A Server System Infrastructure (SSI) Specification
For 2U Rack Chassis Power Supplies
Version 1.0
SSI
ERP2U Power Supply Design Guide, V1.0
Disclaimer:
THIS SPECIFICATION IS PROVIDED "AS IS" WITH NO WARRANTIES
WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY,
NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY
WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR
SAMPLE. WITHOUT LIMITATION, THE PROMOTERS (Intel Corporation, NEC
Corporation, Dell Computer Corporation, Data General a division of EMC Corporation,
Compaq Computer Corporation, Silicon Graphics Inc., and International Business
Machines Corporation) DISCLAIM ALL LIABILITY FOR COST OF PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES, LOST PROFITS, LOSS OF USE, LOSS OF
DATA OR ANY INCIDENTAL, CONSEQUENTIAL, DIRECT, INDIRECT, OR SPECIAL
AMAGES, WHETHER UNDER CONTRACT, TORT, WARRANTY OR OTHERWISE,
ARISING IN ANY WAY OUT OF USE OR RELIANCE UPON THIS SPECIFICATION OR
ANY INFORMATION HEREIN.
The Promoters disclaim all liability, including liability for infringement of any proprietary
rights, relating to use of information in this specification. No license, express or implied,
by estoppel or otherwise, to any intellectual property rights is granted herein.
This specification and the information herein is the confidential and trade secret
information of the Promoters. Use, reproduction and disclosure of this specification and
the information herein is subject to the terms of the S.S.I. Specification Adopter's
Agreement.
Copyright Intel Corporation, Dell Computer Corporation, Compaq Computer Corporation, Silicon Graphics
Inc., International Business Machines Corporation, 2000.
5.5 AC Line Dropout.............................................................................................................................. 11
5.6 AC Line Fuse.................................................................................................................................. 11
5.7 AC Inrush........................................................................................................................................ 11
5.8 AC Line Transient Specification........................................................................................................ 12
5.9 AC Line Fast Transient Specification ................................................................................................ 12
6 DC Output Specification ................................................................................................................... 13
7.1 Current Limit ................................................................................................................................... 24
Table 20: Over Current Protection................................................................................................................. 24
Table 21: Over Current Protection .................................................................................................................25
Table 22: Over Voltage Limits .......................................................................................................................25
Table 23: PSON# Signal Characteristic.......................................................................................................... 26
Table 24: PWOK Signal Characteristics ........................................................................................................ 27
Table 25: FRU Device Information ................................................................................................................ 28
Table 26: FRU Device Product Information Area............................................................................................ 28
Table 27: FRU Device Product Information Area............................................................................................ 29
Table 28: LED Indicators .............................................................................................................................. 30
- 4 -
SSI
ERP2U Power Supply Design Guide, V1.0
1 Purpose
This 2U Rack Power Supply Design Guide defines a common redundant power sub-system used in 2U rack
mount servers. The power sub-system is made up of a cage and hot swap redundant power modules. This
Design Guide covers the mechanical and electrical requirements of this power sub-system. The requirements of
the individual hot swap modules are left open. This power sub-system may range from 350 to 600 watts and is
used in a hot swap redundant configuration. The scope of this document defines the requirements for this power
assembly. The parameters of this supply are defined in this design guide for open industry use.
2 Conceptual Overview
In the Entry server market, the bulk power system must source power on several output rails.
These rails are typically as follows:
• +3.3 V (optional from bulk supply)
• +5 V (optional from bulk supply)
• +12 V
• –12 V
• 5 V standby
NOTE
Local DC-DC converters shall be utilized for processor power, and will ideally convert power from the +12 V
rail, however, they may also convert power from other rails.
The bulk power system may be a n+1 redundant power system or a non-redundant power system.
- 5 -
SSI
ERP2U Power Supply Design Guide, V1.0
3 Definitions/Terms/Acronyms
Required The status given to items within this design guide, which are required to
meet SSI guidelines and a large majority of system applications.
Recommended The status given to items within this design guide which are not required to
meet SSI guidelines, however, are required by ma ny system applications.
Optional The status given to items within this design guide, which are not required to
Autoranging A power supply that automatically senses and adjusts itself to the proper
CFM Cubic Feet per Minute (airflow).
Dropout A condition that allows the line voltage input to the power supply to drop to
Latch Off A power supply, after detecting a fault condition, shuts itself off. Even if the
Monotonically A waveform changes from one level to another in a steady fashion, without
Noise The periodic or random signals over frequency band of 0 Hz to 20 MHz.
Overcurrent A condition in which a supply attempts to provide more output current than
PFC Power Factor Corrected.
Ripple The periodic or random signals over a frequency band of 0 Hz to 20 MHz.
meet SSI guidelines, however, some system applications may optionally
use these features.
input voltage range (110 VAC or 220 VAC). No manual switches or
manual adjustments are needed.
below the minimum operating voltage.
fault condition disappears, the supply does not restart unless manual or
electronic intervention occurs. Manual intervention commonly includes
briefly removing and then reconnecting the supply, or it could be done
through a switch. Electronic intervention could be done by electronic
signals in the Server System.
intermediate retracement or oscillation.
the amount for which it is rated. This commonly occurs if there is a "short
circuit" condition in the load attached to the supply.
Rise Time Rise time is defined as the time it takes any output voltage to rise from
Sag The condition where the AC line voltage drops below the nominal voltage
Surge The condition where the AC line voltage rises above nominal voltage.
VSB or Standby Voltage An output voltage that is present whenever AC power is applied to the AC
MTBF Mean time between failure.
PWOK A typical logic level output signal provided by the supply that signals the
10% to 95% of its nominal voltage.
conditions.
inputs of the supply.
Server System that all DC output volt ages are within their specified range.
- 6 -
SSI
AC AC
Module
AC AC
Optional mounting features for top access
ERP2U Power Supply Design Guide, V1.0
4 Mechanical Overview
STATUS
Required (Optional)
Note: Some features are noted as optional in the enclosure drawing figure below. These features may be use in
some chassis designs where only top access is allowed for the cage mounting.
The ERP2U is a power sub-system made up of a cage and redundant, hot swappable power supply modules. A
mechanical drawing of the cage is shown below in Figure 1. This cage is intended to be mounted in the system
and not redundant or hot swappable. The exterior face of the cage accepts hot swappable power supply
modules. The cage distributes output power from the modules to a wire harness. Cooling fans may be located in
the modules or cage. If the cooling fans are located in the cage, they may optionally be redundant. If the cage
has redundant cooling the cage depth may be extended to allow for the additional series fan. A recommended
power supply module solution is the SSI TPS power supply. Refer to www.ssiforum.org for the latest TPS Design
Guide. The cage may have IEC inlet connector(s) and EMI filtering to distribute AC power to the power supply
modules or the AC may plug directly into the modules. Three different configurations of the power sub-system
are also shown below in Figure 1.
mounting of the power supply.
Allow for 1.2mm
protrusion (x4)
Power Module
Configuration Options
Module Module
AC
Module
AC
Module
Module
SSI TPS Power Supply Configuration
No Fans in modules
AC inlets and EMI filter in cage
Optional Dual AC Inlets
Optional 3.3V, 5V DC/DC converters in cage
Vertical Power Supply Configuration
Fans in modules
AC inlets on modules
Dual AC Inlets
Optional 3.3V, 5V DC/DC converters in cage
Horizontal Power Supply Configuration
Fans in modules
AC inlets on modules
Dual AC Inlets
Optional 3.3V, 5V DC/DC converters in cage
Figure 1: Enclosure Drawing
- 7 -
SSI
ERP2U Power Supply Design Guide, V1.0
4.1 Optional Chassis Mounting Features
STATUS
Optional
The optional top access mounting method fastens to the system chassis via three mounting holes; two on the
exterior face and one with the tab on the interior face of the cage. There are also four rectangular cutouts on the
bottom of the cage. These are intended to drop over the top of rectangular features in the bottom of the chassis.
This will help position the cage and secure it laterally. The features in the chassis are shown below as a
reference.
.
4.2 Airflow Requirements
STATUS
Recommended
The power supply cooling, whether in the cage or the module, shall have a two-speed fan(s) and provide cooling
to both the supply and the system. During low-speed fan operation, the power supply must not exceed a noise
level of 43 dBa measured at one meter on all faces. At low fan speed, the power supply shall provide a minimum
of 6 CFM. At high fan speed, the power supply shall provide a minimum of 9 CFM.
- 8 -
SSI
ERP2U Power Supply Design Guide, V1.0
4.2.1 Redundant Cooling
STATUS
Recommended
It is recommended that the power supply cooling be redundant. This means the cooling device is located in the
hot swap power supply modules or there are redundant devices located on the cage.
4.3 Temperature Requirements
STATUS
Recommended
The power supply shall operate within all specified limits over the Top temperature range. All airflow shall pass
through the power supply and not over the exterior surfaces of the power supply.
Table 1: Thermal Requirements
ITEM DESCRIPTION MIN MAX UNITS
Top
T
non-op
Operating temperature range. 0 50
Non-operating temperature range. -40 70
°C
°C
The power supply must meet UL enclosure requirements for temperature rise limits. All sides of the power supply
with exception to the air exhaust side, must be classified as “Handle, knobs, grips, etc. held for short periods of
time only”.
5 AC Input Requirements
STATUS
Required
The power supply modules shall incorporate universal power input with active power factor correction, which shall
reduce line harmonics in accordance with the EN61000-3-2 and JEIDA MITI standards.
5.1 AC Inlet Connector
STATUS
Required
The AC input connector shall be an IEC 320 C-14 power inlet. This inlet is rated for 15 A/250 VAC. This
connector may be located on the module or on the cage.
5.2 Redundant AC Inlets
STATUS
Recommended
The power supply assembly may have dual redundant AC inlets. The power supply shall be able to operate over
its full, specified range of requirements with either or both AC input powered. If there is a loss of one AC inlet the
- 9 -
SSI
ERP2U Power Supply Design Guide, V1.0
power supplies shall continue to operate with no interruption of performance. It is required that all redundant
power supply modules be present to support redundant AC inlets.
5.3 AC Input Voltage Specification
STATUS
Required
The power supply must operate within all specified limits over the following input voltage range. Harmonic
distortion of up to 10% THD must not cause the power supply to go out of specified limits. The power supply shall
operate properly at 85 VAC input voltage to guarantee proper design margins.
Table 2: AC Input Rating
PARAMETER MIN RATED MAX 350W Max
Voltage (110) 90 V
Voltage (220) 180 V
Frequency 47 Hz 63 Hz
1 Maximum rated input current is measured at 100 VAC and 200 VAC.
100-127
rms
200-240
rms
V
rms
V
rms
140 V
264 V
5.5 A
rms
2.3 A
rms
Rated Input
Current
rms
rms
1
1
480W Max
Rated Input
Current
1
7.0 A
rms
1
3.5 A
rms
5.4 Efficiency
STATUS
Required
The power supply shall have a minimum efficiency shown in the table below for the different power ratings. The
power dissipated within the sub-system shall be kept to less than 150W. The sub-system shall meet the minimum
efficiency at 100VAC and maximum output load.
Table 3: Efficiency
Output
Power
350W 70%
Minimum
Efficiency
480W 77%
- 10 -
Loading...
+ 21 hidden pages
You need points to download manuals.
1 point = 1 manual.
You can buy points or you can get point for every manual you upload.