SPW35N60C3
CoolMOSTM Power Transistor
Features
• New revolutionary high voltage technology
• Ultra low gate charge
Product Summary
VDS@ T
R
DS(on),max
I
D
• Periodic avalanche rated
• Extreme dv /dt rated
• Ultra low effective capacitances
• Improved transconductance
Type Package Ordering Code Marking
j,max
650 V
0.1
34.6 A
PG -TO247
Ω
SPW35N60C3 PG -TO247 Q67040-S4673 35N60C3
Maximum ratings, at T
Parameter Symbol Conditions Unit
Continuous drain current
Pulsed drain current
Avalanche energy, single pulse
Avalanche energy, repetitive t
Avalanche current, repetitive t
Drain source voltage slope dv /dt
Gate source voltage
=25 °C, unless otherwise specified
j
I
D
TC=25 °C
T
1)
AR
AR
1),2)
1)
I
D,pulse
E
AS
E
AR
I
AR
TC=25 °C
ID=17.3 A, VDD=50 V
ID=34.6 A, VDD=50 V
I
V
V
GS
static V
=100 °C
C
=34.6 A,
D
=480 V, T j=125 °C
DS
Value
34.6
A
21.9
103.8
1500 mJ
1.5
34.6
50
A
V/ns
±20
V
GS
Power dissipation
Operating and storage temperature
Reverse diode dv/dt dv/dt 15 V/ns
6)
P
tot
T
, T
j
AC (f >1 Hz)
TC=25 °C
stg
±30
313
-55 ... 150
W
°C
Rev. 2. 4 P age 1 2005 -0 9 -2 1
SPW35N60C3
Parameter Symbol Conditions Unit
Values
min. typ. max.
Thermal characteristics
Thermal resistance, junction - case
Thermal resistance, junction ambient
Soldering temperature, wavesoldering
Electrical characteristics, at T
R
thJC
R
thJA
T
sold
=25 °C, unless otherwise specified
j
leaded - - 62
1.6 mm (0.063 in.)
from case for 10 s
- - 0.4 K/W
- - 260 °C
Static characteristics
Drain-source breakdown voltage
Avalanche breakdown voltage
V
(BR)DSSVGS
V
(BR)DS
=0 V, I D=250 µA
VGS=0 V, ID=34.6 A
600 - - V
- 700 -
Gate threshold voltage
Zero gate voltage drain current
Gate-source leakage current
Drain-source on-state resistance
Gate resistance
Transconductance
V
I
I
R
R
g
GS(th)
DSS
GSS
DS(on)
G
fs
VDS=VGS, ID=1.9 mA
VDS=600 V, VGS=0 V,
T
=25 °C
j
V
=600 V, V GS=0 V,
DS
T
=150 °C
j
VGS=20 V, VDS=0 V
VGS=10 V, ID=21.9 A,
T
=25 °C
j
V
=10 V, I D=21.9 A,
GS
T
=150 °C
j
f =1 MHz, open drain
|V DS|>2|I D|R
I
=21.9 A
D
DS(on)max
,
2.1 3 3.9
- 0.1 1 µA
- - 100
- - 100 nA
- 0.081 0.1
Ω
- 0.2 -
- 0.6 -
-3 6- S
Rev. 2. 4 P age 2 2005 -0 9 -2 1
SPW35N60C3
Parameter Symbol Conditions Unit
Values
min. typ. max.
namic characteristics
D
Input capacitance
Output capacitance
Reverse transfer capacitance
Effective output capacitance, energy
related
3)
Effective output capacitance, time
related
4)
Turn-on delay time
Rise time
Turn-off delay time
Fall time
C
C
C
C
C
t
t
t
t
iss
oss
rss
o(er)
o(tr)
d(on)
r
d(off)
f
=0 V, V DS=25 V,
V
GS
f =1 MHz
V
=0 V, V DS=0 V
GS
to 480 V
V
=480 V,
DD
V
=10 V, I D=34.6 A,
GS
R
=3.3 Ω
G
- 4500 - pF
- 1500 -
- 100 -
- 180 -
- 324 -
-1 0- n s
-5-
-7 0-
-1 0-
Gate Charge Characteristics
Gate to source charge
Gate to drain charge
Gate charge total
Gate plateau voltage
1)
Pulse width limited by maximum temperature T
2)
Repetitive avalanche causes additional power losses that can be calculated as P AV=E AR*f.
3)
C
is a fixed capacitance that gives the same stored energy as C
o(er)
4)
C
is a fixed capacitance that gives the same charging time as C
o(tr)
6 )
ISD<=ID, di/dt<=2 00A/us, V
Identical low-side and high-side switch.
DClink
Q
Q
Q
V
=400V, V
gs
=480 V,
V
j,max
DD
I
=34.6 A,
D
V
=0 to 10 V
GS
only
gd
g
plateau
peak<VBR, DSS
, Tj<T
-1 8- n C
-7 0-
- 150 200
- 5.3 - V
while V DS is rising from 0 to 80% V
oss
while V DS is rising from 0 to 80% V
oss
.
j,max
DSS.
DSS.
Rev. 2. 4 P age 3 2005 -0 9 -2 1
SPW35N60C3
Parameter Symbol Conditions Unit
Values
min. typ. max.
Reverse Diode
Diode continuous forward current
Diode pulse current
Diode forward voltage
Reverse recovery time
Reverse recovery charge
Peak reverse recovery current
T
pical Transient Thermal Characteristics
I
S
I
S,pulse
V
SD
t
rr
Q
I
rrm
T
=25 °C
C
VGS=0 V, IF=34.6 A,
T
=25 °C
j
=480 V, I F=I S,
V
rr
R
di
/dt =100 A/µs
F
- - 34.6 A
- - 103.8
- 0.95 1.2 V
- 600 - ns
-2 1- µ C
-9 0- A
Symbol Value Unit Symbol Value Unit
typ. typ.
R
th1
R
th2
R
th3
R
th4
R
th5
0.00441 K/W C
0.00608 C
0.0341 C
0.0602 C
0.0884 C
th1
th2
th3
th4
th5
C
th6
0.00037 Ws/K
0.00223
0.00315
0.0179
0.098
5)
4.4
5)
C
models the additional heat capacitance of the package in case of non-ideal cooling. It is not needed if
th6
R
=0 K/W.
thCA
Rev. 2. 4 P age 4 2005 -0 9 -2 1
1 Power dissipation 2 Safe operating area
P
=f(T C) I D=f(V DS); T C=25 °C; D =0
tot
parameter: t
p
SPW35N60C3
[A]
D
I
10
10
10
10
10
3
2
1
0
-1
0
10
limited by on-state
resistance
10
1
VDS [V]
400
300
[W]
200
tot
P
100
0
0 40 80 120 160
TC [°C]
3 Max. transient thermal impedance 4 Typ. output characteristics
DC
10 ms
10
2
1 ms
10 µs
100 µs
1 µs
10
3
I
=f(V DS); T j=25 °C I D=f(V DS); T j=25 °C
D
parameter: D=t
0
10
-1
10
/T parameter: V
p
0.5
0.2
GS
100
80
60
10
0.1
0.05
[A]
D
I
40
-2
0.02
0.01
single pulse
[K/W]
thJC
Z
20
10
-3
10
10
-4
-5
-6
10
10
-3
10
-2
10
-1
10
0
0
0 5 10 15 20
tp [s]
20 V
7 V
6.5 V
6 V
5.5 V
5 V
4.5 V
4 V
VDS [V]
Rev. 2.4 Page 5 2005 -09 - 21
SPW35N60C3
5 Typ. output characteristics 6 Typ. drain-source on-state resistance
I
=f(V DS); T j=150 °C R
D
parameter: V
GS
parameter: V
=f(I D); T j=150 °C
DS(on)
GS
60
50
7 V
6.5 V
20 V
6 V
5.5 V
0.8
0.7
0.6
4 V
4.5 V
5 V
40
0.5
]
Ω
[
DS(on)
R
0.4
0.3
[A]
D
I
30
20
5 V
4.5 V
0.2
10
0
0 5 10 15 20
VDS [V]
4 V
0.1
0
0 1 02 03 04 05 06 0
ID [A]
7 Drain-source on-state resistance 8 Typ. transfer characteristics
5.5 V
6 V
20 V
R
=f(T j); I D=21.9 A; V GS=10 V I D=f(V GS); |V DS|>2|I D|R
DS(on)
parameter: T
0.3
0.25
0.2
]
Ω
[
0.15
DS(on)
R
0.1
98 %
typ
0.05
0
-60 -20 20 60 100 140 180
Tj [°C]
[A]
D
I
100
80
60
40
20
0
DS(on)max
j
25 °C
150 °C
024681 0
VGS [V]
Rev. 2.4 Page 6 2005 -09 - 21
SPW35N60C3
9 Typ. gate charge 10 Forward characteristics of reverse diode
V
=f(Q
GS
parameter: V
); I D=34.6 A pulsed I F=f(V SD)
gate
DD
parameter: T
j
12
10
3
10
2
10
8
[V]
6
GS
V
120 V
480 V
[A]
F
I
10
150 °C
1
4
0
10
2
0
0 50 100 150 200
Q
[nC]
gate
-1
10
0 0.5 1 1.5 2 2.5
11 Avalanche SOA 12 Avalanche energy
25 °C
VSD [V]
25 °C, 98%
150 °C, 98%
I
=f(t AR) E AS=f(T j); I D=17.3 A; V DD=50 V
AR
parameter: T
40
30
[A]
20
AV
I
10
j(start)
1600
1200
800
[mJ]
AS
E
125 °C
25 °C
400
0
3
10
10
-2
-3
10
-1
10
0
10
1
10
2
10
0
20 60 100 140 180
tAR [µs]
Tj [°C]
Rev. 2.4 Page 7 2005 -09 - 21
13 Drain-source breakdown voltage 14 Typ. capacitances
SPW35N60C3
V
BR(DSS)
=f(T j); I D=0.25 mA C =f(V DS); V GS=0 V; f =1 MHz
700
660
[V]
620
BR(DSS)
V
580
540
-60 -20 20 60 100 140 180
Tj [°C]
5
10
4
10
3
10
[pF]
C
2
10
1
10
0 100 200 300 400 500
Ciss
Coss
Crss
VDS [V]
15 Typ. C
E
= f (VDS)
oss
30
25
20
[µJ]
15
oss
E
10
5
0
stored energy
oss
0 100 200 300 400 500 600
VDS [V]
Rev. 2.4 Page 8 2005 -09 - 21
Definition of diode switching characteristics
SPW35N60C3
Rev. 2.4 Page 9 2005 -09 - 21
PG-TO-247-3-1
SPW35N60C3
Rev. 2.4 Page 10 2005 -09 - 21
SPW35N60C3
Published by
Infineon Technologies AG
81726 München
Germany
Infineon Technologies AG 2006
All Rights Reserved.
Attention please!
The information herein is given to describe certain components and shall not be considered as
warranted characteristics.
Terms of delivery and rights to technical change reserved.
We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement,
regarding circuits, descriptions and charts stated herein.
Infineon Technologies is an approved CECC manufacturer.
Information
For further information on technology, delivery terms and conditions and prices, please contact your
nearest Infineon Technologies office in Germany or our Infineon Technologies representatives worldwide
(see address list).
Warnings
Due to technical requirements, components may contain dangerous substances.
For information on the types in question, please contact your nearest Infineon Technologies office.
Infineon Technologies' components may only be used in life-support devices or systems with the
expressed written approval of Infineon Technologies if a failure of such components can reasonably
be expected to cause the failure of that life-support device or system, or to affect the safety or
effectiveness of that device or system. Life support devices or systems are intended to be implanted
in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail,
it is reasonable to assume that the health of the user or other persons may be endangered.
Rev. 2.4 Page 11 2005 -09 - 21