HP HCPL-3000 Datasheet

Power Bipolar Transistor Base Drive Optocoupler
Technical Data
H
HCPL-3000

Features

• High Output Current
IO2 (2.0 A Peak, 0.6 A Continuous) IO1 (1.0 A Peak, 0.5 A Continuous)
• 1.5 kV/µs Minimum Common
Mode Rejection (CMR) at VCM = 600 V
• Wide VCC Range (5.4 to 13 Volts)
• 2 µs Typical Propagation Delay
• Recognized under UL 1577 for Dielectric Withstand Proof Test Voltage of 5000 Vac, 1 Minute

Applications

• Isolated Bipolar Transistor Base Drive
• AC and DC Motor Drives
• General Purpose Industrial Inverters
• Uninterruptable Power Supply

Description

The HCPL-3000 consists of a Silicon-doped GaAs LED optically coupled to an integrated circuit with a power output stage. This optocoupler is suited for driving power bipolar transistors and power Darlington devices used in motor control inverter applica­tions. The high peak and steady state current capabilities of the output stage allow for direct interfacing to the power device without the need for an interme­diate amplifier stage. With a CMR

Functional Diagram

HCPL-3000
V
ANODE
CATHODE
1
2
3
4
8
7
GND
Q2
6
V
Q1
5
V
rating of 1.5 kV/µs this optocoup­ler readily rejects transients found in inverter applications.
The LED controls the state of the output stage. Transistor Q2 in the output stage is on with the LED off, allowing the base of the power device to be held low. Turning on the LED turns off transistor Q2 and switches on transistor Q1 in the output stage which provides current to drive the base of a power bipolar device.
CC
TRUTH TABLE LED
OUTPUT
ON
HIGH LEVEL
OFF
O2
O1
LOW LEVEL
Q1 ON OFF
Q2 OFF ON
THE USE OF A 0.1µF BYPASS CAPACITOR CONNECTED BETWEEN PINS 8 AND 7 IS RECOMMENDED. ALSO, CURRENT LIMITING RESISTORS ARE RECOMMENDED (SEE FIGURE 1, NOTE 2, AND NOTE 7).
CAUTION: It is advised that normal static precautions be taken in handling and assembly of this component to prevent damage and/or degradation which may be induced by ESD.
5965-3584E
1-329

Schematic

1
ANODE
CATHODE
I
+
-
2

Outline Drawing

I
CC
V
CC
8
F
Q2
Q1
GND
7
I
O2
V
O2
6
I
O1
V
O1
5
TYPE
NUMBER
DATE
CODE
0.50
(0.020)
TYP
2.90 (0.114)
3.90 (0.154)
0.65 (0.026)
1.05 (0.041)
87 65
12 34
2.29 (0.090)
2.79 (0.110)
0.90 (0.035)
1.50 (0.059)
HP XXXX
YYWW
9.16 (0.361)
10.16 (0.400)
6.00 (0.236)
7.00 (0.276)
3.00 (0.118)
4.00 (0.157)
2.55 (0.100)
3.55 (0.140)
0.40 (0.016)
0.60 (0.024)
7.32 (0.288)
7.92 (0.312)
ANODE
CATHODE
1
2
3
4
HCPL-3000
0°
13°
0.16 (0.006)
0.36 (0.014)
0°
13°
V
8
CC
7
GND
Q2
6
V
O2
Q1
5
V
O1

Regulatory Information

The HCPL-3000 has been approved by the following organizations:

Demonstrated ESD Performance

Human Body Model: MIL-STD-
883 Method 3015.7: Class 2
Machine Model: EIAJ IC-121-
UL
Recognized under UL 1577, Component Recognition Program,
1988 (1988.3.28 Version 2), Test Method 20, Condition C: 1200 V
File E55361.
1-330

Insulation and Safety Related Specifications

Parameter Symbol Value Units Conditions
Min. External Air Gap L(IO1) 6.0 mm Shortest distance measured through air, between (External Clearance) two conductive leads, input to output
Min. External Tracking L(IO2) 6.0 mm Shortest distance path measured along outside surface Path (External Creepage) of optocoupler body between the input and output leads
Min. Internal Plastic 0.15 mm Through insulation distance conductor to conductor Gap (Internal Clearance) inside the optocoupler cavity

Absolute Maximum Ratings

Parameter Symbol Min. Max. Unit Conditions Fig. Note
Storage Temperature T Operating Temperature T Input Continuous Current I
Reverse Voltage V Supply Voltage V Output 1 Continuous Current I
S
A
F
R
CC
O1
Peak Current 1.0 A Pulse Width < 5 µs, 1
Voltage V Output 2 Continuous Current I
O1
O2
Peak Current 2.0 A Pulse Width < 5 µs, 12 1
Output Power Dissipation P Total Power Dissipation P
O
T
Lead Solder Temperature 260° C for 10 s, 1.0 mm below seating plane
-55 125 °C
-20 80 °C
25 mA 9 1
6VT
18 V
0.5 A 10,11 1
18 V
0.6 A 10,11,12 1
500 mW 10 1 550 mW 11 1
= 25°C
A
Duty cycle = 1%
Duty cycle = 1%

Recommended Operating Conditions

Parameter Symbol Min. Max. Units
Power Supply Voltage V Input Current (ON) I Input Current (OFF) I Operating Temperature T
*The initial switching threshold is 5 mA or less.
CC
F(ON)
F(OFF)
A

Recommended Protection for Output Transistors

During switching transitions, the output transistors Q1 and Q2 of the HCPL-3000 can conduct large
amounts of current. Figure 1 describes a recommended circuit design showing current limiting resistors R1 and R2 which are necessary in order to prevent
5.4 13 V 8* 20 mA
- 0.2 mA
-20 80 °C
damage to the output transistors Q1 and Q2 (see Note 7). A bypass capacitor C1 is also recommended to reduce power supply noise.
1-331
+5 V
CONTROL
INPUT
TTL OR LSTTL
1
240
TOTEM  POLE  OUTPUT  GATE
1
2
R1 = 5 - 250  R
= 1 - 2
2
 BYPASS CAPACITOR C
HCPL-3000
= 0.1 µF
1
8
C
1
Q2
Q1
7
6
R
2
5
R
1
I
O1
V (+ 5.4 V + 13 V)
CC
POWER TRANSISTOR MODULE
+ HVDC
3-PHASE
AC
- HVDC
Figure 1. Recommended Output Transistor Protection and Typical Application Circuit.
Electrical Specifications
Over recommended temperature (TA = -20°C to +80°C) unless otherwise specified.
Parameter Sym. Min. Typ. Max. Units Test Conditions Fig. Note
Input Forward Voltage V
Input Reverse Current I Input Capacitance C
Output 1 Low Level V
F
R
IN
O1L
Voltage RL2 = 10 , IF = 5 mA 17 Leakage I
O1L
Current IF = 0 mA
Output 2 High Level V
O2H
Voltage IF = 5 mA, VO1 = 6 V 19 Low Level V
O2L
Voltage IF = 0 mA 21 Leakage I
O2L
Current VO2 = 13 V
Supply High Level I
CCH
Current
Low Level I
Low to High I
CCL
FLH
Threshold Input 6, 14, 3 Current 0.2 - 5.0 mA VCC = 6 V, RL1 = 5 ,15
- 1.1 1.4 V IF = 5 mA, TA = 25°C13
0.6 0.9 - V IF = 0.2 mA, TA = 25°C
--10µAVR = 3 V, TA = 25°C
- 30 250 pF VF = 0 V, f = 1 kHz, TA = 25°C
- 0.2 0.4 V VCC = 6 V, IO1 = 0.4 A, 2, 16, 2
- - 200 µAVCC = VO1 = 13 V, VO2 = 0 V, 4
4.5 5.0 - V VCC = 6 V, IO2 = -0.4 A 3, 18, 2
- 0.2 0.4 V VCC = 6 V, IO2 = 0.5 A, 20,
- - 200 µAVCC = 13 V, IF = 5 mA, 5
-913mAT
--17 V
-1115mAT
--20 V
= 25°C222
A
= 6 V, IF = 5 mA
CC
= 25°C23
A
= 6 V, IF = 0 mA
CC
0.3 1.5 3.0 mA TA = 25°C
R
= 10
L2
1-332
Switching Specifications (T
= 25°C)
A
Parameter Sym. Min. Typ. Max. Units Test Conditions Fig. Note
Propagation Delay t
PLH
-25µsVCC = 6 V, IF = 5 mA, 7, 2, 6
Time to High Output RL1 = 5 , RL2 = 10 24, Level 25
Propagation Delay Time t
PHL
-25
to Low Output Level Rise Time t Fall Time t
r
f
- 0.2 1
- 0.1 1
Output High Level |CMH| 1500 - - V/µsVCM = 600 V Peak,82 Common Mode IF = 5mA, RL1 = 470 , Transient Immunity RL2 = 1 k, V
02H
= 0.5 V
Output Low Level |CML| 1500 - - V/µsVCM = 600 V Peak, Common Mode IF = 0 mA, RL1 = 470 , Transient Immunity RL2 = 1 k, V
= 0.5 V
02L

Package Characteristics

Parameter Sym. Min. Typ. Max. Units Test Conditions Fig. Note
Input-Output Momentary V Withstand Voltage* t = 1 min., TA = 25°C
Resistance R (Input-Output) RH = 40% to 60%
Capacitance C (Input-Output)
*The Input-Output Momentary Withstand Voltage is a dielectric voltage rating that should not be interpreted as an input-output continuous voltage rating. For the continuous voltage rating refer to the VDE 0884 Insulation Characteristics Table (if applicable), your equipment level safety specification, or HP Application Note 1074, “Optocoupler Input-Output Endurance Voltage.”
5000 V rms RH = 40% to 60%, 4, 5
ISO
I-O
I-O
5x101010
1.2 pF f = 1 MHz 4
11
V
= 500 V, TA = 25°C, 4
I-O
Notes:
1. Derate absolute maximum ratings with ambient temperatures as shown in Figures 9, 10, and 11.
2. A bypass capacitor of 0.01 µF or more is needed near the device between VCC and GND when measuring output and transfer
characteristics.
3. I
represents the forward current when the output goes from low to high.
FLH
4. Device considered a two terminal device; pins 1-4 are shorted together and pin 5-8 are shorted together.
5. For devices with minimum V
insulation test voltage 6000 V rms for one second (leakage current detection limit, I
6. The t
7. R1 sets the base current (I
and t
PLH
is turning off. For more applications and circuit design information see Application Note “Power Transistor Gate/Base Drive Optocouplers.”
propagation delays are measured from the 50% level of the input pulse to the 50% level of the output pulse.
PHL
specified at 5000 V rms, in accordance with UL1577, each optocoupler is proof-tested by applying an
ISO
in Figure 1) supplied to the power bipolar device. R2 limits the peak current seen by Q2 when the device
O1
200 µA).
I-O
1-333
HCPL-3000
V
CC
GND
8
+
V
CC
-
I
F
7
R
Q2
Q1
L2
6
V
O2
5
V
O1
V
O1L
+
I
O1
1
I
F
2
3
4
HCPL-3000
V
CC
GND
8
+
V
CC
7
Q2
6
V
O2
Q1
-
V
O2H
I
+
O2
5
V
O1
1
2
3
4
Figure 2. Test Circuit for Low Level Output Voltage V
I
F
I
F
SWEEP
HCPL-3000
1
2
3
4
HCPL-3000
1
2
3
4
V
GND
V
GND
CC
8
+
V
CC
-
7
Q2
6
V
O2
Q1
V
CC
Q2
V
Q1
V
I
5
O1
O1L
O1L
.
8
+
V
CC
7
6
O2
5
O1
-
R
V
L2
O2
+
R
L1
Figure 6. Test Circuit for Threshold Input Current I
FLH
O1L
Figure 3. Test Circuit for High Level Output Voltage V
.
O2H
.
HCPL-3000
V
CC
GND
8
+
V
CC
-
7
Q2
V
Q1
I
6
O2
O2L
5
V
O1
.Figure 4. Test Circuit for Leakage Current I
O2L
1
I
F
2
3
4
Figure 5. Test Circuit for Leakage Current I
HCPL-3000
V
IN
I
F
t = t = 0.01µs
rf
Z = 50
o
47
1
2
3
4
V
GND
CC
8
7
Q2
6
V
O2
Q1
5
V
O1
+
V
CC
-
R
R
V
L2
O2
+
L1
50%
V WAVE FORM
IN
t
PLH
.
t
PHL
90% 50%
V WAVE FORM
02
10%
1-334
Figure 7. Test Circuit for t
, tr and tf.
PHL
t
f
t
r
, t
PLH
I
F
SW
AB
V
CM
CM , V
HO2
SW AT A, I = 5 mA
F
CM , V
LO2
SW AT B, I = 0 mA
F
HCPL-3000
1
2
3
4
V
V
V
GND
CM
O2L
CC
8
V
V
CC
O2
+
V
GND
V
V
GND
CM
O2L
O2H
+
-
30
25
F
20
15
10
5
LED FORWARD CURRENT I (mA)
0
-20 0 25 50 75 AMBIENT TEMPERATURE T (°C)
100
80
A
R
L1
7
Q2
Q1
+
R
L2
6
V
O2
5
V
O1
V
O2H
Figure 9. LED Forward Current vs. Ambient Temperature.Figure 8. Test Circuit for CMH and CML.
600
(mW)
o
500
400
300
200
100
IC OUTPUT POWER DISSIPATION P
0
-20 0 25 50 75
AMBIENT TEMPERATURE TA (°C)
100
80
Figure 10. Maximum IC Output Power Dissipation vs. Ambient Temperature.
600 550 500
(mW)
tot
400
300
(LED AND IC)
200
100
TOTAL POWER DISSIPATION P
0
-20 0 25 50 75 AMBIENT TEMPERATURE T
80
(°C)
A
Figure 11. Maximum Total Power Dissipation vs. Ambient Temperature.
10.0
5.0
02P
I MAX (PULSE)
02
2.0
1.0 I MAX (CONTINUOUS)
02
0.5
0.2
PEAK OUTPUT 2 CURRENT I (A)
0.1
100
0.2 0.5 1.0 2.0 5.0 10.0 20.0
DC (T = 80°C)
100 ms• 10 ms• 1 ms•
A
V (MAX)
CC
OUTPUT 2 VOLTAGE V (V)
Figure 12. Typical Peak Output 2 Current vs. Output 2 Voltage (Safe Operating Area Q2).
• SINGLE OSC. PULSE
T = 25°C
A
I •
S
DC
02
1-335
500
TA = 75°C
200
50°C 25°C
100
(mA)
F
0°C
50
-20°C 20 10
5
FORWARD CURRENT I
2 1
0 0.5 1.0 1.5 2.0 2.5 3.0
FORWARD VOLTAGE V
1.2
1.1
1.0
0.9
0.8
NORMALIZED THRESHOLD INPUT CURRENT
3.5
(V)
F
0.7 4
6 8 10 12 14
SUPPLY VOLTAGE V (V)
T = 25°C
A
CC
1.6 VCC = 6 V
1.4
1.2
1.0
0.8
NORMALIZED THRESHOLD INPUT CURRENT
0.6
-25 0 25 50 75 100 AMBIENT TEMPERATURE TA (°C)
Figure 13. Typical Forward Current vs. Forward Voltage.
0.4
(V)
01L
LOW LEVEL OUTPUT 1 VOLTAGE V
V = 6 V
CC
R = 10
L2
0.2 T = 25°C
A
I = 5 mA
0.1
F
0.05
0.02
0.01
0.005
0.01 0.02 0.05 0.1 0.2 0.5 1.0 OUTPUT 1 CURRENT I
(A)
01
Figure 16. Typical Low Level Output 1 Voltage vs. Output 1 Current.
Figure 14. Normalized Low to High Threshold Input Current vs. Supply Voltage.
0.5
01L
0.4
0.3 I = 0.5 A
01
0.4 A
0.2
0.1
0.1 A
LOW LEVEL OUTPUT 1 VOLTAGE V (V)
0
-25 0 25 50 75 100 AMBIENT TEMPERATURE T (°C)
V = 6 V
CC
R = 10
L2
I = 5 mA
F
A
Figure 17. Typical Low Level Output 1 Voltage vs. Ambient Temperature.
Figure 15. Normalized Low to High Threshold Input Current vs. Ambient Temperature.
5.4
02L
5.3
5.2
5.1
5.0
4.9
HIGH LEVEL OUTPUT 2 VOLTAGE V (V)
4.8 0 -0.1 -0.2 -0.3 -0.4 -0.5 -0.6
OUTPUT 2 CURRENT I (A)
V = 6 V
CC
T = 25°C
A
I = 5 mA
F
02
Figure 18. Typical High Level Output 2 Voltage vs. Output 2 Current.
5.4
(V)
02H
5.3
I = -0.1 A
5.2
5.1
5.0
4.9
HIGH LEVEL OUTPUT 2 VOLTAGE V
4.8
-25 0 25 50 75 100
O2
-0.4 A
-0.5 A
AMBIENT TEMPERATURE TA (°C)
V = 6 V
CC
I = 5 mA
F
Figure 19. Typical High Level Output 2 Voltage vs. Ambient Temperature.
1-336
0.4 V = 6 V
CC
T = 25°C
A
02L
0.2
I = 0 mA
F
0.1
0.05
0.02
0.01
0.005
LOW LEVEL OUTPUT 2 VOLTAGE V (V)
0.01 0.02 0.05 0.1 0.2 0.5 1.0 OUTPUT 2 CURRENT I (A)
02
Figure 20. Typical Low Level Output 2 Voltage vs. Output 2 Current.
0.5
02L
0.4
0.3
0.2
0.1
LOW LEVEL OUTPUT 2 VOLTAGE V (V)
0
-25 0 25 50 75 100
I = 0.6 A
O2
0.5 A
0.1 A
AMBIENT TEMPERATURE TA (°C)
V = 6 V
CC
I = 0 mA
F
Figure 21. Typical Low Level Output 2 Voltage vs. Ambient Temperature.
14
I = 5 mA
F
12
CCH
10
8
6
HIGH LEVEL SUPPLY CURRENT I (mA)
4
4 6 8 101214
SUPPLY VOLTAGE V (V)
T = -20°C
A
25°C
80°C
CC
16
I = 0 mA
F
14
CCL
12
10
8
LOW LEVEL SUPPLY CURRENT I (mA)
6
4 6 8 101214
SUPPLY VOLTAGE V (V)
T = -20°C
A
25°C
80°C
CC
6
5
PHL PLH
4
3
2
1
T = 80°C
PROPAGATION DELAY TIME t , t (µs)
0
0 5 10 15 20 25
A
FORWARD CURRENT I (mA)
V = 6 V
CC
R = 5
L1
R = 10
L2
I = 5 mA
F
t
PLH
25°C
T = 80°C
F
t
PHL
A
25°C
-20°C
-20°C
Figure 22. Typical High Level Supply Current vs. Supply Voltage.
5
4
PHL PLH
3
2
1
PROPAGATION DELAY TIME t , t (µs)
0
-25 0 25 50 75 100
AMBIENT TEMPERATURE TA (°C)
V = 6 V
CC
R = 5
L1
R = 10
L2
I = 5 mA
F
t
PLH
t
PHL
Figure 25. Typical Propagation Delay Time vs. Ambient Temperature.
Figure 23. Typical Low Level Supply Current vs. Supply Voltage.
Figure 24. Typical Propagation Delay Time vs. Forward Current.
1-337
Loading...