise Figure Uncertainty Calculator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 410
Uncertainty versus Calibration Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411
Nominal Noise Figure Uncertainty versus Calibration Used . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411
Nominal Instrument Noise Figure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 412
Nominal Instrument Input VSWR, DC Coupled without Option EP0 [Plot] . . . . . . . . . . . . . . . . . 413
Nominal VSWR — Preamp On Low Band with Option EP0 [Plot] . . . . . . . . . . . . . . . . . . . . . . . . . 414
Nominal VSWR — Preamp, Above 3.5 GHz with Option EP0 [Plot] . . . . . . . . . . . . . . . . . . . . . . . 414
31. Phase Noise Measurement Application
General Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 416
Maximum Carrier Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 416
Measurement Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 416
Measurement Accuracy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 417
Offset Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 418
Amplitude Repeatability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 418
Nominal Phase Noise at Different Center Frequencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 418
32. Pulse Measurement Software
Pulse Measurement Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 420
Frequency and Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421
Frequency Error RMS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421
Frequency Pulse to Pulse Difference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421
Phase Pulse to Pulse Difference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421
33. Short Range Communications Measurement Application
ZigBee (IEEE 802.15.4) Measurement Application. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424
EVM (Modulation Accuracy) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424
Frequency Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424
Z-Wave (ITU-T G.9959) Measurement Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425
FSK Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425
Frequency Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425
34. Vector Modulation Analysis Application
Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 428
Range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 428
Measurements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 429
Modulation Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 429
Residual EVM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 429
Residual EVM for MSK. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 429
Residual EVM for VSB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 430
35. W-CDMA Measurement Application
Conformance with 3GPP TS 25.141 Base Station Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . 432
Measurements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 434
Channel Power. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 434
Adjacent Channel Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435
15
Contents
Power Statistics CCDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 438
Occupied Bandwidth. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 439
Spectrum Emission Mask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 439
Spurious Emissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 440
Code Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 441
QPSK EVM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 442
Modulation Accuracy (Composite EVM). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443
Power Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 444
In-Band Frequency Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445
36. WLAN Measurement Application
Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 448
Channel Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 448
Power Statistics CCDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 454
Occupied Bandwidth. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455
Power vs. Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455
Spectrum Emission Mask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 456
Spurious Emission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 469
64QAM EVM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 472
1024QAM EVM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 478
CCK 11Mbps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 479
In-Band Frequency Range for Warranted Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 480
16
Keysight X-Series Signal Analyzer N9030B
Specification Guide

1 PXA Signal Analyzer

This chapter contains the specifications for the core signal analyzer. The specifications and characteristics for the measurement applications and options are covered in the chapters that follow.
17
PXA Signal Analyzer Definitions and Requirements

Definitions and Requirements

This book contains signal analyzer specifications and supplemental information. The distinction among specifications, typical performance, and nominal values are described as follows.

Definitions

— Specifications describe the performance of parameters covered by the
product warranty (temperature = 0 to 55°C also referred to as "Full temperature range" or "Full range", unless otherwise noted).
— 95th percentile values indicate the breadth of the population (≈2σ) of
performance tolerances expected to be met in 95% of the cases with a 95% confidence, for any ambient temperature in the range of 20 to 30°C. In addition to the statistical observations of a sample of instruments, these values include the effects of the uncertainties of external calibration references. These values are not warranted. These values are updated occasionally if a significant change in the statistically observed behavior of production instruments is observed.
— Typical describes additional product performance information that is not
covered by the product warranty. It is performance beyond specification that 80% of the units exhibit with a 95% confidence level over the temperature range 20 to 30°C. Typical performance does not include measurement uncertainty.
— Nominal values indicate expected performance, or describe product
performance that is useful in the application of the product, but is not covered by the product warranty.

Conditions Required to Meet Specifications

The following conditions must be met for the analyzer to meet its specifications.
— The analyzer is within its calibration cycle. See the General section of this
chapter.
— Under auto couple control, except that Auto Sweep Time Rules = Accy. — For signal frequencies <10 MHz, DC coupling applied.
— Any analyzer that has been stored at a temperature range inside the
allowed storage range but outside the allowed operating range must be stored at an ambient temperature within the allowed operating range for at least two hours before being turned on.
— The analyzer has been turned on at least 30 minutes with Auto Align set to
Normal, or if Auto Align is set to Off or Partial, alignments must have been run recently enough to prevent an Alert message. If the Alert condition is changed from “Time and Temperature” to one of the disabled duration
18
PXA Signal Analyzer Definitions and Requirements
choices, the analyzer may fail to meet specifications without informing the user. If Auto Align is set to Light, performance is not warranted, and nominal performance will degrade to become a factor of 1.4 wider for any specification subject to alignment, such as amplitude tolerances.

Certification

Keysight Technologies certifies that this product met its published specifications at the time of shipment from the factory. Keysight Technologies further certifies that its calibration measurements are traceable to the International System of Units (SI) via national metrology institutes (www.keysight.com/find/NMI) that are signatories to the CIPM Mutual Recognition Arrangement.
19
PXA Signal Analyzer Frequency and Time

Frequency and Time

Description Specifications Supplemental Information

Frequency Range

Maximum Frequency
Option 503 3.6 GHz
Option 508 8.4 GHz
Option 513 13.6 GHz
Option 526 26.5 GHz
Option 544 44 GHz
Option 550 50 GHz
Preamp Option P03 3.6 GHz
Preamp Option P08 8.4 GHz
Preamp Option P13 13.6 GHz
Preamp Option P26 26.5 GHz
Preamp Option P44 44 GHz
Preamp Option P50 50 GHz
Minimum Frequency
Preamp
Off 10 MHz 2 Hz
On 10 MHz 9 kHz
AC Coupled
a
DC Coupled
20
PXA Signal Analyzer Frequency and Time
Description Specifications Supplemental Information

Band

Harmonic
LO Multiple (N
b
) Band Overlaps
c
Mixing Mode
0 (2 Hz to 3.6 GHz)
d
1 1 Options 503, 508, 513, 526, 544,
550
1 (3.5 to 8.4 GHz) 1 1 Options 508, 513, 526, 544, 550
2 (8.3 to 13.6 GHz) 1 2 Options 513, 526, 544, 550
3 (13.5 to 17.1 GHz) 2 2 Options 526, 544, 550
4 (17.0 to 26.5 GHz) 2 4 Options 526, 544, 550
5 (26.4 to 34.5 GHz) 2 4 Options 544, 550
6 (34.4 to 50 GHz) 4 8 Options 544, 550
a. AC Coupled only applicable to frequency Options 503, 508, 513, and 526. b. N is the LO multiplication factor. For negative mixing modes (as indicated by the “” in the “Harmonic Mixing
Mode” column), the desired 1st LO harmonic is higher than the tuned frequency by the 1st IF.
c. In the band overlap regions, for example, 3.5 to 3.6 GHz, the analyzer may use either band for measurements, in
this example Band 0 or Band 1. The analyzer gives preference to the band with the better overall specifications (which is the lower numbered band for all frequencies below 26 GHz), but will choose the other band if doing so is necessary to achieve a sweep having minimum band crossings. For example, with CF = 3.58 GHz, with a span of 40 MHz or less, the analyzer uses Band 0, because the stop frequency is 3.6 GHz or less, allowing a span without band crossings in the preferred band. If the span is between 40 and 160 MHz, the analyzer uses Band 1, because the start frequency is above 3.5 GHz, allowing the sweep to be done without a band crossing in Band 1, though the stop frequency is above 3.6 GHz, preventing a Band 0 sweep without band crossing. With a span greater than 160 MHz, a band crossing will be required: the analyzer sweeps up to 3.6 GHz in Band 0; then executes a band crossing and continues the sweep in Band 1. Specifications are given separately for each band in the band overlap regions. One of these specifications is for the preferred band, and one for the alternate band. Continuing with the example from the previous paragraph (3.58 GHz), the preferred band is band 0 (indicated as frequencies under 3.6 GHz) and the alternate band is band 1 (3.5 to 8.4 GHz). The specifications for the preferred band are warranted. The specifications for the alternate band are not warranted in the band overlap region, but performance is nominally the same as those warranted specifications in the rest of the band. Again, in this example, consider a signal at 3.58 GHz. If the sweep has been configured so that the signal at 3.58 GHz is measured in Band 1, the analysis behavior is nominally as stated in the Band 1 specification line (3.5 to 8.4 GHz) but is not warranted. If warranted performance is necessary for this sig­nal, the sweep should be reconfigured so that analysis occurs in Band 0. Another way to express this situation in this example Band 0/Band 1 crossing is this: The specifications given in the “Specifications” column which are described as “3.5 to 8.4 GHz” represent nominal performance from 3.5 to 3.6 GHz, and warranted performance
from 3.6 to 8.4 GHz. d. Band 0 is extendable (set “Extend Low Band” to On) to 3.7 GHz instead of 3.6 GHz in instruments with frequency Option 508, 513 or 526.
21
PXA Signal Analyzer Frequency and Time
Description Specifications Supplemental Information

Precision Frequency Reference (Option EP1)

Accuracy ±[(time since last adjustment ×
aging rate) + temperature stability + calibration accuracy
a]b
Temperature Stability
8
8
Nominally linear
10
±5 × 10
20 to 30°C
Full temperature range
Aging Rate
±1.5 × 10
±5 × 10
Total Aging
7
1 Year
2 Years
Settability
Warm-up and Retrace
d
300 s after turn on
900 s after turn on
Achievable Initial Calibration Accuracy
e
±1 × 10
±1.5 × 10
±2 × 10
±4 × 10
9
8
7
Nominal
±1 × 10
±1 × 10
7
of final frequency
8
of final frequency
Standby power to reference oscillator Not supplied
Residual FM
(Center Frequency = 1 GHz
0.25 Hz × N (nominal)
10 Hz RBW, 10 Hz VBW)
c
/day (nominal)
f
p-p in 20 ms
a. Calibration accuracy depends on how accurately the frequency standard was adjusted to 10 MHz. If the adjust-
ment procedure is followed, the calibration accuracy is given by the specification “Achievable Initial Calibration
Accuracy.” b. The specification applies after the analyzer has been powered on for four hours. c. Narrow temperature range performance is nominally linear with temperature. For example, for
25±3º C, the stability would be only three-fifths as large as the warranted 25±5º C, thus ±0.9 × 10
8
.
d. Standby mode does not apply power to the oscillator. Therefore warm-up applies every time the power is
turned on. The warm-up reference is one hour after turning the power on. Retracing also occurs every time
warm-up occurs. The effect of retracing is included within the “Achievable Initial Calibration Accuracy” term of
the Accuracy equation.
22
PXA Signal Analyzer Frequency and Time
e. The achievable calibration accuracy at the beginning of the calibration cycle includes these effects:
1) Temperature difference between the calibration environment and the use environment
2) Orientation relative to the gravitation field changing between the calibration environment and the use envi-
ronment
3) Retrace effects in both the calibration environment and the use environment due to turning the instrument
power off.
4) Settability
f. N is the LO multiplication factor.
Description Specifications Supplemental Information

Precision Frequency Reference (Option EP0)

Accuracy ±[(time since last adjustment ×
aging rate) + temperature stability + calibration accuracy
a]b
Temperature Stability
Full temperature range
Aging Rate
±4.5 × 10
−9
±2.5 × 10
10
/day (nominal)
Total Aging
−8
1 Year
Settability
Warm-up and Retrace
c
300 s after turn on
600 s after turn on
Achievable Initial Calibration Accuracy
d
±3 × 10
±4 × 10
±3.1 × 10
−11
8
Nominal
±1 × 10
±1 × 10
7
of final frequency
8
of final frequency
Standby power Standby power is supplied to both
the CPU and the frequency reference oscillator.
Residual FM
(Center Frequency = 1 GHz
0.25 Hz × N (nominal)
e
p-p in 20 ms
10 Hz RBW, 10 Hz VBW)
a. Calibration accuracy depends on how accurately the frequency standard was adjusted to 10 MHz. If the adjust-
ment procedure is followed, the calibration accuracy is given by the specification “Achievable Initial Calibration
Accuracy.” b. The specification applies after the analyzer has been powered on for four hours.
23
PXA Signal Analyzer Frequency and Time
c. Standby mode applies power to the oscillator. Therefore warm-up and retrace only apply if the power connec-
tion is lost and restored. The warm-up reference is one hour after turning the power on. The effect of retracing
is included within the “Achievable Initial Calibration Accuracy” term of the Accuracy equation. d. The achievable calibration accuracy at the beginning of the calibration cycle includes these effects:
1) Temperature difference between the calibration environment and the use environment
2) Orientation relative to the gravitation field changing between the calibration environment and the use envi-
ronment
3) Retrace effects in both the calibration environment and the use environment due to turning the instrument
power off.
4) Settability
e. N is the LO multiplication factor.
Description Specifications Supplemental Information

Frequency Readout Accuracy ±(marker freq × freq ref accy +

a
+ 2 Hz +
b
)
Example for EMC
0.10span + 5% × RBW
0.5 × horizontal resolution
d
Single detector only
±0.0032% (nominal)
a. The warranted performance is only the sum of all errors under autocoupled conditions. Under non-autocoupled
conditions, the frequency readout accuracy will nominally meet the specification equation, except for conditions in which the RBW term dominates, as explained in examples below. The nominal RBW contribution to frequency readout accuracy is 2% of RBW for RBWs from 1 Hz to 390 kHz, 4% of RBW from 430 kHz through 3 MHz (the widest autocoupled RBW), and 30% of RBW for the (manually selected) 4, 5, 6 and 8 MHz RBWs. First example: a 120 MHz span, with autocoupled RBW. The autocoupled ratio of span to RBW is 106:1, so the RBW selected is 1.1 MHz. The 5% × RBW term contributes only 55 kHz to the total frequency readout accu­racy, compared to 120 kHz for the 0.10% × span term, for a total of 175 kHz.
Second example: a 20 MHz span, with a 4 MHz RBW. The specification equation does not apply because the
Span: RBW ratio is not autocoupled. If the equation did apply, it would allow 20 kHz of error (0.10%) due to the span and 200 kHz error (5%) due to the RBW. For this non-autocoupled RBW, the RBW error is nominally 30%, or 1200 kHz.
b. Horizontal resolution is due to the marker reading out one of the trace points. The points are spaced by
span/(Npts – 1), where Npts is the number of sweep points. For example, with the factory preset value of 1001 sweep points, the horizontal resolution is span/1000. However, there is an exception: When both the detector mode is “normal” and the span > 0.25 × (Npts – 1) × RBW, peaks can occur only in even-numbered points, so the effective horizontal resolution becomes doubled, or span/500 for the factory preset case. When the RBW is autocoupled and there are 1001 sweep points, that exception occurs only for spans >750 MHz
c. Specifications apply to traces in most cases, but there are exceptions. Specifications always apply to the peak
detector. Specifications apply when only one detector is in use and all active traces are set to Clear Write. Spec­ifications also apply when only one detector is in use in all active traces and the "Restart" key has been pressed since any change from the use of multiple detectors to a single detector. In other cases, such as when multiple simultaneous detectors are in use, additional errors of 0.5, 1.0 or 1.5 sweep points will occur in some detectors, depending on the combination of detectors in use.
c
24
PXA Signal Analyzer Frequency and Time
d. In most cases, the frequency readout accuracy of the analyzer can be exceptionally good. As an example, Key-
sight has characterized the accuracy of a span commonly used for Electro-Magnetic Compatibility (EMC) testing using a source frequency locked to the analyzer. Ideally, this sweep would include EMC bands C and D and thus sweep from 30 to 1000 MHz. Ideally, the analysis bandwidth would be 120 kHz at 6 dB, and the spacing of the points would be half of this (60 kHz). With a start frequency of 30 MHz and a stop frequency of 1000.2 MHz and a total of 16168 points, the spacing of points is ideal. The detector used was the Peak detector. The accuracy of frequency readout of all the points tested in this span was with ±0.0032% of the span. A perfect analyzer with this many points would have an accuracy of ±0.0031% of span. Thus, even with this large number of display points, the errors in excess of the bucket quantization limitation were negligible.
Description Specifications Supplemental Information

Frequency Counter

a
See note
b
Count Accuracy ±(marker freq × freq ref accy. + 0.100 Hz)
Delta Count Accuracy ±(delta freq. × freq ref accy. + 0.141 Hz)
Resolution 0.001 Hz
a. Instrument conditions: RBW = 1 kHz, gate time = auto (100 ms), S/N 50 dB, frequency = 1 GHz b. If the signal being measured is locked to the same frequency reference as the analyzer, the specified count
accuracy is ±0.100 Hz under the test conditions of footnote a. This error is a noisiness of the result. It will increase with noisy sources, wider RBWs, lower S/N ratios, and source frequencies >1GHz.
Description Specifications Supplemental Information

Frequency Span

Range
Option 503 0 Hz, 10 Hz to 3.6 GHz
Option 508 0 Hz, 10 Hz to 8.4 GHz
Option 513 0 Hz, 10 Hz to 13.6 GHz
Option 526 0 Hz, 10 Hz to 26.5 GHz
Option 544 0 Hz, 10 Hz to 44 GHz
Option 550 0 Hz, 10 Hz to 50 GHz
Resolution 2 Hz
Span Accuracy
Swept
FFT
±(0.1% × span + horizontal resolution
±(0.1% × span + horizontal resolution
25
a
)
a
)
PXA Signal Analyzer Frequency and Time
a. Horizontal resolution is due to the marker reading out one of the sweep points. The points are spaced by
span/(Npts 1), where Npts is the number of sweep points. For example, with the factory preset value of 1001
sweep points, the horizontal resolution is span/1000. However, there is an exception: When both the detector
mode is “normal” and the span > 0.25 × (Npts − 1) × RBW, peaks can occur only in even-numbered points, so
the effective horizontal resolution becomes doubled, or span/500 for the factory preset case. When the RBW is
auto coupled and there are 1001 sweep points, that exception occurs only for spans >750 MHz.
Description Specifications Supplemental Information
Sweep Time and Trigger
Sweep Time Range Span = 0 Hz Span 10 Hz
1 μs to 6000 s 1 ms to 4000 s
Sweep Time Accuracy Span 10 Hz, swept Span 10 Hz, FFT Span = 0 Hz
±0.01% (nominal) ±40% (nominal) ±0.01% (nominal)
Sweep Trigger Free Run, Line, Video, External 1,
External 2, RF Burst, Periodic Timer
Delayed Trigger
a
Range
Span 10 Hz 150 ms to 500 ms
Span = 0 Hz
10 s to +500 ms
b
Resolution 0.1 μs
a. Delayed trigger is available with line, video, RF burst and external triggers. b. Prior to A.19.28 software, zero span trigger delay was limited to -150 ms to 500 ms.
26
PXA Signal Analyzer Frequency and Time
Description Specifications Supplemental Information
Triggers Additional information on some of the triggers and
gate sources
Video Independent of Display Scaling and Reference Level
Minimum settable level 170 dBm Useful range limited by noise
Maximum usable level
Highest allowed mixer level
a
+ 2 dB (nominal)
Detector and Sweep Type relationships
Sweep Type = Swept
Detector = Normal, Peak, Sample or Negative Peak
Triggers on the signal before detection, which is similar to the displayed signal
Detector = Average Triggers on the signal before detection, but with a
single-pole filter added to give similar smoothing to that of the average detector
Sweep Type = FFT Triggers on the signal envelope in a bandwidth
wider than the FFT width
RF Burst
Level Range
Level Accuracy
40 to 10 dBm plus attenuation (nominal)
c
b
Absolute ±2 dB + Absolute Amplitude Accuracy (nominal)
Relative ±2 dB (nominal)
Bandwidth (10 dB)
Most cases
d
>80 MHz (nominal)
Start Freq < 300 MHz, RF Burst Level Type = Absolute
Sweep Type = Swept 16 MHz (nominal)
Sweep Type = FFT
FFT Width > 25 MHz; FFT Width 8 to 25 MHz; FFT Width < 8 MHz
>80 MHz (nominal) 30 MHz (nominal) 16 MHz (nominal)
Frequency Limitations If the start or center frequency is too close to zero,
LO feedthrough can degrade or prevent triggering. How close is too close depends on the bandwidth listed above.
27
PXA Signal Analyzer Frequency and Time
Description Specifications Supplemental Information
External Triggers See “Trigger Inputs” on page 91
TV Triggers Triggers on the leading edge of the selected sync
pulse of standardized TV signals.
Amplitude Requirements –65 dBm minimum video carrier power at the input
mixer, nominal
Compatible Standards NTSC-M,
NTSC-Japan, NTSC-4.43, PAL-M, PAL-N, PAL-N Combination, PAL-B/-D/-G/-H/-I. PAL-60, SECAM-L
Field Selection Entire Frame, Field
One, Field Two
Line Selection 1 to 525, or 1 to 625,
standard dependent
a. The highest allowed mixer level depends on the IF Gain. It is nominally –10 dBm for Preamp Off and IF Gain =
Low.
b. Noise will limit trigger level range at high frequencies, such as above 15 GHz. c. With positive slope trigger. Trigger level with negative slope is nominally 1 to 4 dB lower than positive slope. d. Include RF Burst Level Type = Relative.
28
PXA Signal Analyzer Frequency and Time
Description Specifications Supplemental Information
Gated Sweep
Gate Methods Gated LO
Gated Video Gated FFT
Span Range Any span
Gate Delay Range 0 to 100.0 s
Gate Delay Settability 4 digits, 100 ns
Gate Delay Jitter 33.3 ns p-p (nominal)
Gate Length Range
(Except Method = FFT)
Gated FFT and Gated Video Frequency and Amplitude Errors
1 μs to 5.0 s Gate length for the FFT method is fixed at
1.83/RBW, with nominally 2% tolerance.
Nominally no additional error for gated measurements when the Gate Delay is greater than the MIN FAST setting
Gated LO Frequency Errors
Gate 10 μs Nominally no additional error when the Gate
Delay is greater than the MIN FAST setting
1.0 μs ≤ Gate < 10 μs Nominal error given by 100 ns × N × (Span/ST) × (SpanPosition × ST / GateLength); see footnote
Gated LO Amplitude Errors Nominally no additional error when the Gate
Delay is greater than the MIN FAST setting
Phase Noise Effects Gated LO method overrides the loop
configuration to force single loop in place of dual loop.
Gate Sources External 1
Pos or neg edge triggered
External 2 Line RF Burst Periodic
a
a. ST is sweep time; SpanPosition is the location of the on-screen signal, 0 being the left edge of the screen and 1
being the right edge. N is the harmonic mixing number.
Description Specifications Supplemental Information

Number of Frequency Sweep Points (buckets)

Factory preset 1001
Range 1 to 100,001 Zero and non-zero spans
29
PXA Signal Analyzer Frequency and Time
Description Specifications Supplemental Information

Resolution Bandwidth (RBW)

Range (3.01 dB bandwidth) Standard
With Option B85 and Option RBE
With Option B1X and Option RBE
a
a
With Option B2X or B5X and Option RBE
Power bandwidth accuracy
b
RBW Range CF Range
1 Hz to 8 MHz Bandwidths above 3 MHz are 4, 5, 6, and 8 MHz. Bandwidths 1 Hz to 3 MHz are spaced at 10% spacing using the E24 series (24 per decade): 1.0, 1.1, 1.2, 1.3, 1.5, 1.6,
1.8, 2.0, 2.2, 2.4, 2.7, 3.0, 3.3, 3.6, 3.9,
4.3, 4.7, 5.1, 5.6, 6.2, 6.8, 7.5, 8.2, 9.1 in each decade.
10, 15, 20, 25, 30, 40, 50, 60, and 70 MHz, in Spectrum Analyzer mode and zero span.
10, 15, 20, 25, 30, 40, 50, 60, 70, 80, 100, and 133 MHz, in Spectrum Analyzer m o d e a n d z e ro s p a n .
a
10, 15, 20, 25, 30, 40, 50, 60, 70, 80, 100, 133, 150, 200, and 212 MHz, in Spectrum Analyzer mode and zero span.
1 Hz to 100 kHz All ±0.5% (0.022 dB)
110 kHz to 1.0 MHz < 3.6 GHz ±1.0% (0.044 dB)
1.1 to 2.0 MHz < 3.6 GHz ±0.07 dB (nominal)
2.2 to 3 MHz < 3.6 GHz 0 to0.2 dB (nominal)
4 to 8 MHz < 3.6 GHz 0 to0.4 dB (nominal)
Noise BW to RBW ratio
Accuracy (3.01 dB bandwidth)
c
d
1.056 ±2% (nominal)
1 Hz to 1.3 MHz RBW ±2% (nominal)
1.5 MHz to 3 MHz RBW
CF 3.6 GHz CF > 3.6 GHz
±7% (nominal) ±8% (nominal)
4 MHz to 8 MHz RBW
CF 3.6 GHz CF > 3.6 GHz
±15% (nominal) ±20% (nominal)
Selectivity (60 dB/3 dB) 4.1:1 (nominal)
30
PXA Signal Analyzer Frequency and Time
a. Option RBE enables wider bandwidth filters in zero span in the Signal Analyzer mode. Available detectors are
Peak+ and Average. VBW filtering is disabled. Minimum sweep time is the greater of 200 μS or 200ns/pt. The fil­ter shape is approximately square. Support for Average detector was first added in SW Version A.23.05.
b. The noise marker, band power marker, channel power and ACP all compute their results using the power band-
width of the RBW used for the measurement. Power bandwidth accuracy is the power uncertainty in the results of these measurements due only to bandwidth-related errors. (The analyzer knows this power bandwidth for each RBW with greater accuracy than the RBW width itself, and can therefore achieve lower errors.) The war­ranted specifications shown apply to the Gaussian RBW filters used in swept and zero span analysis. There are four different kinds of filters used in the spectrum analyzer: Swept Gaussian, Swept Flattop, FFT Gaussian and FFT Flattop. While the warranted performance only applies to the swept Gaussian filters, because only they are kept under statistical process control, the other filters nominally have the same performance.
c. The ratio of the noise bandwidth (also known as the power bandwidth) to the RBW has the nominal value and tol-
erance shown. The RBW can also be annotated by its noise bandwidth instead of this 3 dB bandwidth. The accu­racy of this annotated value is similar to that shown in the power bandwidth accuracy specification.
d. Resolution Bandwidth Accuracy can be observed at slower sweep times than auto-coupled conditions. Normal
sweep rates cause the shape of the RBW filter displayed on the analyzer screen to widen by nominally 6%. This widening declines to 0.6% nominal when the Swp Time Rules key is set to Accuracy instead of Normal. The true bandwidth, which determines the response to impulsive signals and noise-like signals, is not affected by the sweep rate.
Description Specification Supplemental information

Analysis Bandwidth

a
Standard 25 MHz
With Option B40 40 MHz
With Option B85 85 MHz
With Option B1X 160 MHz
With Option B2X 255 MHz
With Option B5X 510 MHz
a. Analysis bandwidth is the instantaneous bandwidth available about a center frequency over which the input sig-
nal can be digitized for further analysis or processing in the time, frequency, or modulation domain.
31
PXA Signal Analyzer Frequency and Time
Description Specifications Supplemental Information

Preselector Bandwidth Relevant to many options, such as B1X Wide IF Bandwidth, in

Bands 1 and higher. Nominal.
Mean Bandwidth at CF
a
Freq option 526 Freq option > 526
5 GHz 58 MHz 46 MHz
10 GHz 57 MHz 52 MHz
15 GHz 59 MHz 53 MHz
20 GHz 64 MHz 55 MHz
25 GHz 74 MHz 56 MHz
35 GHz 62 MHz
44 GHz 70 MHz
Standard Deviation 9% 7%
–3 dB Bandwidth –7.5% relative to –4 dB bandwidth, nominal
a. The preselector can have a significant passband ripple. To avoid ambiguous results, the –4 dB bandwidth is
characterized.
Description Specifications Supplemental Information

Video Bandwidth (VBW)

Range Same as Resolution Bandwidth range
plus wide-open VBW (labeled 50 MHz)
Accuracy ±6% (nominal)
in swept mode and zero span
a. For FFT processing, the selected VBW is used to determine a number of averages for FFT results. That number is
chosen to give roughly equivalent display smoothing to VBW filtering in a swept measurement. For example, if VBW = 0.1 × RBW, four FFTs are averaged to generate one result.
a
32
PXA Signal Analyzer Amplitude Accuracy and Range

Amplitude Accuracy and Range

Description Specifications Supplemental Information

Measurement Range

Preamp Off Displayed Average Noise Level to +30 dBm
Preamp On
RF (Option 503) Displayed Average Noise Level to +30 dBm
μW (Options 508, 513, 526) Displayed Average Noise Level to +24 dBm
mmW (Options 544, 550) Displayed Average Noise Level to +20 dBm
Input Attenuation Range 0 to 70 dB, in 2 dB steps
Description Specifications Supplemental Information
Maximum Safe Input Level Applies with or without preamp
(Options P03, P08, P13, P26, P44, P50)
Average Total Power +30 dBm (1 W)
Peak Pulse Power
(≤10 μs pulse width,1% duty cycle,
input attenuation 30 dB)
DC voltage
DC Coupled ±0.2 Vdc
AC Coupled ±100 Vdc
Description Specifications Supplemental Information

Display Range

Log Scale Ten divisions displayed;
Linear Scale Ten divisions
+50 dBm (100 W)
0.1 to 1.0 dB/division in 0.1 dB steps, and 1 to 20 dB/division in 1 dB steps
33
PXA Signal Analyzer Amplitude Accuracy and Range
Description Specifications Supplemental Information

Marker Readout

Resolution
Log (decibel) units
Trace Averaging Off, on-screen 0.01 dB
Trace Averaging On or remote 0.001 dB
Linear units resolution ≤1% of signal level (nominal)
34
PXA Signal Analyzer Amplitude Accuracy and Range

Frequency Response

Description Specifications Supplemental Information
Frequency Response Refer to the footnote for
(Maximum error relative to reference condition (50 MHz)
Mechanical attenuator only Swept operation
c
b
Attenuation 10 dB)
Option 544, or 550 (mmW)
Option 503, 508, 513, or 526 (RF/μW)
20 to 30°CFull range 95th Percentile (≈2σ)
Band Overlaps on page 21
Freq Option 526 only: Modes above 18 GHz
.
a
3 Hz to 10 MHz x
d
10 to 20 MHz
10 to 20 MHz
20 to 50 MHz
d
20 to 50 MHz
x ±0.46 dB ±0.54 dB
x ±0.35 dB ±0.44 dB
x ±0.46 dB ±0.54 dB
x ±0.35 dB ±0.44 dB ±0.16 dB
x ±0.35 dB ±0.44 dB ±0.19 dB
50 MHz to 3.6 GHz x ±0.35 dB ±0.44 dB ±0.16 dB
50 MHz to 3.6 GHz
3.6 to 3.7 GHz (Band 0) x
3.5 to 5.2 GHz
3.5 to 5.2 GHz
5.2 to 8.4 GHz
5.2 to 8.4 GHz
8.3 to 13.6 GHz
8.3 to 13.6 GHz
fg
fg
fg
fg
fg
fg
x ±0.35 dB ±0.47 dB ±0.15 dB
See note
x ±1.5 dB ±2.5 dB ±0.54 dB
x ±1.7 dB ±3.5 dB ±0.70 dB
x ±1.5 dB ±2.5 dB ±0.54 dB
x ±1.5 dB ±2.5 dB ±0.57 dB
x ±2.0 dB ±2.7 dB ±0.56 dB
x ±2.0 dB ±2.5 dB ±0.54 dB
e
13.5 to 16 GHz (with Option EP0)
16 to 17 GHz (with Option EP0)
fg
fg
13.5 to 17.1 GHz (without Option EP0)
x
x
fg
x ±2.0 dB ±2.7 dB
±2.0 dB ±2.7 dB ±0.55 dB
±2.0 dB ±3.0 dB ±0.81 dB
35
±0.62 dB
PXA Signal Analyzer Amplitude Accuracy and Range
Description Specifications Supplemental Information
13.5 to 17.1 GHz
fg
x ±2.0 dB ±2.7 dB ±0.64 dB
Frequency Response (cont.)
17.0 to 22 GHz
17.0 to 22 GHz
22.0 to 26.5 GHz
22.0 to 26.5 GHz
26.4 to 34.5 GHz
34.4 to 50 GHz
fg
fg
fg
fg
fg
fg
x ±2.0 dB ±2.7 dB ±0.65 dB
x ±2.0 dB ±2.8 dB ±0.72 dB
x ±2.5 dB ±3.7 dB ±0.82 dB
x ±2.5 dB ±3.5 dB ±0.71 dB
x ±2.5 dB ±3.5 dB ±1.00 dB
x ±3.2 dB ±4.9 dB ±1.37 dB
a. Signal frequencies above 18 GHz are prone to additional response errors due to modes in the Type-N connector
used. Only analyzers with frequency Option 526 that do not also have input connector Option C35 will have these modes.With the use of Type-N to APC 3.5 mm adapter part number 1250-1744, there are nominally six such
modes. The effect of these modes with this connector are included within these specifications. b. See the Electronic Attenuator (Option EA3) chapter for Frequency Response using the electronic attenuator. c. For Sweep Type = FFT, add the RF flatness errors of this table to the IF Frequency Response errors. An additional
error source, the error in switching between swept and FFT sweep types, is nominally ±0.01 dB and is included
within the “Absolute Amplitude Error” specifications. d. Specifications apply with DC coupling at all frequencies. With AC coupling, specifications apply at frequencies of
50 MHz and higher. Statistical observations at 10 MHz and lower show that most instruments meet the specifica-
tion, but a few percent of instruments can be expected to have errors that, while within the specified limits, are
closer to those limits than the measurement uncertainty guardband, and thus are not warranted. The AC coupling
effect at 20 to 50 MHz is negligible, but not warranted. e. Band 0 is extendable (set “Extend Low Band” to On) to 3.7 GHz instead of 3.6 GHz in instruments with frequency
option 508, 513 or 526. Subject to these conditions, statistical observations show that performance nominally fits
within the same range within the 3.6 to 3.7 GHz frequencies as within the next lower specified frequency range, but
is not warranted. f. Specifications for frequencies >3.5 GHz apply for sweep rates 100 MHz/ms. g. Preselector centering applied.
36
PXA Signal Analyzer Amplitude Accuracy and Range
Nominal Frequency Response Band 0 without Option EP0 [Plot]
Nominal Frequency Response Band 0 with Option EP0 [Plot]
37
PXA Signal Analyzer Amplitude Accuracy and Range
Description Specifications Supplemental Information
IF Frequency Response
a
Freq Option 526 only: Modes above 18 GHz
b
(Demodulation and FFT response relative to the center frequency)
Center Freq (GHz)
(MHz)
Preselector
Max Errord
Midwidth Error
(95th Percentile)
Slope (dB/MHz) (95th Percentile)
RMSe
(nominal)
c
Span
< 3.6 10 ±0.20 dB ±0.12 dB ±0.10 0.02 dB
3.6, 26.5 10 On 0.23 dB
f
3.6, 26.5 10
Off
±0.25 dB ±0.12 dB ±0.10 0.02 dB
26.5, 50 10 On 0.12 dB
f
> 26.5, 50 10
Off
±0.30 dB ±0.12 dB ±0.10 0.024 dB
a. The IF frequency response includes effects due to RF circuits such as input filters, that are a function of RF fre-
quency, in addition to the IF passband effects.
b. Signal frequencies above 18 GHz are prone to additional response errors due to modes in the Type-N connector
used. Only analyzers with frequency Option 526 that do not also have input connector Option C35 will have these modes.With the use of Type-N to APC 3.5 mm adapter part number 1250-1744, there are nominally six such modes. These modes cause nominally up to 0.35 dB amplitude change, with phase errors of nominally up to ±1.2°.
c. This column applies to the instantaneous analysis bandwidth in use. In the Spectrum Analyzer Mode, this would
be the FFT width.
d. The maximum error at an offset (f) from the center of the FFT width is given by the expression
± [Midwidth Error + (f × Slope)], but never exceeds ±Max Error. Here the Midwidth Error is the error at the center frequency for a given FFT span. Usually, the span is no larger than the FFT width in which case the center of the FFT width is the center frequency of the analyzer. When using the Spectrum Analyzer mode with an analyzer span is wider than the FFT width, the span is made up of multiple concatenated FFT results, and thus has multiple cen­ters of FFT widths; in this case the f in the equation is the offset from the nearest center. Performance is nominally three times better at most center frequencies.
e. The “rms” nominal performance is the standard deviation of the response relative to the center frequency, inte-
grated across the span. This performance measure was observed at a center frequency in each harmonic mixing band, which is representative of all center frequencies; it is not the worst case frequency.
f. Option MPB is installed and enabled.
38
PXA Signal Analyzer Amplitude Accuracy and Range
Description Specifications Supplemental Information
IF Phase Linearity Deviation from mean phase linearity
Freq Option 526 only: Modes above 18 GHz
Without Option EP0 With Option EP0
a
Center Freq (GHz)
Span (MHz)
Preselector Peak-to-
peak
(nominal)
RMS (nominal)
b
Peak-to
-peak
(nominal)
RMS (nominal)
0.02, < 3.6 10 n/a 0.06° 0.012° 0.17° 0.037°
3.6 10
Off
0.10° 0.022° 0.31° 0.067°
c
3.6 10 On 0.11° 0.024° 0.83° 0.170°
a. Signal frequencies above 18 GHz are prone to additional response errors due to modes in the Type-N connector
used. Only analyzers with frequency Option 526 that do not also have input connector Option C35 will have these modes.With the use of Type-N to APC 3.5 mm adapter part number 1250-1744, there are nominally six such modes. These modes cause nominally up to 0.35 dB amplitude change, with phase errors of nominally up to ±1.2°.
b. The listed performance is the standard deviation of the phase deviation relative to the mean phase deviation from
a linear phase condition, where the rms is computed across the span shown and over the range of center fre­quencies shown.
c. Option MPB is installed and enabled.
b
39
PXA Signal Analyzer Amplitude Accuracy and Range
Description Specifications Supplemental Information
Absolute Amplitude Accuracy
At 50 MHz
20 to 30°C Full temperature range
At all frequencies
20 to 30°C Full temperature range
95th Percentile Absolute Amplitude Accuracy
a
±0.24 dB
±0.13 dB
(95th percentile)
±0.28 dB
a
±(0.24 dB + frequency response) ±(0.28 dB + frequency response)
±0.19 dB
b
(Wide range of signal levels, RBWs, RLs, etc.,
0.01 to 3.6 GHz, Atten = 10 dB)
Amplitude Reference Accuracy ±0.05 dB (nominal)
Preamp On
c
±(0.36 dB + frequency response)
(P03, P08, P13, P26, P44, P50)
a. Absolute amplitude accuracy is the total of all amplitude measurement errors, and applies over the following
subset of settings and conditions: 1 Hz ≤ RBW ≤ 1MHz; Input signal 10 to 50 dBm (details below); Input attenuation 10 dB; span < 5 MHz (nominal additional error for span 5 MHz is 0.02 dB); all settings auto-cou­pled except Swp Time Rules = Accuracy; combinations of low signal level and wide RBW use VBW 30 kHz to reduce noise. When using FFT sweeps, the signal must be at the center frequency. This absolute amplitude accuracy specification includes the sum of the following individual specifications under the conditions listed above: Scale Fidelity, Reference Level Accuracy, Display Scale Switching Uncertainty, Res­olution Bandwidth Switching Uncertainty, 50 MHz Amplitude Reference Accuracy, and the accuracy with which the instrument aligns its internal gains to the 50 MHz Amplitude Reference. The only difference between signals within the range above –50 dBm and those signals below that level is the scale fidelity. Our specifications and experience show no difference between signals above and below this level. The only reason our Absolute Amplitude Uncertainty specification does not go below this level is that noise detracts from our ability to verify the performance at all levels with acceptable test times and yields. So the per­formance is not warranted at lower levels, but we fully expect it to be the same.
40
PXA Signal Analyzer Amplitude Accuracy and Range
b. Absolute Amplitude Accuracy for a wide range of signal and measurement settings, covers the 95th percentile
proportion with 95% confidence. Here are the details of what is covered and how the computation is made: The wide range of conditions of RBW, signal level, VBW, reference level and display scale are discussed in foot­note a. There are 44 quasi-random combinations used, tested at a 50 MHz signal frequency. We compute the 95th percentile proportion with 95% confidence for this set observed over a statistically significant number of instruments. Also, the frequency response relative to the 50 MHz response is characterized by varying the signal across a large number of quasi-random verification frequencies that are chosen to not correspond with the fre­quency response adjustment frequencies. We again compute the 95th percentile proportion with 95% confi­dence for this set observed over a statistically significant number of instruments. We also compute the 95th percentile accuracy of tracing the calibration of the 50 MHz absolute amplitude accuracy to a national stan­dards organization. We also compute the 95th percentile accuracy of tracing the calibration of the relative fre­quency response to a national standards organization. We take the root-sum-square of these four independent Gaussian parameters. To that rss we add the environmental effects of temperature variations across the 20 to 30°C range. These computations and measurements are made with the mechanical attenuator only in circuit, set to the reference state of 10 dB. A similar process is used for computing the result when using the electronic attenuator under a wide range of settings: all even settings from 4 through 24 dB inclusive, with the mechanical attenuator set to 10 dB. The 95th percentile result was 0.21 dB.
c. Same settings as footnote a, except that the signal level at the preamp input is 40 to 80 dBm. Total power at
preamp (dBm) = total power at input (dBm) minus input attenuation (dB). This specification applies for signal frequencies above 100 kHz.
Description Specifications Supplemental Information
Input Attenuation Switching Uncertainty Refer to the footnote for
Band Overlaps on page 21
(Relative to 10 dB (reference setting)
50 MHz (reference frequency), preamp off
Attenuation 12 to 40 dB ±0.14 dB ±0.04 dB (typical)
Attenuation 2 to 8 dB, or > 40 dB ±0.18 dB ±0.06 dB (typical)
Attenuation 0 dB ±0.05 dB (nominal)
Attenuation > 2 dB, preamp off
3 Hz to 3.6 GHz ±0.3 dB (nominal)
3.5 to 8.4 GHz ±0.5 dB (nominal)
8.3 to 13.6 GHz ±0.7 dB (nominal)
13.5 to 26.5 GHz ±0.7 dB (nominal)
26.5 to 50.0 GHz ±1.0 dB (nominal)
41
PXA Signal Analyzer Amplitude Accuracy and Range
Description Specifications Supplemental Information
RF Input VSWR
(at tuned frequency, DC coupled)
mmW (Option 544, or 550)
RF/μW (Option 503, 508, 513, or 526)
10 dB atten, 50 MHz (ref condition) x 1.07:1 (nominal)
10 dB atten, 50 MHz (ref condition)
0 dB atten, 0.01 to 3.6 GHz x
x 1.09:1 (nominal)
x < 2.2:1 (nominal)
95th Percentile
Band 0 (0.01 to 3.6 GHz, 10 dB atten) x 1.139
Band 0 (0.01 to 3.6 GHz, 10 dB atten)
x 1.134
Band 1 (3.5 to 8.4 GHz, 10 dB atten) x 1.290
Band 1 (3.5 to 8.4 GHz, 10 dB atten)
x 1.152
Band 2 (8.3 to 13.6 GHz, 10 dB atten) x 1.388
Band 2 (8.3 to 13.6 GHz, 10 dB atten)
x 1.178
Band 3 (13.5 to 17.1 GHz, 10 dB atten) x 1.41
Band 3 (13.5 to 17.1 GHz, 10 dB atten)
x 1.212
Band 4 (17.0 to 26.5 GHz, 10 dB atten) x 1.48
Band 4 (17.0 to 26.5 GHz, 10 dB atten)
Band 5 (26.4 to 34.5 GHz, 10 dB atten)
Band 6 (34.4 to 50 GHz, 10 dB atten)
x 1.331
x 1.373
x 1.389
a
Nominal VSWR vs. Freq, 10 dB See plots following
Atten > 10 dB Similar to atten = 10 dB
RF Calibrator (e.g. 50 MHz) is On Open input
Alignments running Open input for some, unless "All but
RF" is selected
Preselector centering Open input
42
PXA Signal Analyzer Amplitude Accuracy and Range
a. X-Series analyzers have a reflection coefficient that is excellently modeled with a Rayleigh probability distribu-
tion. Keysight recommends using the methods outlined in Application Note 1449-3 and companion Average Power Sensor Measurement Uncertainty Calculator to compute mismatch uncertainty. Use this 95th percentile VSWR information and the Rayleigh model (Case C or E in the application note) with that process.
Nominal VSWR Low Band [Plot]
43
PXA Signal Analyzer Amplitude Accuracy and Range
Nominal VSWR, above 3.5 GHz [Plot]
44
PXA Signal Analyzer Amplitude Accuracy and Range
Description Specifications Supplemental Information
Resolution Bandwidth Switching Uncertainty Relative to reference BW of 30 kHz,
1.0 Hz to 1.5 MHz RBW ±0.03 dB
verified in low band
a
1.6 MHz to 2.7 MHz RBW ±0.05 dB
3.0 MHz RBW ±0.10 dB
Manually selected wide RBWs: 4, 5, 6, 8 MHz ±0.30 dB
a. RBW switching uncertainty is verified at 50 MHz. It is consistent for all measurements made without the prese-
lector, thus in Band 0 and also in higher bands with the Preselector Bypass option. In preselected bands, the slope of the preselector passband can interact with the RBW shape to make an apparent additional RBW switching uncertainty of nominally ±0.05 dB/MHz times the RBW.
Description Specifications Supplemental Information
Reference Level
Range
Log Units 170 to +30 dBm, in 0.01 dB steps
Linear Units 707 pV to 7.07 V, with 0.01 dB resolution (0.11%)
Accuracy
0 dB
a
a. Because reference level affects only the display, not the measurement, it causes no additional error in measure-
ment results from trace data or markers.
Description Specifications Supplemental Information
Display Scale Switching Uncertainty
Switching between Linear and Log
Log Scale Switching
0 dB
0 dB
a
a
a. Because Log/Lin and Log Scale Switching affect only the display, not the measurement, they cause no addi-
tional error in measurement results from trace data or markers.
45
PXA Signal Analyzer
3
σ
320dB()110
SN 3dB+()20dB()
+log=
Amplitude Accuracy and Range
Description Specifications Supplemental Information
Display Scale Fidelity
ab
Absolute Log-Linear Fidelity
(Relative to the reference condition: 25 dBm input through 10 dB attenuation, thus
35 dBm at the input mixer)
Input mixer level
c
Linearity
Typical
18 dBm ML 10 dBm ±0.10 dB ±0.04 dB
ML < −18 dBm ±0.07 dB ±0.02 dB
Relative Fidelity
d
Applies for mixer levelc range from 10 to
80 dBm, mechanical attenuator only, preamp off, and dither on.
Sum of the following terms: Nominal
high level term
instability term
slope term
prefilter term
Up to ±0.015 dB
0.0019 dBrms
From equation
Up to ±0.005 dB
e
f
g
h
a. Supplemental information: The amplitude detection linearity specification applies at all levels below 10 dBm at
the input mixer; however, noise will reduce the accuracy of low level measurements. The amplitude error due to noise is determined by the signal-to-noise ratio, S/N. If the S/N is large (20 dB or better), the amplitude error due to noise can be estimated from the equation below, given for the 3-sigma (three standard deviations) level.
The errors due to S/N ratio can be further reduced by averaging results. For large S/N (20 dB or better), the 3-sigma level can be reduced proportional to the square root of the number of averages taken.
b. The scale fidelity is warranted with ADC dither set to Medium. Dither increases the noise level by nominally only
0.28 dB for the most sensitive case (preamp Off, best DANL frequencies). With dither Off, scale fidelity for low level signals, around 60 dBm or lower, will nominally degrade by 0.2 dB. Dither High will give exceptional lin­ear relative scale fidelity, but increase DANL by 0.63 dB instead of 0.28 dB.
c. Mixer level = Input Level Input Attenuation
d. The relative fidelity is the error in the measured difference between two signal levels. It is so small in many cases
that it cannot be verified without being dominated by measurement uncertainty of the verification. Because of this verification difficulty, this specification gives nominal performance, based on numbers that are as conserva­tively determined as those used in warranted specifications. We will consider one example of the use of the error equation to compute the nominal performance. Example: the accuracy of the relative level of a sideband around 60 dBm, with a carrier at 5dBm, using atten­uation = 10 dB, RBW = 3 kHz, evaluated with swept analysis. The high level term is evaluated with P1 =
15 dBm and P2 = 70 dBm at the mixer. This gives a maximum error within ±0.008 dB. The instability term is ±0.0019 dB if the measurement is completed within a minute. The slope term evaluates to ±0.022 dB. The pre- filter term applies and evaluates to the limit of ±0.005 dB. The sum of all these terms is ±0.037 dB.
46
PXA Signal Analyzer Amplitude Accuracy and Range
e. Errors at high mixer levels will nominally be well within the range of ±0.015 dB × {exp[(P1 Pref)/(8.69 dB)]
x
exp[(P2 Pref)/(8.69 dB)]} (exp is the natural exponent function, e
). In this expression, P1 and P2 are the pow-
ers of the two signals, in decibel units, whose relative power is being measured. Pref is 10 dBm (10 dBm is the highest power for which linearity is specified). All these levels are referred to the mixer level.
f. The stability of the analyzer gain can be an error term of importance when no settings have changed. These have
been studied carefully in the PXA. One source of instability is the variation in analyzer response with time when fully warmed up in a stable lab environment. This has been observed to be well modeled as a random walk pro­cess, where the difference in two measurements spaced by time t is given by a × sqrt(t), where a is
0.0019 dBrms per root minute. The other source of instability is updated alignments from running full or partial alignments in the background or invoking an alignment. Invoked alignments (Align Now, All) have a standard deviation of 0.0018 dB, and performing these will restart the random walk behavior. Partial alignments (Auto Align set to "Partial") have a standard deviation that is, coincidentally, also 0.0018 dBrms, and only occurs once every ten minutes. The standard deviation from full background alignment (Auto Align set to "Normal") is 0.015 dBrms; with these alignments on, there is no additional random walk behavior. (Keysight recommends setting alignments (Auto Align) to Normal in order to make the best measurements over long periods of time or in envi­ronments without very high temperature stability. For short term measurements in highly stable environments, setting alignments to Partial can give the best stability. Setting Alignments to Off is not recommended where stability matters.)
g. Slope error will nominally be well within the range of ±0.0004 × (P1 P2). P1 and P2 are defined in footnote e.
h. A small additional error is possible. In FFT sweeps, this error is possible for spans under 4.01 kHz. For non-FFT
measurements, it is possible for RBWs of 3.9 kHz or less. The error is well within the range of ±0.0021 × (P1 ­P2) subject to a maximum of ±0.005 dB. (The maximum dominates for all but very small differences.) P1 and P2 are defined in footnote e.
Description Specifications Supplemental Information
Available Detectors Normal, Peak, Sample, Negative Peak,
Average
Average detector works on RMS, Voltage and Logarithmic scales
47
PXA Signal Analyzer Dynamic Range

Dynamic Range

Gain Compression

Description Specifications Supplemental Information
1 dB Gain Compression Point (Two-tone)
abc
Maximum power at mixer
d
20 to 30°C Full range
20 to 40 MHz 3 dBm 4 dBm 0 dBm (typical)
40 to 200 MHz +1 dBm 1 dBm +3 dBm (typical)
200 MHz to 3.6 GHz +3 dBm +2 dBm +5 dBm (typical)
3.6 to 16 GHz +1 dBm 0 dBm +4 dBm (typical)
16 to 26.5 GHz 1 dBm 3 dBm +2 dBm (typical)
26.5 to 50 GHz 0 dBm (nominal)
Clipping (ADC Over-range)
Any signal offset 10 dBm
Signal offset > 5 times IF prefilter bandwidth and IF
Low frequency exceptions
+12 dBm (nominal)
Gain set to Low
IF Prefilter Bandwidth
e
Zero Span or
f
Swept
, RBW =
Sweep Type = FFT,
FFT Width =
–3 dB Bandwidth
(nominal)
3.9 kHz < 4.01 kHz 8.9 kHz
4.3 to 27 kHz < 28.81 kHz 79 kHz
30 to 160 kHz < 167.4 kHz 303 kHz
180 to 390 kHz < 411.9 kHz 966 kHz
430 kHz to 8 MHz < 7.99 MHz 10.9 MHz
a. Large signals, even at frequencies not shown on the screen, can cause the analyzer to incorrectly measure
on-screen signals because of two-tone gain compression. This specification tells how large an interfering signal must be in order to cause a 1 dB change in an on-screen signal.
b. Specified at 1 kHz RBW with 100 kHz tone spacing. The compression point will nominally equal the specification
for tone spacing greater than 5 times the prefilter bandwidth. At smaller spacings, ADC clipping may occur at a level lower than the 1 dB compression point.
48
PXA Signal Analyzer Dynamic Range
c. Reference level and off-screen performance: The reference level (RL) behavior differs from some earlier analyz-
ers in a way that makes this analyzer more flexible. In other analyzers, the RL controlled how the measurement was performed as well as how it was displayed. Because the logarithmic amplifier in these analyzers had both range and resolution limitations, this behavior was necessary for optimum measurement accuracy. The logarith­mic amplifier in this signal analyzer, however, is implemented digitally such that the range and resolution greatly exceed other instrument limitations. Because of this, the analyzer can make measurements largely independent of the setting of the RL without compromising accuracy. Because the RL becomes a display function, not a mea­surement function, a marker can read out results that are off-screen, either above or below, without any change in accuracy. The only exception to the independence of RL and the way in which the measurement is performed is in the input attenuation setting: When the input attenuation is set to auto, the rules for the determination of the input attenuation include dependence on the reference level. Because the input attenuation setting controls the tradeoff between large signal behaviors (third-order intermodulation, compression, and display scale fidel­ity) and small signal effects (noise), the measurement results can change with RL changes when the input atten­uation is set to auto.
d. Mixer power level (dBm) = input power (dBm) input attenuation (dB).
e. The ADC clipping level declines at low frequencies (below 50 MHz) when the LO feedthrough (the signal that
appears at 0 Hz) is within 5 times the prefilter bandwidth (see table) and must be handled by the ADC. For example, with a 300 kHz RBW and prefilter bandwidth at 966 kHz, the clipping level reduces for signal frequen­cies below 4.83 MHz. For signal frequencies below 2.5 times the prefilter bandwidth, there will be additional reduction due to the presence of the image signal (the signal that appears at the negative of the input signal fre­quency) at the ADC.
f. This table applies without Option FS1 or FS2, fast sweep. With Option FS1or FS2, this table applies for
sweep rates that are manually chosen to be the same as or slower than "traditional" sweep rates, instead of the much faster sweep rates, such as autocoupled sweep rates, available with FS1 or FS2. Sweep rate is defined to be span divided by sweep time. If the sweep rate is 1.1 times RBW-squared, the table applies. Otherwise, compute an "effective RBW" = Span / (SweepTime × RBW). To determine the IF Prefilter Bandwidth, look up this effective RBW in the table instead of the actual RBW. For example, for RBW = 3 kHz, Span = 300 kHz, and Sweep time = 42 ms, we compute that Sweep Rate = 7.1 MHz/s, while RBW-squared is 9 MHz/s. So the Sweep Rate is < 1.1 times RBW-squared and the table applies; row 1 shows the IF Prefilter Bandwidth is nominally 8.9 kHz. If the sweep time is 1 ms, then the effective RBW computes to 100 kHz. This would result in an IF Prefilter Bandwidth from the third row, nominally 303 kHz.
49
PXA Signal Analyzer Dynamic Range

Displayed Average Noise Level

Description Specifications Supplemental
Information
DANL without Noise Floor Extension and without
Option EP0
a
Input terminated Sample or Average detector Averaging type = Log 0 dB input attenuation
Refer to the footnote for
Band Overlaps on page 21.
IF Gain = High 1 Hz Resolution Bandwidth
mmW with no signal path options
mmW with one or more signal path options
b
c
RF/μW without Option EP0
20 to 30°C Full range Typical
3 to 10 Hz
10 to 100 Hz
100 Hz to 1 kHz
1 to 9 kHz x
9 to 100 kHz x
100 kHz to 1 MHz x
1 to 10 MHz
d
10 MHz to 1.2 GHz x
x x x –100 dBm (nominal)
x x x –125 dBm (nominal)
x x x –130 dBm (nominal)
x x –145 dBm (nominal)
x x 146 dBm 146 dBm 151 dBm
x x 150 dBm 150 dBm 156 dBm
x x x 155 dBm 152 dBm 158 dBm
x x 154 dBm 152 dBm 155 dBm
1.2 to 2.1 GHz x
2.1 to 3 GHz x
3.0 to 3.6 GHz x
3.5 to 4.2 GHz
3.5 to 4.2 GHz
3.5 to 4.2 GHz
4.2 to 8.4 GHz
4.2 to 6.6 GHz
4.2 to 6.6 GHz
6.6 to 8.4 GHz
6.6 to 8.4 GHz
8.3 to 13.6 GHz
x x 153 dBm 152 dBm 155 dBm
x x 151 dBm 150 dBm 153 dBm
x x 151 dBm 149 dBm 153 dBm
x 147 dBm 146 dBm 150 dBm
x 143 dBm 141 dBm 147 dBm
x –145 dBm –143 dBm –148 dBm
x 150 dBm 148 dBm 152 dBm
x 144 dBm 142 dBm 148 dBm
x –146 dBm –144 dBm –149 dBm
x 147 dBm 145 dBm 149 dBm
x –149 dBm –147 dBm –151 dBm
x 149 dBm 147 dBm 151 dBm
8.3 to 13.6 GHz x 147 dBm 145 dBm 149 dBm
50
PXA Signal Analyzer Dynamic Range
Description Specifications Supplemental
Information
8.3 to 13.6 GHz
13.5 to 16.9 GHz
13.5 to 14 GHz
13.5 to 14 GHz
14 to 17 GHz
14 to 17 GHz
16.9 to 20 GHz
17.0 to 22.5 GHz
17.0 to 22.5 GHz
20.0 to 26.5 GHz
22.5 to 26.5 GHz
22.5 to 26.5 GHz
26.4 to 30 GHz
26.4 to 30 GHz
30 to 34 GHz
x 149 dBm 147 dBm 151 dBm
x 145 dBm 143 dBm 147 dBm
x 143 dBm 141 dBm 146 dBm
x 145 dBm 143 dBm 148 dBm
x 145 dBm 143 dBm 148 dBm
x 147 dBm 145 dBm 150 dBm
x -143 dBm -140 dBm -145 dBm
x 141 dBm 139 dBm 146 dBm
x 145 dBm 143 dBm 148 dBm
x 137 dBm 135 dBm 140 dBm
x 139 dBm 137 dBm 143 dBm
x 142 dBm 140 dBm 145 dBm
x 138 dBm 136 dBm 142 dBm
x 141 dBm 139 dBm 145 dBm
x 138 dBm 135 dBm 142 dBm
30 to 34 GHz
33.9 to 37 GHz
33.9 to 37 GHz
37 to 40 GHz
37 to 40 GHz
40 to 49 GHz
40 to 46 GHz
46 to 49 GHz
49 to 50 GHz
49 to 50 GHz
Additional DANL, IF Gain = Low
e
x x x –164.5 dBm (nominal)
x 141 dBm 138 dBm 144 dBm
x 134 dBm 131 dBm 139 dBm
x 137 dBm 133 dBm 142 dBm
x 132 dBm 129 dBm 138 dBm
x 136 dBm 133 dBm 141 dBm
x 130 dBm 126 dBm 135 dBm
x 136 dBm 132 dBm 140 dBm
x 133 dBm 129 dBm 138 dBm
x 128 dBm 124 dBm 133 dBm
x 133 dBm 129 dBm 137 dBm
a. DANL for zero span and swept is measured in a 1 kHz RBW and normalized to the narrowest available RBW,
because the noise figure does not depend on RBW and 1 kHz measurements are faster.
b. Specifications marked with an x in this column apply to analyzers with mmW frequency options (Option 544 or
550) and none of the following options that affect the signal path: MPB, LNP, B85, B1X, B2X, or B5X.
c. Specifications marked with an x in this column apply to analyzers with mmW frequency options (Option 544 or
550) and one or more of the following options that affect the signal path: MPB, LNP, B85, B1X.
51
PXA Signal Analyzer Dynamic Range
d. DANL below 10 MHz is affected by phase noise around the LO feedthrough signal. Specifications apply with the
best setting of the Phase Noise Optimization control, which is to choose the “Best Close-in φ Noise" for frequen­cies below about 150 kHz, and “Best Wide Offset φ Noise" for frequencies above about 150 kHz.
e. Setting the IF Gain to Low is often desirable in order to allow higher power into the mixer without overload, better
compression and better third-order intermodulation. When the Swept IF Gain is set to Low, either by auto cou­pling or manual coupling, there is noise added above that specified in this table for the IF Gain = High case. That excess noise appears as an additional noise at the input mixer. This level has sub-decibel dependence on center frequency. To find the total displayed average noise at the mixer for Swept IF Gain = Low, sum the powers of the DANL for IF Gain = High with this additional DANL. To do that summation, compute DANLtotal = 10 × log (10(DANLhigh/10) + 10(AdditionalDANL / 10)). In FFT sweeps, the same behavior occurs, except that FFT IF Gain can be set to autorange, where it varies with the input signal level, in addition to forced High and Low settings.
52
PXA Signal Analyzer Dynamic Range
Description Specifications Supplemental Information
DANL without Noise Floor Extension, with
Option EP0
a
Input terminated Sample or Average detector Averaging type = Log
Refer to the footnote for
Band Overlaps on page 21.
0 dB input attenuation IF Gain = High
1 Hz Resolution Bandwidth
mmW with Option EP0
RF/μW with Option EP0
20 to 30°CFull range Typical
3 to 10 Hz
10 to 100 Hz
100 Hz to 1 kHz
x –100 dBm (nominal)
x –125 dBm (nominal)
x –130 dBm (nominal)
1 to 9 kHz x –137dBm (nominal)
3 to 10 Hz
10 to 100 Hz
100 Hz to 1 kHz
x –95 dBm (nominal)
x –114 dBm (nominal)
x –128 dBm (nominal)
1 to 9 kHz
9 to 100 kHz
100 kHz to 1 MHz
1 to 10 MHz
b
x –136 dBm (nominal)
x 143 dBm 143 dBm 144 dBm
x 150 dBm 150 dBm 153 dBm
x
155 dBm 152 dBm 156 dBm
10 MHz to 1.2 GHz x 154 dBm 152 dBm 155 dBm
1.2 to 2.1 GHz
2.1 to 3 GHz
3.0 to 3.6 GHz
9 to 100 kHz
100 kHz to 1 MHz
1 to 10 MHz
c
10 MHz to 1.2 GHz
1.2 to 2.1 GHz
2.1 to 3 GHz
3.0 to 3.6 GHz
3.5 to 4.2 GHz x
x 152 dBm 151 dBm 153 dBm
x 151 dBm 150 dBm 152 dBm
x 150 dBm 149 dBm 151 dBm
x 141 dBm 141 dBm 145 dBm
x 150 dBm 150 dBm 154 dBm
x 155 dBm 152 dBm 156 dBm x 154 dBm 153 dBm 155 dBm
x 152 dBm 151 dBm 153 dBm
x 151 dBm 149 dBm 152 dBm
x 150 dBm 148 dBm 151 dBm
147 dBm 146 dBm 150 dBm
53
PXA Signal Analyzer Dynamic Range
Description Specifications Supplemental Information
3.5 to 4.2 GHz
4.2 to 8.4 GHz x
4.2 to 6.6 GHz
6.6 to 8.4 GHz
8.3 to 13.6 GHz
8.3 to 13.6 GHz
13.5 to 16.9 GHz x
13.5 to 14 GHz
14 to 17 GHz
17 to 22.5 GHz
16.9 to 20 GHz x
20.0 to 26.5 GHz x
22.5 to 26.5 GHz
26.4 to 30 GHz
30 to 34 GHz
x 143 dBm 141 dBm 147 dBm
150 dBm 148 dBm 152 dBm
x 144 dBm 142 dBm 148 dBm
x 147 dBm 145 dBm 148 dBm
x 147 dBm 145 dBm 148 dBm
x 147 dBm 146 dBm 149 dBm
145 dBm 143 dBm 147 dBm
x 143 dBm 141dBm 146 dBm
x 145 dBm 143dBm 148 dBm
x 141 dBm 139 dBm 145 dBm
-143 dBm -140 dBm -145 dBm
135 dBm 133 dBm 138 dBm
x 139 dBm 137 dBm 142 dBm
x 138 dBm 136 dBm 142 dBm
x 138 dBm 135 dBm 142 dBm
33.9 to 37 GHz
37 to 40 GHz
40 to 49 GHz
49 to 50 GHz
Additional DANL, IF Gain = Low
d
x 134 dBm 131 dBm 139 dBm
x 132 dBm 129 dBm 138 dBm
x 130 dBm 126 dBm 134 dBm
x 128 dBm 124 dBm 133 dBm
x x –164.5 dBm (nominal)
a. DANL for zero span and swept is measured in a 1 kHz RBW and normalized to the narrowest available RBW,
because the noise figure does not depend on RBW and 1 kHz measurements are faster.
b. DANL below 10 MHz is affected by phase noise around the LO feedthrough signal. Specifications apply with the
best setting of the Phase Noise Optimization control, which is to choose the “Best Close-in φ Noise" for frequen­cies below about 150 kHz, and “Best Wide Offset φ Noise" for frequencies above about 150 kHz.
c. DANL below 10 MHz is affected by phase noise around the LO feedthrough signal. Specifications apply with the
best setting of the Phase Noise Optimization control, which is to choose the “Best Close-in φ Noise" for frequen­cies below about 150 kHz, and “Best Wide Offset φ Noise" for frequencies above about 150 kHz.
d. Setting the IF Gain to Low is often desirable in order to allow higher power into the mixer without overload, better
compression and better third-order intermodulation. When the Swept IF Gain is set to Low, either by auto cou­pling or manual coupling, there is noise added above that specified in this table for the IF Gain = High case. That excess noise appears as an additional noise at the input mixer. This level has sub-decibel dependence on center frequency. To find the total displayed average noise at the mixer for Swept IF Gain = Low, sum the powers of the DANL for IF Gain = High with this additional DANL. To do that summation, compute DANLtotal = 10 × log (10(DANLhigh/10) + 10(AdditionalDANL / 10)). In FFT sweeps, the same behavior occurs, except that FFT IF Gain can be set to autorange, where it varies with the input signal level, in addition to forced High and Low settings.
54
PXA Signal Analyzer Dynamic Range
Description Specifications Supplemental Information
Displayed Average Noise Level with Noise Floor Extension Improvement
a
mmW with no signal path options
b
mmW with one or more signal path optionsc 95th Percentile (2σ)d
RF/μW (Option 503, 508, 513,or 526)
Band 0, f > 20 MHz
Band 0, f > 20 MHz
Band 0, f > 20 MHz
f
f
f
x 9 dB 10 dB
x 10 dB 9 dB
x 10 dB 9 dB
Preamp Off Preamp On
Band 1 x 10 dB 9 dB
Band 1
Band 1
x 9 dB 9 dB
x 10 dB 9 dB
Band 2 x 10 dB 10 dB
Band 2
Band 2
x 9 dB 8 dB
x 9 dB 8 dB
e
Band 3 x 9 dB 9 dB
Band 3
Band 3
x 9 dB 8 dB
x 10 dB 8 dB
Band 4 x 10 dB 8 dB
Band 4
Band 4
Band 5
Band 5
Band 6
Band 6
Improvement for CW Signals
g
Improvement, Pulsed-RF Signals
h
x 10 dB 9 dB
x 11 dB 9 dB
x 11 dB 8 dB
x 12 dB 9 dB
x 11 dB 7 dB
x 12 dB 8 dB
3.5 dB (nominal)
10.8 dB (nominal)
Improvement, Noise-Like Signals 9.1 dB (nominal)
55
PXA Signal Analyzer Dynamic Range
a. This statement on the improvement in DANL is based on the statistical observations of the error in the effective
noise floor after NFE is applied. That effective noise floor can be a negative or a positive power at any frequency. These 95th percentile values are based on the absolute value of that effective remainder noise power.
b. Specifications marked with an x in this column apply to analyzers with mmW frequency options (Option 544 or
550) and none of the following options that affect the signal path: MPB, LNP, B85, B1X, B2X or B5X.
c. Specifications marked with an x in this column apply to analyzers with mmW frequency options (Option 544 or
550) and one or more of the following options that affect the signal path: MPB, LNP, B85, B1X, B2X or B5X.
d. Unlike other 95th percentiles, these table values do not include delta environment effects. NFE is aligned in the
factory at room temperature. For best performance, in an environment that is different from room temperature, such as an equipment rack with other instruments, we recommend running the "Characterize Noise Floor" operation after the first time the analyzer has been installed in the environment, and given an hour to stabilize.
e. DANL of the preamp is specified with a 50Ω source impedance. Like all amplifiers, the noise varies with the source
impedance. When NFE compensates for the noise with an ideal source impedance, the variation in the remaining noise level with the actual source impedance is greatly multiplied in a decibel sense.
f. NFE does not apply to the low frequency sensitivity. At frequencies below about 0.5 MHz, the sensitivity is domi-
nated by phase noise surrounding the LO feedthrough. The NFE is not designed to improve that performance. At frequencies between 0.5 and 20 MHz the NFE effectiveness increases from nearly none to near its maximum.
g. Improvement in the uncertainty of measurement due to amplitude errors and variance of the results is modestly
improved by using NFE. The nominal improvement shown was evaluated for a 2 dB error with 250 traces averaged. For extreme numbers of averages, the result will be as shown in the "Improvement for Noise-like Signals" and DANL sections of this table.
h. Pulsed-RF signals are usually measured with peak detection. Often, they are also measured with many “max hold”
traces. When the measurement time in each display point is long compared to the reciprocal of the RBW, or the number of traces max held is large, considerable variance reduction occurs in each measurement point. When the variance reduction is large, NFE can be quite effective; when it is small, NFE has low effectiveness. For example, in Band 0 with 100 pulses per trace element, in order to keep the error within ±3 dB error 95% of the time, the signal can be 10.8 dB lower with NFE than without NFE.
56
PXA Signal Analyzer Dynamic Range
Description Specifications Supplemental Information
Displayed Average Noise Level with Noise Floor Extension
mmW with no signal path options
mmW with one or more signal path options
b
c
RF/μW (Option 503, 508, 513, or 526)
Band 0, f > 20 MHz
f
xxx 163 dBm 174 dBm
a
95th Percentile (≈2σ)b
Preamp Off
Preamp On
Band 1 x 162 dBm 174 dBm
Band 1
Band 1
x 159 dBm 172 dBm
x 160 dBm 172 dBm
Band 2 x 162 dBm 173 dBm
Band 2
Band 2
x 159 dBm 172 dBm
x 161 dBm 173 dBm
Band 3 x 156 dBm 172 dBm
c
Band 3
Band 3
x 159 dBm 173 dBm
x 161 dBm 174 dBm
Band 4 x 150 dBm 166 dBm
Band 4
Band 4
Band 5
Band 5
Band 6
Band 6
x 154 dBm 169 dBm
x 158 dBm 171 dBm
x 153 dBm 167 dBm
x 157 dBm 168 dBm
x 144 dBm 158 dBm
x 149 dBm 161 dBm
a. DANL with NFE is unlike DANL without NFE. It is based on the statistical observations of the error in the effective
noise floor after NFE is applied. That effective noise floor can be a negative or a positive power at any frequency. These 95th percentile values are based on the absolute value of that effective remainder noise power.
b. Unlike other 95th percentiles, these table values do not include delta environment effects. NFE is aligned in the
factory at room temperature. For best performance, in an environment that is different from room temperature, such as an equipment rack with other instruments, we recommend running the "Characterize Noise Floor" operation after the first time the analyzer has been installed in the environment, and given an hour to stabilize.
57
PXA Signal Analyzer Dynamic Range
c. NFE performance can give results below theoretical levels of noise in a termination resistor at room temperature,
about –174 dBm/Hz. this is intentional and usually desirable. NFE is not designed to report the noise at the input of the analyzer; it reports how much more noise is at the input of the analyzer than was present in its alignment. And its alignment includes the noise of a termination at room temperature. So it can often see the added noise below the theoretical noise. Furthermore, DANL is defined with log averaging in a 1 Hz RBW, which is about 2.3 dB lower than the noise density (power averaged) in a 1 Hz noise bandwidth.
58
PXA Signal Analyzer Dynamic Range

Spurious Responses

Description Specifications Supplemental Information
Spurious Responses: Residual and Image
Preamp Off Option EP0 effects
a
b
(see Band Overlaps on page 21)
Residual Responses
c
200 kHz to 8.4 GHz (swept) Zero span or FFT or other frequencies
100 dBm
100 dBm
(nominal)
Image Responses
Tuned Freq (f) Excitation
Freq
Mixer Level
Response Response (typical)
d
RF/μWmmWRF/μW mmW
10 MHz to 26.5 GHz f+45 MHz 10 dBm 80 dBc 80 dBc 118 dBc
105 dBc (EP0)
10 MHz to 3.6 GHz f+10245 MHz 10 dBm 80 dBc 80 dBc 112 dBc
106 dBc (EP0)
118 dBc
117 dBc (EP0)
112 dBc
104 dBc (EP0)
10 MHz to 3.6 GHz f+645 MHz 10 dBm 80 dBc 80 dBc 101 dBc 101 dBc
3.5 to 13.6 GHz f+645 MHz 10 dBm 78 dBc
e
80 dBc 87 dBc 102 dBc
13.5 to 17.1 GHz f+645 MHz 10 dBm 74 dBc 80 dBc 84 dBc 102 dBc
17.0 to 22 GHz f+645 MHz 10 dBm 70 dBc 80 dBc 82 dBc 100 dBc
22 to 26.5 GHz f+645 MHz 10 dBm 68 dBc 70 dBc 79 dBc
75 dBc (EP0)
97 dBc
90 dBc (EP0)
26.5 to 50 GHz f+45 MHz 30 dBm –90 dBc
(nominal)
26.5 to 34.5 GHz f+645 MHz 30 dBm –70 dBc –94 dBc
34.4 to 42 GHz f+645 MHz 30 dBm –59 dBc –79 dBc
76 dBc (EP0)
42 to 50 GHz f+645 MHz 30 dBm –75 dBc
(nominal)
a. The spurious response specifications only apply with the preamp turned off. When the preamp is turned on, per-
formance is nominally the same as long as the mixer level is interpreted to be: Mixer Level = Input Level Input Attenuation + Preamp Gain
b. Where the presence of Option EP0 affects the performance, it is noted with "(EP0)" text. c. Input terminated, 0 dB input attenuation. d. Mixer Level = Input Level − Input Attenuation.
59
PXA Signal Analyzer Dynamic Range
e. We also support the following additional spurious responses specifications from 8 to 12 GHz at 20 to 30º C. Image
responses are warranted to be better than –82 dBc, with 95th percentile performance of –88.3 dBc. LO-related spurious responses are warranted to be better than –83 dBc at 1 to 10 MHz offsets from the carrier, with phase noise optimization set to Best Wide-Offset.
Description Specifications Supplemental Information
Spurious Responses: Other
First RF Order
Mixer Level
b
a
Response
Response (typical)
(f 10 MHz from carrier)
Carrier Frequency 26.5 GHz 10 dBm
80 dBc + 20 × log(N
c
)
Includes IF feedthrough, LO harmonic mixing responses
Carrier Frequency > 26.5 GHz 30 dBm –90 dBc (nominal)
Higher RF Order
d
(f 10 MHz from carrier)
c
Includes higher order mixer
Carrier Frequency 26.5 GHz 40 dBm
80 dBc + 20 × log(N
)
responses
Carrier Frequency > 26.5 GHz
LO-Related Spurious Responses
e
30 dBm 90 dBc (nominal)
fe
10 dBm
68 dBc
+ 20 × log(Nc) 72 dBc + 20 × log(Nc) (typical)
(Offset from carrier 200 Hz to 10 MHz)
Close-in Sidebands Spurious Response (LO Related, offset < 200 MHz)
73 dBc (nominal)
e
+ 20 × log(Nc)
a. Mixer Level = Input Level Input Attenuation. b. With first RF order spurious products, the indicated frequency will change at the same rate as the input, with
higher order, the indicated frequency will change at a rate faster than the input. c. N is the LO multiplication factor. d. RBW=100 Hz. With higher RF order spurious responses, the observed frequency will change at a rate faster than
the input frequency. e. Nominally 40 dBc under large magnetic (0.38 Gauss rms) or vibrational (0.21 g rms) environmental stimuli. f. We also support the following additional spurious responses specifications from 8 to 12 GHz at 20 to 30º C.
Image responses are warranted to be better than –82 dBc, with 95th percentile performance of –88.3 dBc.
LO-related spurious responses are warranted to be better than –83 dBc at 1 to 10 MHz offsets from the carrier,
with phase noise optimization set to Best Wide-Offset.
60
PXA Signal Analyzer Dynamic Range

Second Harmonic Distortion

Description Specifications Supplemental Information
Second Harmonic Distortion
mmW (Option 544, or 550)
RF/μW (Option 503, 508, 513, or 526)
Mixer Level
Distortion
a
SHI
Distortion
(nominal)
bc
Source Frequency
0 to 100 MHz x x –15 dBm –57 dBc +42 dBm
d
to 3 GHz
d
x
x –15 dBm –60 dBc +45 dBm
x –15 dBm –77 dBc +62 dBm
x –15 dBm –72 dBc +57 dBm
x 15 dBm –77 dBc +62 dBm
x 15 dBm –70 dBc +55 dBm
x 15 dBm –62 dBc +47 dBm
x 15 dBm 65 dBc +50 dBm
0.1 to 1.8 GHz
1.75
1.75 to 3 GHz
3 to 6.5 GHz x
6.5 to 10 GHz x
10 to 13.25 GHz x
13.2 to 25 GHz
a. Mixer level = Input Level − Input Attenuation b. SHI = second harmonic intercept. The SHI is given by the mixer power in dBm minus the second harmonic distor-
tion level relative to the mixer tone in dBc.
c. Performance >3.6 GHz improves greatly with Option LNP enabled. See Option LNP - Low Noise Path
Specifications on page 225.
d. These frequencies are half of the band edge frequencies. See Band Overlaps on page 21.
bc
SHI
(nominal)
61
PXA Signal Analyzer Dynamic Range

Third Order Intermodulation

Description Specifications Supplemental Information
Third Order Intermodulation
(Tone separation > 5 times IF Prefilter Bandwidth Sweep rate reduced
a
b
Refer to the footnote for
Band Overlaps on page 21.
Refer to footnote Distortion".
Verification conditionsc)
mmW Option 544, or 550
RF/μW Option 503, 508, 513, or 526
20 to 30°C
10 to 150 MHz x
150 to 600 MHz
f
600 MHz to 1.1 GHz x
1.1 to 3.6 GHz
g
Intercept
x +13 dBm +16 dBm
x x +18 dBm +21 dBm
x +20 dBm +22 dBm
x x +21 dBm +23 dBm
e
Intercept (typical)
3.5 to 8.4 GHz x +17 dBm +23 dBm
d
for the "Extrapolated
3.6 to 3.7 GHz (Band 0) x See note
3.5 to 8.4 GHz x +16 dBm +23 dBm
8.3 to 13.6 GHz x +17 dBm +23 dBm
8.3 to 13.6 GHz
x +16 dBm +23 dBm
13.5 to 17.1 GHz x +15 dBm +20 dBm
13.5 to 17.1 GHz
17.0 to 26.5 GHzi
17.0 to 26.5 GHz
i
26.4 to 34.5 GHz x
34.4 to 50 GHz
g
x +13 dBm +17 dBm
x +16 dBm +22 dBm
x +13 dBm +20 dBm
+13 dBm +18 dBm
x
+10 dBm +15 dBm
Full temperature range
10 to 150 MHz x
150 to 600 MHz
j
x +12 dBm
x x +17 dBm
h
62
PXA Signal Analyzer Dynamic Range
Description Specifications Supplemental Information
600 MHz to 1.1 GHz x
1.1 to 3.6 GHz
k
x +18 dBm
x x +19 dBm
Third Order Intermodulation Full temperature Range (cont.)
3.5 to 8.4 GHz x +14 dBm
3.5 to 8.4 GHz
x +13 dBm
8.3 to 13.6 GHz x +14 dBm
8.3 to 13.6 GHz
x +13 dBm
13.5 to 17.1 GHz x +13 dBm
13.5 to 17.1 GHz
x +10 dBm
17.0 to 26.5 GHzi x +14 dBm
17.0 to 26.5 GHz
i
x +10 dBm
26.4 to 36.5 GHz x +9 dBm
34.4 to 50 GHz
l
x +6 dBm
a. See the IF Prefilter Bandwidth table in the Gain Compression specifications on page 48. When the tone separa-
tion condition is met, the effect on TOI of the setting of IF Gain is negligible. TOI is verified with IF Gain set to its best case condition, which is IF Gain = Low.
b. Autocoupled sweep rates using Option FS1 or FS2 are often too fast for excellent TOI performance. A sweep rate
of 1.0 × RBW
a
note
2
is often suitable for best TOI performance, because of how it affects the IF Prefilter settings Foot-
links to the details.
c. TOI is verified with two tones, each at 16 dBm (10 MHz to 26.5 GHz) and 20 dBm (26.5 GHz to 50 GHz) at the
mixer, spaced by 100 kHz.
d. Traditionally, the distortion components from two tones, each at 30 dBm, were given as specifications. When
spectrum analyzers were not as good as they are now, these distortion products were easily measured. As spec­trum analyzers improved, the measurement began to be made at higher levels and extrapolated to the indus­try-standard 30 dBm test level. This extrapolation was justified by excellent conformance with the third-order model, wherein distortion in dBc was given by twice the difference between the test tone level and the intercept, both given in dBm units. In PXA, we no longer make that extrapolation in this Specifications Guide. One reason we don’t extrapolate is that the model does not work as well as it had with higher levels of distortion in older and less capable analyzers, so that the computation is misleading; distortions at low test levels will be modestly higher than predicted from the formula. The second reason is that the distortion components are so small as to be unmeasurable, and thus highly irrelevant, in many cases. Please note the curvature of the third-order intermodulation line in the 1 GHz graph that follows, which is repre­sentative of performance below 3.6 GHz.
e. Intercept = TOI = third order intercept. The TOI is given by the mixer tone level (in dBm) minus (distortion/2)
where distortion is the relative level of the distortion tones in dBc. f. For Option EP0: 150 to 300 MHz +10 dBm +19 dBm (typical) 300 to 600 MHz +18 dBm +20 dBm (typical)
63
PXA Signal Analyzer Dynamic Range
g. For mmW PXA with Option EP0:
1.1 to 1.5 GHz +20 dBm +22 dBm (typical)
1.5 to 3.6 GHz +21 dBm +23 dBm (typical)
34.4 to 50 GHz +10 dBm +13 dBm (typical) For mmW PXA with Option MPB:
34.4 to 50 GHz +10 dBm +15 dBm (typical) For mmW PXA without Option MPB:
34.4 to 50 GHz +9 dBm +15 dBm (typical)
h. Band 0 is extendable (set “Extend Low Band” to On) to 3.7 GHz instead of 3.6 GHz in instruments with frequency
option 508, 513 or 526. Subject to these conditions, statistical observations show that performance nominally
fits within the same range within the 3.6 to 3.7 GHz frequencies as within the next lower specified frequency
range, but is not warranted. i. Intercept performance is nominally 3 dB better in this band in those analyzers which have either Option LNP or
Option MPB installed, or both, when these options are not in use. j. For Option EP0: 150 to 300 MHz +15 dBm 300 to 600 MHz +17 dBm k. For mmW PXA with Option EP0:
1.1 to 1.5 GHz +18 dBm
1.5 to 3.6 GHz +19 dBm
l. For mmW PXA with Option MPB:
34.4 to 50 GHz +6 dBm
For mmW PXA without Option MPB:
34.4 to 50 GHz +5 dBm
Nominal TOI vs. Input Frequency and Tone Separation [Plot]
a
a. This plot is not applicable to Option EP0.
64
PXA Signal Analyzer Dynamic Range
Nominal Dynamic Range vs. Offset Frequency vs. RBW [Plot]
a
a. This plot is not applicable to Option EP0.
65
PXA Signal Analyzer Dynamic Range
Nominal Dynamic Range vs. Offset Frequency vs. RBW [Plot]
a
a. This plot is only applicable to Option EP0.
66
PXA Signal Analyzer Dynamic Range

Phase Noise

Description Specifications Supplemental Information
Phase Noise with Option EP1 Noise Sidebands
(Center Frequency = 1 GHz Optimization Internal Reference
b
c
a
Best-case
)
Offset Frequency 20 to 30°CFull range
10 Hz 80 dBc/Hz (nominal)
100 Hz 94 dBc/Hz 92 dBc/Hz 100 dBc/Hz (typical)
1 kHz 121 dBc/Hz 118 dBc/Hz 125 dBc/Hz (typical)
10 kHz 129 dBc/Hz 128 dBc/Hz 132 dBc/Hz (typical)
30 kHz 130 dBc/Hz 129 dBc/Hz 132 dBc/Hz (typical)
100 kHz 129 dBc/Hz 128 dBc/Hz 131 dBc/Hz (typical)
e
1 MHz
10 MHz
e
145 dBc/Hz 144 dBc/Hz 146 dBc/Hz (typical)
155 dBc/Hz 154 dBc/Hz 158 dBc/Hz (typical)
a. The nominal performance of the phase noise at center frequencies different than the one at which the specifica-
tions apply (1 GHz) depends on the center frequency, band and the offset. For low offset frequencies, offsets well under 100 Hz, the phase noise increases by 20 × log[(f + 0.3225)/1.3225]. For mid-offset frequencies such as 50 kHz, phase noise trends as 20 × log[(f + 5.1225)/6.1225], and also varies chaotically an additional nomi­nally ±2 dB versus the center frequency. For wide offset frequencies, offsets above about 500 kHz, phase noise increases as 20 × log(N). N is the LO Multiple as shown on page 21; f is in GHz units in all these relationships; all increases are in units of decibels.
b. Noise sidebands for lower offset frequencies, for example, 10 kHz, apply with the phase noise optimization
(PhNoise Opt) set to Best Close-in φ Noise. Noise sidebands for higher offset frequencies, for example, 1 MHz, as shown apply with the phase noise optimization set to Best Wide-offset φ Noise.
c. Specifications are given with the internal frequency reference. The phase noise at offsets below 100 Hz is
impacted or dominated by noise from the reference. Thus, performance with external references will not follow the curves and specifications. When using an external reference with superior phase noise, we recommend set­ting the external reference phase-locked-loop bandwidth to wide (60 Hz), to take advantage of that superior performance. When using an external reference with inferior phase noise performance, we recommend setting that bandwidth to narrow (15 Hz). In these relationships, inferior and superior phase noise are with respect to –134 dBc/Hz at 30 Hz offset from a 10 MHz reference. Because most reference sources have phase noise behavior that falls off at a rate of 30 dB/decade, this is usually equivalent to –120 dBc/Hz at 10 Hz offset. For more information, see Phase Noise Effects, Ext Ref vs. Loop BW [Plot] on page 74.
d. Nominal phase noise was –75 dBc/Hz for instruments produced before approximately September 1, 2012.
d
67
PXA Signal Analyzer Dynamic Range
e. Analyzer-contributed phase noise at the low levels of this offset requires advanced verification techniques
because broadband noise would otherwise cause excessive measurement error. Keysight uses a high level low phase noise CW test signal and sets the input attenuator so that the mixer level will be well above the normal top-of-screen level (-10 dBm) but still well below the 1 dB compression level. This improves dynamic range (carrier to broadband noise ratio) at the expense of amplitude uncertainty due to compression of the phase noise sidebands of the analyzer. (If the mixer level were increased to the "1 dB Gain Compression Point," the compression of a single sideband is specified to be 1 dB or lower. At lower levels, the compression falls off rap­idly. The compression of phase noise sidebands is substantially less than the compression of a single-sideband test signal, further reducing the uncertainty of this technique.) Keysight also measures the broadband noise of the analyzer without the CW signal and subtracts its power from the measured phase noise power. The same techniques of overdrive and noise subtraction can be used in measuring a DUT, of course.
Description Specifications Supplemental Information
Phase Noise with Option EP0
Noise Sidebands
a
(Center Frequency = 1 GHzb Best-case Optimization Internal Reference
c
d
)
Offset Frequency 20 to 30°CFull range
10 Hz
Wide Ref Loop BW See note
e
95 dBc/Hz (typical)
Narrow Ref Loop BW 88 dBc/Hz (nominal)
100 Hz 107 dBc/Hz 107 dBc/Hz 112 dBc/Hz (typical)
1 kHz 125 dBc/Hz 124 dBc/Hz 129 dBc/Hz (typical)
10 kHz 134 dBc/Hz 132 dBc/Hz 136 dBc/Hz (typical)
100 kHz 139 dBc/Hz 138 dBc/Hz 141 dBc/Hz (typical)
e
1 MHz
145 dBc/Hz 144 dBc/Hz 146 dBc/Hz (typical)
10 MHz 155 dBc/Hz 154 dBc/Hz 157 dBc/Hz (typical)
e
a. Noise sidebands around a signal are dominantly phase noise sidebands. With the extremely low phase noise of
the PXA, AM sidebands are non-negligible contributors. These specifications apply to the sum of the AM and PM sidebands.
b. The nominal performance of the phase noise at center frequencies different than the one at which the specifica-
tions apply (1 GHz) depends on the center frequency, band and the offset. For low offset frequencies, offsets well under 100 Hz, the phase noise increases by 20 × log[(f + 0.3225)/1.3225], where f is the larger of 0.5 and the center frequency in GHz units. For mid-offset frequencies such as 50 kHz, phase noise trends as 20 × log[(f + 5.1225)/6.1225], where f is the larger of 1.0 and the carrier frequency in GHz units. For wide offset frequencies, offsets above about 500 kHz, phase noise increases as 20 × log(N). N is the LO Multiple as shown on page 21.
68
PXA Signal Analyzer Dynamic Range
c. Noise sidebands for lower offset frequencies, for example, 10 kHz, apply with phase noise optimization (PNO)
set to Balance Noise and Spurs. In some frequency settings of the analyzer, a spurious response 60 to 180 MHz offset from the carrier may be present unless the phase locked loop behavior is changed in a way that increases the phase noise. This tradeoff is controlled such that the spurs are better than –70 dBc, at the expense of up to 7 dB increase in phase noise within ±1 octave of 1 MHz offset for those settings where this spurious is likely to be visible. To eliminate this phase noise degradation in exchange for the aforementioned spurs, Best Close-in Noise should be used. When the setting is changed to Best Spurs, the maximum spurious response is held to –90 dBc, but the phase noise at all center frequencies is degraded by up to approximately 12 dB from the best possible setting, mostly within ±1 octave of an offset of 400 kHz from the carrier. Noise sidebands for higher offset frequencies, for example, 1 MHz, apply with the phase noise optimization set to Best Wide-Offset Noise.
d. Specifications are given with the internal frequency reference. The phase noise at offsets below 100 Hz is
impacted or dominated by noise from the reference. Thus, performance with external references will not follow the curves and specifications. When using an external reference with superior phase noise, we recommend set­ting the external reference phase-locked-loop bandwidth to wide (60 Hz), to take advantage of that superior performance. When using an external reference with inferior phase noise performance, we recommend setting that bandwidth to narrow (15 Hz). In these relationships, inferior and superior phase noise are with respect to –134 dBc/Hz at 30 Hz offset from a 10 MHz reference. Because most reference sources have phase noise behavior that falls off at a rate of 30 dB/decade, this is usually equivalent to –120 dBc/Hz at 10 Hz offset. For more information, see Phase Noise Effects, Ext Ref vs. Loop BW [Plot] on page 74.
e. Keysight measures 100% of the signal analyzers for phase noise at 10 Hz offset from a 1 GHz carrier in the fac-
tory production process. This measurement requires a signal of exceptionally low phase noise that is character­ized with specialized processes. It is impractical for field and customer use. Because field verification is impractical, Keysight only gives a typical result. More than 80% of prototype instruments met this "typical" specification; the factory test line limit is set commensurate with an on-going 80% yield to this typical. Like all typical specifications, there is no guardbanding for measurement uncertainty. The factory test line limit is con­sistent with a warranted specification of –90 dBc/Hz.
69
PXA Signal Analyzer Dynamic Range
Nominal Phase Noise of Different LO Optimizations without Option EP0 [Plot]
70
PXA Signal Analyzer Dynamic Range
Nominal Phase Noise at Different Center Frequencies without Option EP0 [Plot]
71
PXA Signal Analyzer Dynamic Range
Nominal Phase Noise at Different Carrier Frequencies, Phase Noise Optimized vs Offset Frequency with Option EP0 [Plot]
72
PXA Signal Analyzer Dynamic Range
Nominal Phase Noise at Different Phase Noise/Spurs Optimization with Option EP0 [Plot]
73
PXA Signal Analyzer Dynamic Range
Phase Noise Effects, Ext Ref vs. Loop BW without Option EP0 [Plot]
The effect of the Ext Ref Loop BW control (Narrow and Wide) is shown in this graphic. When set to Wide, the noise from the internal circuitry is reduced, but noise in the external reference is subject to being impressed on the LO through the transfer function shown in the smooth curve labeled "Wide." For an excellent reference, this can give lower overall noise. When the Narrow selection is made, the internal noise effect is higher, but external reference noise above 20 Hz is rejected.
The noise curves were measured at 1 GHz center frequency with an excellent reference and excellent RF signal, and is thus a conservative estimate of the residual noise of the PXA circuitry. At that center frequency, the transfer function curves approach 40 dB gain to phase noise at low offset frequencies for a 10 MHz external reference. (This 40 dB is computed as 20 × log
10 ^(fC/f
10
). The measured noise curves will scale with frequency the same way.)
REF
Example: Consider an external reference at 10 MHz with phase noise of 135 dBc/Hz at 20 Hz offset. If the Narrow setting is chosen, the analyzer noise density will be 86 dBc/Hz at 20 Hz offset, the gain to the reference will be 40 dB, giving
95 dBc/Hz contribution. Add these together on a power scale as 10 x log
(–86/10)
(10
10
+ 10
(–95/10)
) = 85.5 dBc/Hz. If
Wide is chosen, the analyzer noise density will be 97 dBc/Hz at 20 Hz offset, the gain to the reference will be 42 dB, giving
93 dBc/Hz contribution. Add those together on a power scale as 10 x log
(–97/10)
(10
10
+ 10
(–93/10)
) = 91.5 dBc/Hz.
"Wide" will give a 6 dB superior result to the Narrow selection.
74
PXA Signal Analyzer Power Suite Measurements

Power Suite Measurements

The specifications for this section apply only to instruments with Frequency Option 508, 513, or 526. For instruments with higher frequency options, the performance is nominal only and not subject to any warranted specifications.
The measurement performance is only slightly different between instruments with the higher frequency options. Because the hardware performance of the analyzers is very similar but not identical, you can estimate the nominal performance of the measurements from the specification in this chapter.
Description Specifications Supplemental Information

Channel Power

Amplitude Accuracy
Case: Radio Std = 3GPP W-CDMA, or IS-95
Absolute Power Accuracy
(20 to 30°C, Attenuation = 10 dB)
a. See “Absolute Amplitude Accuracy” on page 40. b. See “Frequency and Time” on page 20. c. Expressed in dB.
Description Specifications Supplemental Information

Occupied Bandwidth

Frequency Accuracy ±(Span/1000) (nominal)
±0.61 dB
Absolute Amplitude Accuracy Power Bandwidth Accuracy
±0.19 dB (95th percentile)
a
+
bc
75
PXA Signal Analyzer Power Suite Measurements
Description Specifications Supplemental Information

Adjacent Channel Power (ACP)

Case: Radio Std = None
Accuracy of ACP Ratio (dBc)
Accuracy of ACP Absolute Power (dBm or dBm/Hz)
Accuracy of Carrier Power (dBm), or Carrier Power PSD (dBm/Hz)
Passband Width
e
Case: Radio Std = 3GPP W-CDMA
Display Scale Fidelity
Absolute Amplitude Accuracy Power Bandwidth Accuracy
Absolute Amplitude Accuracy Power Bandwidth Accuracy
3 dB
(ACPR; ACLR)
a
b
+
cd
b
+
cd
f
Minimum power at RF Input 36 dBm (nominal)
ACPR Accuracy
g
RRC weighted, 3.84 MHz noise bandwidth, method RBW
Radio Offset Freq
MS (UE) 5 MHz ±0.08 dB At ACPR range of 30 to 36 dBc with optimum mixer
h
level
MS (UE) 10 MHz ±0.09 dB At ACPR range of 40 to 46 dBc with optimum mixer
i
level
BTS 5 MHz ±0.22 dB At ACPR range of 42 to 48 dBc with optimum mixer
j
level
BTS 10 MHz ±0.18 dB At ACPR range of 47 to 53 dBc with optimum mixer
i
level
BTS 5 MHz ±0.10 dB
At 48 dBc non-coherent ACPR
k
Option EP0
Radio Offset Freq
MS (UE) 5 MHz ±0.09 dB At ACPR range of 30 to 36 dBc with optimum mixer
h
level
MS (UE) 10 MHz ±0.11 dB At ACPR range of 40 to 46 dBc with optimum mixer
i
level
BTS 5 MHz ±0.25 dB At ACPR range of 42 to 48 dBc with optimum mixer
j
level
BTS 10 MHz ±0.25 dB At ACPR range of 47 to 53 dBc with optimum mixer
i
level
BTS 5 MHz ±0.12 dB
At 48 dBc non-coherent ACPR
k
76
PXA Signal Analyzer Power Suite Measurements
Description Specifications Supplemental Information
Adjacent Channel Power (cont.)
Dynamic Range RRC weighted, 3.84 MHz noise
bandwidth
Noise Correction
Offset
l
Freq Method ACLR (typical)
m
ACLR (EP0)
m
(typical)
Optimum MLn
(nominal)
Off 5 MHz Filtered IBW −81.5 dB 80 dB 8 dBm
Off 5 MHz Fast 81 dB 80 dB 8 dBm
Off 10 MHz Filtered IBW 87 dB 86 dB 4 dBm
On 5 MHz Filtered IBW −82.5 dB 81.5 dB 8 dBm
On 10 MHz Filtered IBW −88.0 dB 87 dB 4 dBm
RRC Weighting Accuracy
White noise in Adjacent Channel TOI-induced spectrum rms CW error
o
0.00 dB nominal
0.001 dB nominal
0.012 dB nominal
a. The effect of scale fidelity on the ratio of two powers is called the relative scale fidelity. The scale fidelity specified
in the Amplitude section is an absolute scale fidelity with –35 dBm at the input mixer as the reference point. The
relative scale fidelity is nominally only 0.01 dB larger than the absolute scale fidelity. b. See Amplitude Accuracy and Range section. c. See Frequency and Time section. d. Expressed in decibels. e. An ACP measurement measures the power in adjacent channels. The shape of the response versus frequency of
those adjacent channels is occasionally critical. One parameter of the shape is its 3 dB bandwidth. When the
bandwidth (called the Ref BW) of the adjacent channel is set, it is the 3 dB bandwidth that is set. The passband
response is given by the convolution of two functions: a rectangle of width equal to Ref BW and the power
response versus frequency of the RBW filter used. Measurements and specifications of analog radio ACPs are
often based on defined bandwidths of measuring receivers, and these are defined by their 6 dB widths, not
their 3 dB widths. To achieve a passband whose 6 dB width is x, set the Ref BW to be x 0.572 × RBW. f. Most versions of adjacent channel power measurements use negative numbers, in units of dBc, to refer to the
power in an adjacent channel relative to the power in a main channel, in accordance with ITU standards. The
standards for W-CDMA analysis include ACLR, a positive number represented in dB units. In order to be consis-
tent with other kinds of ACP measurements, this measurement and its specifications will use negative dBc
results, and refer to them as ACPR, instead of positive dB results referred to as ACLR. The ACLR can be deter-
mined from the ACPR reported by merely reversing the sign. g. The accuracy of the Adjacent Channel Power Ratio will depend on the mixer drive level and whether the distor-
tion products from the analyzer are coherent with those in the UUT. These specifications apply even in the worst
case condition of coherent analyzer and UUT distortion products. For ACPR levels other than those in this speci-
fications table, the optimum mixer drive level for accuracy is approximately −37 dBm − (ACPR/3), where the
ACPR is given in (negative) decibels.
77
PXA Signal Analyzer Power Suite Measurements
h. To meet this specified accuracy when measuring mobile station (MS) or user equipment (UE) within 3 dB of the
required 33 dBc ACPR, the mixer level (ML) must be optimized for accuracy. This optimum mixer level is
22 dBm, so the input attenuation must be set as close as possible to the average input power (22 dBm). For
example, if the average input power is −6 dBm, set the attenuation to 16 dB. This specification applies for the
normal 3.5 dB peak-to-average ratio of a single code. Note that, if the mixer level is set to optimize dynamic
range instead of accuracy, accuracy errors are nominally doubled. i. ACPR accuracy at 10 MHz offset is warranted when the input attenuator is set to give an average mixer level of
14 dBm.
j. In order to meet this specified accuracy, the mixer level must be optimized for accuracy when measuring node B
Base Transmission Station (BTS) within 3 dB of the required 45 dBc ACPR. This optimum mixer level is −18
dBm, so the input attenuation must be set as close as possible to the average input power − (−18 dBm). For
example, if the average input power is −6 dBm, set the attenuation to 12 dB. This specification applies for the
normal 10 dB peak-to-average ratio (at 0.01% probability) for Test Model 1. Note that, if the mixer level is set to
optimize dynamic range instead of accuracy, accuracy errors are nominally doubled. k. Accuracy can be excellent even at low ACPR levels assuming that the user sets the mixer level to optimize the
dynamic range, and assuming that the analyzer and UUT distortions are incoherent. When the errors from the
UUT and the analyzer are incoherent, optimizing dynamic range is equivalent to minimizing the contribution of
analyzer noise and distortion to accuracy, though the higher mixer level increases the display scale fidelity errors.
This incoherent addition case is commonly used in the industry and can be useful for comparison of analysis
equipment, but this incoherent addition model is rarely justified. This derived accuracy specification is based on a
mixer level of 14 dBm. l. The dynamic range shown with Noise Correction = Off applies with Noise Floor Extension On. (Noise Correction is
the process within the measurement of making a calibration of the noise floor at the exact analyzer settings used
for the measurement. Noise Floor Extension is the factory calibration of the noise floor.) m. Keysight measures 100% of the signal analyzers for dynamic range in the factory production process. This mea-
surement requires a near-ideal signal, which is impractical for field and customer use. Because field verification
is impractical, Keysight only gives a typical result. More than 80% of prototype instruments met this “typical”
specification; the factory test line limit is set commensurate with an on-going 80% yield to this typical.
The ACPR dynamic range is verified only at 2 GHz, where Keysight has the near-perfect signal available. The
dynamic range is specified for the optimum mixer drive level, which is different in different instruments and dif-
ferent conditions. The test signal is a 1 DPCH signal.
The ACPR dynamic range is the observed range. This typical specification includes no measurement uncertainty. n. ML is Mixer Level, which is defined to be the input signal level minus attenuation. o. 3GPP requires the use of a root-raised-cosine filter in evaluating the ACLR of a device. The accuracy of the pass-
band shape of the filter is not specified in standards, nor is any method of evaluating that accuracy. This footnote
discusses the performance of the filter in this instrument. The effect of the RRC filter and the effect of the RBW
used in the measurement interact. The analyzer compensates the shape of the RRC filter to accommodate the
RBW filter. The effectiveness of this compensation is summarized in three ways:
White noise in Adj Ch: The compensated RRC filter nominally has no errors if the adjacent channel has a spec-
trum that is flat across its width.
TOIinduced spectrum: If the spectrum is due to thirdorder intermodulation, it has a distinctive shape. The
computed errors of the compensated filter are 0.001 dB for the 100 kHz RBW used for UE testing with the IBW
method. It is 0.000 dB for the 27 kHz RBW filter used for BTS testing with the Filtered IBW method. The worst
error for RBWs between 27 and 390 kHz is 0.05 dB for a 330 kHz RBW filter.
rms CW error: This error is a measure of the error in measuring a CWlike spurious component. It is evaluated
by computing the root of the mean of the square of the power error across all frequencies within the adjacent
channel. The computed rms error of the compensated filter is 0.012 dB for the 100 kHz RBW used for UE testing
with the IBW method. It is 0.000 dB for the 27 kHz RBW filter used for BTS testing. The worst error for RBWs
between 27 kHz and 470 kHz is 0.057 dB for a 430 kHz RBW filter.
78
PXA Signal Analyzer Power Suite Measurements
Description Specifications Supplemental Information

Multi-Carrier Adjacent Channel Power

Case: Radio Std = 3GPP W-CDMA RRC weighted, 3.84 MHz noise bandwidth, Noise
Correction (NC) on
ACPR Accuracy (4 carriers)
Radio Offset
Coher
a
UUT ACPR Range
MLOpt
b
BTS 5 MHz no ±0.09 dB 42 to 48 dB 15 dBm
a. Coher = no means that the specified accuracy only applies when the distortions of the device under test are not
coherent with the third-order distortions of the analyzer. Incoherence is often the case with advanced multi-carrier amplifiers built with compensations and predistortions that mostly eliminate coherent third-order effects in the amplifier.
b. Optimum mixer level (MLOpt). The mixer level is given by the average power of the sum of the four carriers
minus the input attenuation.
Description Specifications Supplemental Information

Power Statistics CCDF

Histogram Resolution
a
0.01 dB
a. The Complementary Cumulative Distribution Function (CCDF) is a reformatting of a histogram of the power
envelope. The width of the amplitude bins used by the histogram is the histogram resolution. The resolution of the CCDF will be the same as the width of those bins.
Description Specifications Supplemental Information

Burst Power

Methods Power above threshold
Power within burst width
Results Output power, average
Output power, single burst Maximum power Minimum power within burst Burst width
79
PXA Signal Analyzer Power Suite Measurements
Description Specifications Supplemental Information

TOI (Third Order Intermodulation)

Measures TOI of a signal with two dominant tones
Results Relative IM tone powers (dBc)
Absolute tone powers (dBm)
Intercept (dBm)
Description Specifications Supplemental Information

Harmonic Distortion

Maximum harmonic number 10th
Results Fundamental Power (dBm)
Relative harmonics power (dBc)
Total harmonic distortion (%, dBc)
Description Specifications Supplemental Information

Spurious Emissions Table-driven spurious signals;

search across regions
Case: Radio Std = 3GPP W-CDMA
Dynamic Range
a
, relative (RBW=1 MHz)
88.8 dB 91.8 dB (typical)
(1 to 3.6 GHz)
Dynamic Range
a
, relative (RBW=1 MHz)
86.9 dB 89.9 dB (typical)
(1 to 3.6 GHz) (Option EP0)
Sensitivity
b
, absolute (RBW=1 MHz)
88.5 dBm 91.5 dBm (typical)
(1 to 3.6 GHz)
Sensitivity
b
, absolute (RBW=1 MHz)
86.5 dBm 89.5 dBm (typical)
(1 to 3.6 GHz) (Option EP0)
Accuracy Attenuation = 10 dB
20 Hz to 3.6 GHz ±0.19 dB (95th percentile)
3.5 to 8.4 GHz ±1.09 dB (95th percentile)
3.5 to 8.4 GHz (Option EP0) ±1.15 dB (95th percentile)
8.3 to 13.6 GHz ±1.48 dB (95th percentile)
8.3 to 13.6 GHz (Option EP0) ±1.52 dB (95th percentile)
a. The dynamic range is specified at 12.5 MHz offset from center frequency with mixer level of 1 dB compression
point, which will degrade accuracy 1 dB.
80
PXA Signal Analyzer Power Suite Measurements
b. The sensitivity is specified at far offset from carrier, where phase noise does not contribute. You can derive the
dynamic range at far offset from 1 dB compression mixer level and sensitivity.
Description Specifications Supplemental Information

Spectrum Emission Mask Table-driven spurious signals;

measurement near carriers
Case: Radio Std = cdma2000
Dynamic Range, relative (750 kHz offset
ab
)
Dynamic Range, relative (750 kHz offset
ab
) (Option EP0)
Sensitivity, absolute (750 kHz offset
c
)
Sensitivity, absolute (750 kHz offset
c
) (Option EP0)
Accuracy (750 kHz offset)
d
Relative
Absolute
e
(20 to 30°C)
Case: Radio Std = 3GPP W−CDMA
Dynamic Range, relative (2.515 MHz offset
ad
)
Dynamic Range, relative (2.515 MHz offset
ad
) (Option EP0)
85.9 dB 89.5 dB (typical)
83.8 dB 87.5 dB (typical)
103.7 dBm 106.7 dBm (typical)
101.7 dBm 104.7 dBm (typical)
±0.06 dB
±0.62 dB ±0.21 dB (95th percentile 2σ)
87.9 dB 92.6 dB (typical)
85.5 dB 90.3 dB (typical)
Sensitivity, absolute (2.515 MHz offset
Sensitivity, absolute (2.515 MHz offset
Accuracy (2.515 MHz offset)
d
Relative
Absolute
e
(20 to 30°C)
c
)
c
) (Option EP0)
103.7 dBm 106.7 dBm (typical)
101.7 dBm 104.7 dBm (typical)
±0.08 dB
±0.62 dB
±0.21 dB (95th percentile)
81
PXA Signal Analyzer Power Suite Measurements
a. The dynamic range specification is the ratio of the channel power to the power in the offset specified. The
dynamic range depends on the measurement settings, such as peak power or integrated power. Dynamic range specifications are based on default measurement settings, with detector set to average, and depend on the mixer level. Default measurement settings include 30 kHz RBW.
b. This dynamic range specification applies for the optimum mixer level, which is about 18 dBm. Mixer level is
defined to be the average input power minus the input attenuation.
c. The sensitivity is specified with 0 dB input attenuation. It represents the noise limitations of the analyzer. It is
tested without an input signal. The sensitivity at this offset is specified in the default 30 kHz RBW, at a center frequency of 2 GHz.
d. The relative accuracy is a measure of the ratio of the power at the offset to the main channel power. It applies for
spectrum emission levels in the offsets that are well above the dynamic range limitation.
e. The absolute accuracy of SEM measurement is the same as the absolute accuracy of the spectrum analyzer. See
“Absolute Amplitude Accuracy” on page 40 for more information. The numbers shown are for 0 to 3.6
GHz, with attenuation set to 10 dB.
82
PXA Signal Analyzer Options

Options

The following options and applications affect instrument specifications.
Option 503: Frequency range, 2 Hz to 3.6 GHz
Option 508: Frequency range, 2 Hz to 8.4 GHz
Option 513: Frequency range, 2 Hz to 13.6 GHz
Option 526: Frequency range, 2 Hz to 26.5 GHz
Option 544: Frequency range, 2 Hz to 44 GHz
Option 550: Frequency range, 2 Hz to 50 GHz
Option ALV: Auxiliary Log Video output
Option B1X: Analysis bandwidth, 160
Standard B25: Analysis bandwidth, 25 MHz
Option B40: Analysis bandwidth, 40 MHz
Option B85: Analysis bandwidth, 85 MHz
Option B2X Analysis bandwidth, 255 MHz
Option B5X: Analysis bandwidth, 510 MHz
Option BBA: BBIQ inputs, analog
Option C35: APC 3.5 mm connector (for Freq Option 526 only)
Option CR3: Connector Rear, second IF Out
Option CRP: Connector Rear, arbitrary IF Out
Option EA3: Electronic attenuator, 3.6 GHz
Option EMC: Precompliance EMC Features
Option EP0: Enhanced Phase noise, DDS LO
Option ESC: External source control
Option EXM: External mixing
Option LNP: Low Noise Path
Option MPB: Preselector bypass
Standard NFE: Noise floor extension, instrument alignment
Option P03: Preamplifier, 3.6 GHz
Option P08: Preamplifier, 8.4 GHz
Option P13: Preamplifier, 13.6 GHz
Option P26: Preamplifier, 26.5 GHz
83
PXA Signal Analyzer Options
Option P44: Preamplifier, 44 GHz
Option P50: Preamplifier, 50 GHz
Option RT1: Real-Time analysis up to 160 MHz, basic detection
Option RT2: Real-Time analysis up to 160 MHz, optimum detection
Option RTS: Real-Time wideband I/Q data streaming
Option YAS: Y-Axis Screen Video output
Option YAV: Y-Axis Video output
N9054EM0E:
N9054EM1E:
EM0E:
N9063
N9067
EM0E:
N9068
EM0E:
N9069
EM0E:
N9071
EM0E:
N9073
EM0E:
N9077
EM0E:
N9080
EM0E:
N9081
EM0E:
N9082
EM0E:
N9083
EM0E:
N9084
EM0E:
Flexible Digital Demodulation measurement application
Custom OFDM measurement application
Analog Demodulation measurement application
Pulse measurement application
Phase Noise measurement application
Noise Figure measurement application
GSM/EDGE/EDGE Evolution measurement application
W-CDMA/HSPA/HSPA+ measurement application
WLAN measurement application
LTE-Advanced FDD measurement application
Bluetooth Measurement application
LTE-Advanced TDD measurement application
MSR measurement application
Short Range Communications measurement application
N9085
N9092
EM0E:
EM0E:
5G NR measurement application
Avionics measurement application
84
PXA Signal Analyzer General

General

Description Specifications Supplemental Information
Calibration Cycle 1 year
Description Specifications Supplemental Information
Environment
Indoor
Temperature Range
Operating
Altitude 2,300 m0 to 55°C
Altitude = 4,600 m 0 to 47°C
Derating
Storage
Altitude
Humidity
Relative humidity 95% relative humidity, non-condensing at
Description Specifications Supplemental Information
Environmental and Military Specifications
a
40 to +70°C
4,600 m (approx 15,000 feet)
40°C, decreasing linearly to 50% relative humidity at 55°C.
a. The maximum operating temperature derates linearly from altitude of 4,600 m to 2,300 m.
Samples of this product have been type tested in accordance with the Keysight Environmental Test Manual and verified to be robust against the environmental stresses of Storage, Transportation and End-use; those stresses include but are not limited to temperature, humidity, shock, vibration, altitude and power line conditions. Test Methods are aligned with IEC 60068-2 and levels are similar to MIL-PRF-28800F Class 3.
85
PXA Signal Analyzer General
Description Specification Supplemental Information
Acoustic Noise Values given are per ISO 7779 standard in the "Operator Sitting"
position
Ambient Temperature
< 40°C Nominally under 55 dBA Sound Pressure. 55 dBA is generally
considered suitable for use in quiet office environments.
40°C Nominally under 65 dBA Sound Pressure. 65 dBA is generally
considered suitable for use in noisy office environments. (The fan speed, and thus the noise level, increases with increasing ambient temperature.)
Description Specification Supplemental Information
Power Requirements
Low Range
Voltage 100 /120 V ±10% operating range
Frequency 50/60/400 Hz
High Range
Voltage 220 /240 V ±10% operating range
Frequency 50/60 Hz
Power Consumption, On 630 W Maximum
Power Consumption, Standby 45 W Standby power is not supplied to the
frequency reference oscillator but to the CPU.
Typical instrument configuration Power (nominal)
Base PXA instrument B85/B1X/B2X/B5X 330 W
Adding Option B85/B1X to base instrument +45 W
Adding Option BBA to base instrument +46 W
86
PXA Signal Analyzer General
Description Supplemental Information
Measurement Speed
a
Local measurement and display update rate
Remote measurement and LAN transfer rate
bc
bc
Nominal
10 ms (100/s)
10 ms (100/s)
Marker Peak Search 2.5 ms
Center Frequency Tune and Transfer (Band 0) 43 ms
Center Frequency Tune and Transfer (Bands 1-4) 69 ms
Measurement/Mode Switching 40 ms
W-CDMA ACLR measurement time See page 76
a. Sweep Points = 101. b. Factory preset, fixed center frequency, RBW = 1 MHz, 10 MHz < span 600 MHz, stop frequency 3.6 GHz,
Auto Align Off.
c. Phase Noise Optimization set to Fast Tuning, Display Off, 32 bit integer format, markers Off, single sweep, mea-
sured with IBM compatible PC with 2.99 GHz Pentium® 4 with 2 GB RAM running Windows® XP, Keysight I/O Libraries Suite Version 14.1, one meter GPIB cable, National Instruments PCI-GPIB Card and NI-488.2 DLL.
Description Specifications Supplemental Information
Display
a
Resolution 1280 × 800 Capacitive multi-touch screen
Size 269 mm (10.6 in) diagonal (nominal)
a. The LCD display is manufactured using high precision technology. However, if a static image is displayed for a
lengthy period of time (~2 hours) you might encounter "image sticking" that may last for approximately 2 sec­onds. This is normal and does not affect the measurement integrity of the product in any way.
Description Specifications Supplemental Information
Data Storage
Internal Total Removable solid state drive (160 GB)
Internal User 9 GB available on separate partition for user
data
87
PXA Signal Analyzer General
Description Specifications Supplemental Information
Weight Weight without options
Net 22 kg (48 lbs) (nominal)
Shipping 34 kg (75 lbs) (nominal)
Cabinet Dimensions Cabinet dimensions exclude front and rear
Height 177 mm (7.0 in)
Width 426 mm (16.8 in)
Length 556 mm (21.9 in)
protrusions.
88
PXA Signal Analyzer Inputs/Outputs

Inputs/Outputs

Front Panel

Description Specifications Supplemental Information
RF Input
Connector
Standard Type-N female Frequency Option 503, 508, 513, and 526
2.4 mm male Frequency Option 544, and 550
Option C35 3.5 mm male Frequency Option 526 only
Impedance 50Ω (nominal)
Description Specifications Supplemental Information
Probe Power
Voltage/Current +15 Vdc, ±7% at 0 to 150 mA (nominal)
12.6 Vdc, ±10% at 0 to 150 mA (nominal)
GND
Description Specifications Supplemental Information
USB Ports
Host (3 ports) Compliant with USB 2.0
Connector USB Type “A” (female)
Output Current
Port marked with Lightning Bolt 1.2 A (nominal)
Port not marked with Lightning Bolt 0.5 A
Description Specifications Supplemental Information
Headphone Jack
Connector miniature stereo audio jack 3.5 mm (also known as "1/8 inch")
Output Power 90 mW per channel into 16Ω (nominal)
89
PXA Signal Analyzer Inputs/Outputs

Rear Panel

Description Specifications Supplemental Information
10 MHz Out
Connector BNC female
Impedance 50Ω (nominal)
Output Amplitude 0 dBm (nominal)
Output Configuration AC coupled, sinusoidal
Frequency 10 MHz ×
(1 + frequency reference accuracy)
Description Specifications Supplemental Information
Ext Ref In
Connector BNC female Note: Analyzer noise sidebands and spurious
response performance may be affected by the quality of the external reference used. See footnote in the Phase Noise specifications within the Dynamic Range section on page 67.
Impedance 50Ω (nominal)
Input Amplitude Range
sine wave square wave
Input Frequency 1 to 50 MHz (nominal)
Lock range
Description Specifications Supplemental Information
Sync Reserved for future use
Connector BNC female
±2 × 10 reference input frequency
6
of ideal external
5 to +10 dBm (nominal)
0.2 to 1.5 V peak-to-peak (nominal)
(selectable to 1 Hz resolution)
90
PXA Signal Analyzer Inputs/Outputs
Description Specifications Supplemental Information
Trigger Inputs
(Trigger 1 In, Trigger 2 In)
Connector BNC female
Impedance 10 kΩ (nominal)
Trigger Level Range 5 to +5 V 1.5 V (TTL) factory preset
Description Specifications Supplemental Information
Trigger Outputs
(Trigger 1 Out, Trigger 2 Out)
Connector BNC female
Impedance 50Ω (nominal)
Level 0 to 5 V (CMOS)
Description Specifications Supplemental Information
Monitor Output 1 VGA compatible
Either trigger source may be selected
Connector 15-pin mini D-SUB
Format XGA (60 Hz vertical sync rates, non-interlaced)
Analog RGB
Monitor Output 2
Mini DisplayPort
Description Specifications Supplemental Information
Analog Out
Connector BNC female
Impedance 50Ω (nominal)
Description Specifications Supplemental Information
Noise Source Drive +28 V (Pulsed)
Connector BNC female
Output voltage on 28.0 ± 0.1 V 60 mA maximum current
Output voltage off <1.0 V
91
PXA Signal Analyzer Inputs/Outputs
Description Specs Supplemental Information
SNS Series Noise Source For use with Keysight/Agilent Technologies SNS Series noise sources
Description Specifications Supplemental Information
Digital Bus This port is intended for use with the Agilent/Keysight N5105 and N5106
Connector MDR-80
Description Specifications Supplemental Information
USB Ports
Host, Super Speed 2 ports
Compatibility USB 3.0
Connector USB Type “A” (female)
Output Current 0.9 A
products only. It is not available for general purpose use.
Host, stacked with LAN 1 port
Compatibility USB 2.0
Connector USB Type “A” (female)
Output Current 0.5 A
Device 1 port
Compatibility USB 3.0
Connector USB Type “B” (female)
Description Specifications Supplemental Information
GPIB Interface
Connector IEEE-488 bus connector
GPIB Codes SH1, AH1, T6, SR1, RL1, PP0, DC1, C1, C2, C3 and
C28, DT1, L4, C0
Mode Controller or device
Description Specifications Supplemental Information
LAN TCP/IP Interface RJ45 Ethertwist 1000BaseT
92
PXA Signal Analyzer Regulatory Information

Regulatory Information

This product is designed for use in Installation Category II and Pollution Degree 2 per IEC 61010 3rd ed, and 664 respectively.
This product has been designed and tested in accordance with accepted industry standards, and has been supplied in a safe condition. The instruction documentation contains information and warnings which must be followed by the user to ensure safe operation and to maintain the product in a safe condition.
This product is intended for indoor use.
The CE mark is a registered trademark of the European Community (if accompanied by a year, it is the year when the design was proven). This product complies with all relevant directives.
ccr.keysight@keysight.com
ICES/NMB-001 “This ISM device complies with Canadian ICES-001.”
ISM 1-A (GRP.1 CLASS A) This is a symbol of an Industrial Scientific and Medical Group 1 Class A product.
The CSA mark is a registered trademark of the CSA International.
The Keysight email address is required by EU directives applicable to our product.
“Cet appareil ISM est conforme a la norme NMB du Canada.”
(CISPR 11, Clause 4)
The RCM mark is a registered trademark of the Australian Communications and Media Authority.
This symbol indicates separate collection for electrical and electronic equipment mandated under EU law as of August 13, 2005. All electric and electronic equipment are required to be separated from normal waste for disposal (Reference WEEE Directive 2002/96/EC).
China RoHS regulations include requirements related to packaging, and require compliance to China standard GB18455-2001.
This symbol indicates compliance with the China RoHS regulations for paper/fiberboard packaging.
South Korean Certification (KC) mark; includes the marking’s identifier code which follows this format:
MSIP-REM-YYY-ZZZZZZZZZZZZZZ.
93
PXA Signal Analyzer Regulatory Information
EMC: Complies with the essential requirements of the European EMC Directive as well as current editions of the following standards (dates and editions are cited in the Declaration of Conformity):
— IEC/EN 61326-1 — CISPR 11, Group 1, Class A — AS/NZS CISPR 11 — ICES/NMB-001
This ISM device complies with Canadian ICES-001.
Cet appareil ISM est conforme a la norme NMB-001 du Canada.
This is a sensitive measurement apparatus by design and may have some performance loss (up to 25 dBm above the Spurious Responses, Residual specification of -100 dBm) when exposed to ambient continuous electromagnetic phenomenon in the range of 80 MHz -2.7 GHz when tested per IEC 61000-4-3.
South Korean Class A EMC declaration:
This equipment has been conformity assessed for use in business environments. In a residential environment this equipment may cause radio interference. This EMC statement applies to the equipment only for use in business environment.
SAFETY: Complies with the essential requirements of the European Low Voltage Directive as well as current editions of the following standards (dates and editions are cited in the Declaration of Conformity):
— IEC/EN 61010-1 — Canada: CSA C22.2 No. 61010-1 — USA: UL std no. 61010-1
94
PXA Signal Analyzer Regulatory Information
Acoustic statement: (European Machinery Directive)
Acoustic noise emission
LpA <70 dB
Operator position
Normal operation mode per ISO 7779
To find a current Declaration of Conformity for a specific Keysight product, go to: http://www.keysight.com/go/conformity
95
PXA Signal Analyzer Regulatory Information
96
Keysight X-Series Signal Analyzer N9030B
Specification Guide

2 I/Q Analyzer

This chapter contains specifications for the I/Q Analyzer measurement application (Basic Mode).
97
I/Q Analyzer Specifications Affected by I/Q Analyzer

Specifications Affected by I/Q Analyzer

Specification Name Information
Number of Frequency Display Trace Points (buckets)
Resolution Bandwidth See “Frequency” on page 99 in this chapter.
Video Bandwidth Not available.
Clipping-to-Noise Dynamic Range See “Clipping-to-Noise Dynamic Range” on page 100 in this
Resolution Bandwidth Switching Uncertainty Not specified because it is negligible.
Available Detectors Does not apply.
Spurious Responses The “Spurious Responses” on page 59 of core specifications still
IF Amplitude Flatness See “IF Frequency Response” on page 38 of the core
IF Phase Linearity See “IF Phase Linearity” on page 39 of the core specifications for
Does not apply.
chapter.
apply. Additional bandwidth-option-dependent spurious responses are given in the Analysis Bandwidth chapter for any optional bandwidths in use.
specifications for the 10 MHz bandwidth. Specifications for wider bandwidths are given in the Analysis Bandwidth chapter for any optional bandwidths in use.
the 10 MHz bandwidth. Specifications for wider bandwidths are given in the Analysis Bandwidth chapter for any optional bandwidths in use.
Data Acquisition See “Data Acquisition” on page 101 in this chapter for the
10 MHz bandwidth. Specifications for wider bandwidths are given in the Analysis Bandwidth chapter for any optional bandwidths in use.
98
I/Q Analyzer Frequency

Frequency

Description Specifications Supplemental Information
Frequency Span
Standard instrument 10 Hz to10 MHz
Standard B25 10 Hz to 25 MHz
Option B40 10 Hz to 40 MHz
Option B85 10 Hz to 85 MHz
Option B1X
Option B2X 10 Hz to 255 MHz
Option B5X
Resolution Bandwidth
(Spectrum Measurement)
Range
Overall Span = 1 MHz Span = 10 kHz Span = 100 Hz
Window Shapes Flat Top, Uniform, Hanning, Hamming,
Analysis Bandwidth (Span)
(Waveform Measurement)
Standard B25 10 Hz to 25 MHz
Option B40 10 Hz to 40 MHz
Option B85 10 Hz to 85 MHz
10 Hz to 160 MHz
10 Hz to 510 MHz
100 MHz to 3 MHz 50 Hz to 1 MHz 1 Hz to 10 kHz 100 MHz to 100 Hz
Gaussian, Blackman, Blackman-Harris, Kaiser Bessel (K-B 70 dB, K-B 90 dB & K-B 110 dB)
Option B1X
Option B2X 10 Hz to 255 MHz
Option B5X
10 Hz to 160 MHz
10 Hz to 510 MHz
99
I/Q Analyzer Clipping-to-Noise Dynamic Range

Clipping-to-Noise Dynamic Range

Description Specifications Supplemental Information
Clipping-to-Noise Dynamic Range
a
Excluding residuals and spurious responses
Clipping Level at Mixer Center frequency 20 MHz
IF Gain = Low 10 dBm 8 dBm (nominal)
IF Gain = High 20 dBm 17.5 dBm (nominal)
Noise Density at Mixer at center frequency
c
(DANL
+ IFGainEffectd) + 2.25
b
dB
e
Example
f
a. This specification is defined to be the ratio of the clipping level (also known as “ADC Over Range”) to the noise
density. In decibel units, it can be defined as clipping_level [dBm] − noise_density [dBm/Hz]; the result has units of dBFS/Hz (fs is “full scale”).
b. The noise density depends on the input frequency. It is lowest for a broad range of input frequencies near the
center frequency, and these specifications apply there. The noise density can increase toward the edges of the span. The effect is nominally well under 1 dB.
c. The primary determining element in the noise density is the “DANL without Noise Floor Extension and
without Option EP0” on page 50.
d. DANL is specified with the IF Gain set to High, which is the best case for DANL but not for Clipping-to-noise
dynamic range. The core specifications “DANL without Noise Floor Extension and without Option
EP0” on page 50, gives a line entry on the excess noise added by using IF Gain = Low, and a footnote explain-
ing how to combine the IF Gain noise with the DANL.
e. DANL is specified for log averaging, not power averaging, and thus is 2.51 dB lower than the true noise density.
It is also specified in the narrowest RBW, 1 Hz, which has a noise bandwidth slightly wider than 1 Hz. These two effects together add up to 2.25 B.
f. As an example computation, consider this: For the case where DANL = 151 dBm in 1 Hz, IF Gain is set to low,
and the “Additional DANL” is 160 dBm, the total noise density computes to 148.2 dBm/Hz and the Clip­ping-to-noise ratio for a 10 dBm clipping level is −138.2 dBFS/Hz.
100
Loading...