HP 6236A, 6237A Operating And Service Manual

Page 1
HP Archive
This vintage Hewlett Packard document was
preserved and distributed by
www.hparchive.com
Please
visit
us
Scanned by on-line curator: Tony Gerbic
** For FREE Distribution Only ***
Page 2
HP
Part No. 5950-1737
TRIPLE
OUTPUT
POWER
SUPPLY
MODELS
6236A
AND
6237
A
OPERATING
AND
SERVICE
MANUAL
FOR;
MODEL 6236A, SERIALS 1507A-00141
AND
ABOVE
MODEL 6237A, SERIALS 1507A-00101
AND
ABOVE
*
For Serials above 1507A-00141or1507A-00101,
a change page may be included.
Hewlett-Packard
Printed: February 1975
Page 3
tions
in additiolatothe
standard
104-127Vac
47-63Hz
unit
andisfurnished
withapermanently
attached
5-foot
3-wire
grounding-type
line
cord.
1-8 SPECIFICATIONS
1-9
Table
1-1
lists
detailed
specifications
for
the
power
supply.
SECTION I
GENERAL
INFORMATION
I
INTRODUCTION
1-1
1-2 This manual covers
two
triple
output
power
supply
models,
the
6236A
and
the
6237
A. Both models are
com-
pact
general
purpose
bench
supplies
that
are
particularly
useful for
powering
developmentalICcircuits,
both
linear
and
digital. Unless
one
modelorthe
otherisspecifically
identified,
all
informationinthis
manual appliestoboth
the
6236A
and
the
6237
A.
1-10 OPTIONS
---
CAUTION
---
Carefully read SectionsIIand
IIIofthis
manual before
attempting
to operate the
power
supply.
1-11
Options
are
factory
modificationsofa
standard
instrument
that
are
requestedbythe
customer.
The
follow-
ing
options
are available
for
the
instrument
coveredbythis
manual.
OPTION NO.
OESCR
IPTION
---CAUTION---
1-13 ACCESSORIES
The
user can
convertaninstrument
from
one
line voltage
optiontoanother
by following
the
instructionsinPara-
graph 3-4.
1-12 Before
the
supplyisshipped
from
the
factory,
an
internal line voltage
selector
switchisset
and
the
proper
fuse installed
for
the
line voltage specifiedonthe
order.
A
label
on
the
rear
heat
sink identifies this line voltage
option.
Input
Power:
87-106Vac,47-63Hz, single-phase. Input
Power:
191-233Vac,47-63Hz, single-phase. Input
Power:
208-250Vac,
47-63Hz,
single-phase.
220
240
100
Before
applying
powertothe supply, make cer-
tain
that
its line voltage selector switch (S3)
is
set
for
the line voltage to be
used.
(See
CA UTION
notice
in Paragraph 3-2
for
additional
information
on S3).
1-5
All
controls,
meters,
and
output
terminals
are loca-
tedonthe
front
panel.
Two
single-turn
potentiometers
con-
trol
the
+6V
(or
+18V)
and
±20V
outputs.Athree-position
meter
switch selects
oneofthe
supplies for displayofits
voltage
and
currentontwo
dual-range meters.
The
+6V
(or +18V)
and
±20V
outputs
share a
common
output
ter-
minal which
is
isolated
from
chassis
ground.
1-3 DESCRIPTION
1-4 Both models have a dual
outputof0to±20
volts
at0to
0.5amps.
The
voltagesofthe
two
20-volt
outputs
are
adjusted
by asingle
front-panel
control
and
track
one
another
within1%.
The
+20V
and
-20V
outputs
can
also be
used
in
series for a single 0to40V
0.5A
output.
The
third
output
differsinthe
two
models
andis0to+6 voltsatup
to
2.5ampsinthe
6236A
and0to
+18
voltsat0to1
amp
in
the
6237
A /
1-6
All
outputs
are
protected
against
overloadorshort-
circuit
damage.
The
+18V
outputinthe
6237Aand
the
±20V
outputsinboth
models are
protectedbycircuits
which limit
output
currentto110%ofits nominal
maximum.
The overload
protection
circuit
for
the
+6V
outputinthe
6236A
has a
current
foldback
characteristic
which
reduces
the
output
current
as an overload increases until only 1A
flows
throughashort
circuit.
For
this
output,
the
current
limit
dependsonthe
output
terminal
voltage
and
varies
linearly
between
2.75Aat6V
and1Aat
zero
volts.
1-7 The
instrumentisavailableinthree
line voltage op-
1-14
The
accessories listed
below
maybeordered
from
your
local
Hewlett-Packard
field sales
office
either
1-1
Page 4
with
the
power
supplyorseparately.
(Refertothe
list
at
the
rearofthe
manual
for
addresses.)
HP
PART
NO.
14513A
14523A
DESCRIPTION
Rack
Mounting
Kit
for
mounting
one
3
1/2"
high
supply
in a
standard
19"
relay rack.
Rack
Mounting
Kit
for
mounting
two
3
1/2"
high
supplies
sidebysideina
standard
19"
relay rack.
ture.
The
first
two
digits
indicate
the
year
(10=1970,
11
=
1971,
etc.)
the
second
two
digits
indicate
the
week,
and
the
letter"
A"
designates
the
U.S.A. as
the
countryofmanufac-
ture.
The
second
partisthe
power
supply
serial
number;
a
different
sequential
numberisassignedtoeach
power
sup-
ply,
starting
with
001
01.
1-17
If
the
serial
numberonyour
instrument
does
not
agree
with
thoseonthe
title
pageofthe
manual,
Change
Sheets
supplied
with
the
manualorManual Backdating
Changes
define
the
difference
between
your
instrument
and
the
instrument
describedbythis
manual.
1-15
INSTRUMENT AND
MANUAL
IDENTIFICATION
1-18 ORDERING
ADDITIONAL
MANUALS
1-16
Hewlett-Packard
power
supplies
are
identifiedbya
two
part
serial
number.
The
first
partisthe
serial
number
prefic, a
number-letter
combination
that
denotes
the
date
ofasignificant
design
change
and
the
countryofmanufac-
1-19
One
manualisshipped
with
each
power
supply.
Additional
manuals
maybepurchased
from
your
local Hew--
lett-Packard field
office
(see
the
listatthe
rearofthis
manual
for
addresses).
Specify
the
model
number,
serial
number
prefix,
and
theHPPart
number
providedonthe
title
page.
NOTE
Table
1-1.
Specifications,
Models
6236A
and
6237
A
TRACKING:
The
+20V
and
-20V
outputs
track
within1%.
Specifications
applytoboth
models
unless otherwise indicated.
INPUT POWER:
Standard
Option:
104:127Vac
(120Vac
nominal),
47-
63Hz,
single-phase, 112W,
140VA
(Other
line voltage
options
are listed in Paragraph 1-11.)
DC
OUTPUT
AND
OVERLOAD
PROTECTION:
o
to
±20V
Outputs:
Maximum
rated
output
current
is
0.5A.
Short
circuit
output
currentis0.55A
±5%
and
a
fixed
current
limit
circuit
limits
the
outputofeach
sup-
ply
to
this
maximumatany
output
voltage
setting.
Unbal-
anced
loads
within
current
rating are
permitted.
Model
6236A
o
to
+6V
Output:
Maximum
rated
output
currentis2.5A
at
6V.
The
maximum
available
output
current
decreases
with
the
output
voltage
setting.Acurrent
foldback
current
limits
the
outputto2.75A
±5%at6 volts and,
with
decreasing
voltage,
reduces
the
current
limit
linearlyto1A ±15%atzero
volts
(short
circuited).
Model
6237A
o
to
+18V
Output:
Maximum
rated
output
current
is
1.0A.
Short
circuit
output
currentis1.1 A ±5%
andafixed
current
limit
circuit
limits
the
outputtothis
maximum
at
any
output
voltage
setting.
1-2
LOAD
EFFECT
(Load
Regulation):
All
Outputs:
Less
than
0.01 % plus
2mV
for
a full
load
tonoload
changeinoutput
current.
SOURCE
EFFECT
(Line
Regulation):
All
Outputs:
Less
than
0.01%
plus
2mV
for
any
line
voltage
change
within
rating.
PARD
(Ripple
and
Noise):
All
Outputs:
Less
than
0.35mV
rms
and
1.5mV
p-p
(20
Hito20
MHz).
DRIFT
(Stability):
All
Outputs:
Less
than
0.1 % plus
5mV(0to20Hz)
during8hoursatconstant
line,
load,
and
ambient
after
an
initial
warm-up
timeof30
minutes.
LOAD
TRANSIENT
RECOVERY
TIME:
All
Outputs:
Less
than
50psec
for
output
recovery
to
within
15mVofnominal
output
voltage
following
a load
change
from
full
loadtohalf load (or vice versa).
OUTPUT
VOLTAGE
OVERSHOOT:
All
Outputs:
During
turn-onorturn-offofac
power,
output
plus
overshoot
will
not
exceed
1V if
the
output
controlisset
for
less
than1V.Ifthe
controlisset
for
1V
or
higher,
thereisno
overshoot.
Page 5
Table 1-1. Specifications, Models
6236A
and
6237A
(Continued)
TEMPERATURE
COEFFICIENT:
All
Outputs:
Less
than 0.02% plus 1mVvoltage change
per degree Celsius over the operating
range
from0to
40°C
after 30 minutes warm-up.
*OUTPUT
IMPEDANCE
(typical):
o
to
+20V
Output:
0.5mn
plus 1.5/lH
o
to
-20V
Output:
0.5mn
plus 1.5/lH
Model
6236A
o
to
+6V
Output:
0.3mn
plus 1/lH
Model
6237A
o
to
+18V
Output:
0.3n
plus 1.5/lH
* Operating characteristics listed
as
typical
are
provided
for
the user's
information
only
and
are
not
warranteed specifi-
cations.
RESOLUTION:
(Minimum
output
voltage change obtainable using
front
panel voltage
control)
o
to
±20V
Outputs: 70mV
Model
6236A
o
to
+6V
Output:
20mV
Model
6237A
o
to
+18V
Output:
70mV
1-3
TEMPERATURE
RANGES:
Operating: 0
to
+40°C ambient.Athigher temperatures,
output
currentisderated linearlyto50%
at 55°C.
Storage:
-40°Cto
+75°
C.
METER RANGES:
o
to
+20V
Output:
0-25V,O-0.6A
o
to
-20V
Output:
0-25V,O-0.6A
Model
6236A
o
to
+6V
Output:
0-7V,
0-3A
Model
6237A
o
to
+18V
Output:
0-21
V, 0-1.2A
METER
ACCURACY:
±4%offull
scale
DIMENSIONS:
3
15/32
H x
87/32
W x
129/16
D
(88mm H
x 208mm W x 319mm D)
WEIGHT:
9.5 Ib (4.3kg)
Page 6
SECTION II
INSTALLATION
2-1
INITIAL
INSPECTION
2-2 Before
shipment,
this
instrument
was
inspected
and
foundtobe freeofmechanical
and
electrical
defects.
As
soonasthe
instrumentisunpacked,
inspect
for
any
damage
that
may
have
occurredintransit.
Save all
packing
materials
until
the
inspectioniscompleted.Ifdamageisfound,
file
claim
with
carrier
immediately.
The
Hewlett-Packard
Sales
and
Service
office
shouldbenotifiedassoon
as possible.
2-3 Mechanical Check
2-4 This
check
should
confirm
that
there
arenobroken
knobsorconnectors,
that
the
cabinet
and
panel surfaces are
free
of
dents
and
scratches,
and
that
the
meterisnot
scratch-
edorcracked.
NOTE:
ACCESSORY
KITS
FOR19INCH
RACK
IIOUNTIIG
AIlE:
HI'
IIOOEL
1451~
FOR
CIlE
SUI'l\.Y
HP
lOlELl4523A RJlTlI09..PPL£S
$10£
VIEW
2-5 Electrical Check
Figure 2-1. Outline Diagram
2-6
The
instrument
shouldbechecked
against
its elec-
trical
specifications.
Section
V includes an
"in-cabinet"
per-
formance
checktoverify
proper
instrument
operation.
2-7
INSTALLATION
DATA
2-8
The
instrumentisshipped
ready
for
bench
opera-
tion.
Before
applying
powertothe
instrument,
see
the
CAUTION
notice
in Paragraph 3-2.
2-9 Location
2-11
Outline Diagram
2-12
Figure
2-1
illustrates
the
outline
shape
and
dimen-
sionsofthis
supply.
Figure 2-2. Rack
Mounting,
One
Unit
Figure 2-3. Rack
Mounting,
Two
Units
Rack Mounting
2-10
This
instrumentisair
cooled.
Sufficient
space
shouldbeallottedsothat
a free
flowofcooling
air
can
reach
the
rearofthe
instrument
whenitisinoperation.
It
shouldbeusedinan
area
where
the
ambient
temperature
does
not
exceed
40°C
(upto55°C
with
derating).
2-13
2-14
This
instrument
mayberack
mountedina
standard
19-inch
rack
panel
either
by itselforalongside a similar
unit.
Figures 2-2
and
2-3
show
the
componentsofthe
rack
mount-
ing kits available
for
this
power
supply.
Ordering
informa-
tion
for
rack
mounting
accessoriesisgiven in Paragraph 1-13.
2-1
Page 7
2-15
Input
Power Requirements
2-16 Dependingonthe
line voltage
option
ordered,
the
supplyisreadytobe
operated
from
oneofthe
power
sources
listed in
Table
2-1.
The
input
voltage range,
and
the
input
current
and
powerathigh line voltage
and
full loadislisted
for
each
option.
A labelonthe
rear
heat
sink
identifies
the
line voltage
optionofyour
supply.
All
optionsofthis
model
operate
froma47-63Hzsingle-phase line.
2-17
If
desired,
the
user
can
easily
convert
the
unit
from
anyofthese
optionstoanother
by following
the
instructions
in Paragraph 3-4. A
unitisconvertedbyresetting
an internal
line voltage
selector
switch,
replacing
the
fuse,
and
changing
the
line voltage tag.
2-20
To
preserve
the
protection
feature
when
operating
the
instrument
fromatwo-contact
outlet,
use a
three-prong
to
two-prong
adapter
(if
permitted
by local regulations) and
connect
the
green leadonthe
adaptertoground.
2-21 Model
6236A
and
6237
A supplies are
equipped
at
the
factory
withapower
cord
plug
appropriate
for
the
user's
location.
Figure 2-4 illustrates
the
standard
configu-
rations
of
power
cord
plugs used by HP. Above each draw-
ing
is
theHPoption
number
for
that
configurationofpower
connector
pins. Below each drawingistheHPpart
number
for a
replacement
power
cord
equipped
with
a plugofthat
configuration.
Notify
the
nearest
HP Sales
and
Service
Office if
the
appropriate
power
cordisnot
included
with
the
instru
ment.
2-22 Repackaging
for
Shipment
--
CAUTION
--
If
the
supply
might
possibly have been
converted
to a line voltage
option
other
than the one
marked
on its
identifying
label
without
being relabeledinsome way,
check the setting
of
the line voltage selector
switch
and
the fuse rating before
applying
power.
(See
CAUTIONinParagraph 3-2)
2-23
To
insure safe
shipmentofthe
instrument,itis
recommended
that
the
package designed
for
the
instrument
be used.
The
original packaging materialisreusable. If it
is
not
available,
contact
your
local Hewlett-Packard field
office
to
obtain
the
materials. This office will also furnish
the
addressofthe
nearest
service officetowhich
the
instru-
ment
canbeshipped
and
provide
the
Authorized
Return
label necessarytoexpedite
the
handlingofyour
instrument
return.Besuretoattach
a tagtothe
instrument
which
specifies
the
owner,
model
number,
full serial
number,
and
service
required,ora brief
descriptionofthe
trouble.
2-18 Power Cable
8120-0050
OPTION
903
8120-1691
OPTION
902
8120-1369
OPTION
901
Figure 2-4.
Power
Cord
Configurations
8120-1351
OPTION
900
2-19
To
protect
operating
personnel,
the
National
Electrical
Manufacturers
Association (NEMA)
recommends
that
the
instrument
panel
and
cabinetbegrounded.
"This
instrumentisequipped
withathree
conductor
power
cable.
The
third
conductoristhe
ground
conductor
and
when
the
cableisplugged
intoanappropriate
receptacle,
the
instru-
mentisgrounded.
The
offset
pinonthe
power
cable
three-
prong
connectoristhe
ground
connection.
Innoevent
shall
this
instrumentbeoperated
withoutanadequate
cabi
net
ground
connection.
Table
2-1.
Input
Power
Requirements
Option
Line Voltage Range
Input
Current
Input
Power
100
(100
Vac)
87-106
Vac
1.3A
140
VA
Standard
(120
Vac)
104-127
Vac
1.1A
140
VA
220
(220
Vac)
191-233
Vac
0.6A
140
VA
240
(240
Vac)
208-250
Vac
0.55A
140
VA
2-2
Page 8
SECTION
III
OPERATING INSTRUCTIONS
3-1
m
=~=::
OU~https://manualmachine.com/~~2~:
"If"
_---
........
1
Figure 3-1. Controls and Indicators
TURN-ON CHECKOUT PROCEDURE
a.
Connect
line
cordtopower
source
and
turn
LINE
switch
G)
on.
LINE ON
indicator
® will light.
b.
Set
METER
switch
®
to
the
+6V
position
and,
with
no
load
connected,
vary
+6V
VOLTAGE-control
@ over
its range
and
check
that
the
voltmeter
respondstothe
con-
trol
setting
and
the
ammeter
indicates
zero.
c.
Set
the
+6V
VOLTAG E
control
fora6-volt
meter
indication
and
short
the
+6V
output
terminaltoCOM
(common)
terminal
®
withaninsulated
test
lead.
The
ammeter
should
indicateashort-circuit
output
current
of
approximately
1.0A
(1.1Ainthe
6237A).
Remove
the
short
from
the
output
terminals.
d.
Set
the
METER
switchtothe
+20V
position
and,
withnoload
connected,
vary
±20V
VOLTAGE
control
®
over its range
and
check
that
the
voltmeter
respondstothe
control
setting
and
the
ammeter
indicates
zero.
3-2
The
following
steps
describe
the
useofthe
Model
6236Aor6237Afront
panel
controls
and
indicators
illus-
trated
in Figure 3-1
and
serve as a
brief
check
that
the
sup-
plyisoperational.
This
checkout
procedureorthe
more
detailed
performance
testofParagraph 5-6
should
be follow-
ed
when
the
instrumentisreceived
and
beforeitis
connect-
edtoany
load
equipment.
Proceedtothe
more
detailed
procedures
beginning in Paragraph 5-6 if
any
difficulties
are
encountered.
--
CAUTION--
e.
Set
the
±20V
VOLTAGE
control
fora20-volt
meter
indication
and
short
the
+20V
output
terminaltothe
com-
mon
terminal
withaninsulated
test
lead.
The
ammeter
should
indicateashort-circuit
output
currentofO.55A
±5%.
Remove
the
short
from
the
output
terminals.
f.
Repeat
steps
(d)
and
(e),
but
substitute
the
-20V
positionofthe
METER
switch
and
the
-20V
output
ter-
minal.
Figure 3-2. Line Voltage Selector (Set for
120
Vac)
Before applying power to the supply, make certain that its line voltage selector switch
(53)
is
set
for
the line voltage to be used. This switch
is
mounted
on the circuit board behind the voltmeter and
is visible through the perforations in the top cover. The positions
of
the two white marks on the switch
indicate the switch setting
(see
Figure 3-2).Ifthe
switch setting does
not
correspond to the intended
power source, proceed to
Paragraph
3-4 before
applying power.
.r--
240----,
(
r-
220
----,
0_
0
L-,OO--.J
'---120
---J
t
FRONT
OF
SUPPLY
NOTE
For the Model 6237A, substitute. +18V
for +6V in the following steps.
3-1
3-3
If
this
brief
checkout
procedureorlater
useofthe
supply
reveals a possible
malfunction,
see
SectionVof
this
manual
for
detailed
test,
troubleshooting,
and
adjustment
procedures.
Page 9
3-4
LINE
VOLTAGE
OPTION CONVERSION
3-5
To
convert
the
supply
from
one
line voltage
option
to
another,
the
following
three
steps
are necessary:
1.
After
making
certain
that
the
line
cordisdiscon-
nected
fromasourceofpower,
remove
the
top
cover
from
the
supply
and.
set
the
two
sectionsofthe
li:1e
voltage selec-
tor
switch
for
the
desired
line voltage (see Figure 3-2),
2.
Check
the
ratingofthe
installed fuse
and
replace
it
with
the
correct
value, if necessary.
For
Options
100
or
120,
use a
normal
time-constant
2-amp
fuse (HP
Part
No.
2110-0002);
for
Options
220or240,
use a
normal
time-
constant
1-amp
fuse (HP
Part
No.
2110-0001).
3. Mark
the
instrument
clearly
withatagorlabel
indicating
the
correct
line voltagetobe used.
3-6
OPERATION
3-7 This
power
supply
canbeoperated
individually
or
in parallel
with
another
supply
(see Paragraph
3-17).
All
output
terminals
are
isolated
from
ground.
The
±20V
and
+6Vor+18V
outputs
use a single
common
output
terminal.
This
common
(COM)
terminaloranyoneofthe
other
output
terminals
maybegroundedtothe
chassisatthe
front
panel
ground
terminal
(
G)
in Figure
3-1),orall
outputs
may
be
left
floating. Loads can be
connected
separately
between
eachofthe0to
20V
output
terminals
and
the
COM ter-
minal,
or
between
the
-20V
and
the
+20V
terminals
for
a
o
to
40V
output.
3-8 Overload Protection Circuits
3-9
±20-Volt
Current
Limit.
The
+20V
and
-20V
outputs
are individually
protected
against
overloadorshort-
circuit
damagebyseparate
current
limit
circuits
which
are
adjustedatthe
factorytolimit
the
output
currentto0.55A
±5%. (Thisis110%ofthe
rated
maximum
outputof0.5A.)
The
current
limits can be
setbyadjusting
resistor R6
for
the
+20V
output
and
R26
for
the
-20V
output.
(See Paragraph
5-47
for
current
limit
calibration
instructions.)
No
deteri-
orationofsupply
performance
occursifthe
output
current
remains
below
the
current
limit
setting.
If a single load
is
connected
between
the
+20V
and
-20V
outputs,
the
circuit
set
for
the
lesser
current
limit
will
limit
the
output.
3-10
+6V
Current
Foldback
(Model
6236A).
The
over-
load
and
short-circuit
protection
circuit
for
the
+6V
output
of
the
Model
6236A
reduces
the
output
current
limitasthe
output
terminal
voltage decreases.
(The
operating
region
of
the
+6V
outputisenclosedbyheavy lines in Figure 3-3).
The
maximum
rated
output
currentis2.5A
and
the
current
limitisfactory-adjustedtooperateat2.75A
±5%
when
the
3-2
outputis6 volts.
At
lower
output
voltages,
the
circuit
reduces
the
maximum
obtainable
output
current
linearly
until 1A
±15%
flows vvhen
the
outputisshorted.
The
short-
circuit
current
cannotbeadjusted,
but
R46
canbeset
to
limit
the
maximum
currentat6Vto2.75A
±5%. (See Para-
graph
5-47
for
current
limit
calibration
instructions.)
3-11
+18-Volt
Current
Limit
(Model
6237
A).
The
+18-
volt
outputofthe
Model
6237Ais
protectedbya
fixed
cur-
rent
limit
circuit
which
operatesat1.1 A
(110%ofits max-
imum
rated
outputof1.0A).
The
circuitissimilartothe
onesinthe
±20-volt
supplies. (See Paragraph 5-47
for
cal ibrationi
nstructi
ons.)
3-12 Operation Beyond Rated
Output
3-13
The
supply
maybeabletoprovide
voltages
and
currents
greater
than
its
rated
maximum
outputsifthe
line
voltage
isator
above
its
nominal
value.
Operation
can
ex-
tend
into
the
shaded
areasonthe
meter
faces
without
dam-
agetothe
supply,
but
performance
cannotbeguaranteed
to
meet
specifications.Ifthe
line voltageismaintainedinthe
upper
endofthe
input
voltage range,
however,
the
supply
probably
will
operate
within
its
specifications.
3-14 Connecting Loads
3-15
Each
load
shouldbeconnectedtothe
power
supply
output
terminals
using
separate
pairsofconnecting
wires.
This
minimizes
mutual
coupling
between
loads
and
takes
full
advantageofthe
low
output
impedanceofthe
power
supply.
Connecting
wirestothe
load
mustbeof
adequately
heavy gagetomaintain
satisfactory
regulationatthe
load.
Each pair
of
connecting
wires
should
be as
short
as possible
and
twistedorshieldedtoreduce
noise
pickup.Ifshielded
wireisused,
connect
one
endofthe
shieldtothe
power
supply
ground
terminal
and
leave
the
other
end
unconnect-
ed.
3-16
If
load
considerations
require
that
the
output
power
distribution
terminalsberemotely
located
from
the
power
supply,
then
the
power
supply
output
terminals
should
be
connectedtothe
remote
distribution
terminalsbya
pair
of
twistedorshielded
wires
and
each
load
separately
connect-
edtothe
remote
distribution
terminals.
3-17 Parallel Operation
3-18
Twoormore
power
suppl
ies
canbeconnected
in
parallel
to
obtainatotal
output
current
greater
than
that
available
from
one
power
supply.
The
total
output
current
is
the
sumofthe
output
currentsofthe
individual
power
supplies.
The
output
voltage
controlsofone
power
supply
should
be
settothe
desired
output
voltage,
and
the
other
power
supply shouldbeset
for
a slightly larger
output
volt-
Page 10
NOTE:
THE LOWER END - POINT
OF
THE
CURRENT
LIMIT
LINEISNOT
AD-
JUSTABLE;
THE UPPER END-POINT
IS SET AT THE FACTORY
FOR
2.75A
±
5%.
BETWEEN ITS
END-
POINTS,
THE ACTUAL CURRENT
LIMITISA
STRAIGHT-LINE FUNCTION.
OPERATING
REGION
+6V
SUPPLY,
MODEL
6236A
2V
IV
5V
~-----+------+------+------+---~~-,4
__
--------4
4V
~-----+------+-----+------+-~~-+-"---+-------4
3V
OUTPUT
TERMINAL
VOLTAGE
6V
OUTPUT
CURRENT (AMPERES)
o
0.5
t
1.0
\
0.85A
115A
SHORT
CIRCUIT CURRENT
MAY
VARY
±15%
FRav1
UNITTOUNIT.
1.5
2.0
2.5
3.0
Figure
3-3:
Current
Limit
Characteristicsofthe6VSupply
(Model
6236A)
3-21
Output
Capacitance.
An internal
capacitor
across
the
output
terminalsofthe
power
supply
helpstosupply
high-current
pulsesofshort
duration
during
constant
volt-
age
operation.
Any
capacitance
added
externally
will im-
prove
the
pulse
current
capability,
but
will decrease
the
load
protection
provided by
the
current
limiting circuit. A
3-20
Pulse Loading.
The
power
supply
will
automati-
cally cross over
from
constant
voltagetocurrent
limit
operationinresponsetoan increaseinthe
output
current
over
the
preset
limit.
Although
the
preset
limit
maybeset
higher
than
the
average
output
current,
high
peak
currents
as
occurinpulse loading
may
exceed
the
preset
current
limit
and cause crossover
to
occur
and
degrade
performance.
age.
The
supply
settothe
lower
output
voltage will
act
as
a
constant
voltage
source,
while
the
supply
settothe
higher
output
will
act
as a
current-limited
source,
dropping
its
out-
put
voltage untilitequals
thatofthe
other
supply.
The
constant
voltage
source
will deliver
only
that
fraction
of
its
total
rated
output
current
whichisnecessarytofulfill
the
total
current
demand.
3-19 Special Operating Considerations
high-current
output
pulse
may
damage load
components
before
the
average
output
currentislarge
enoughtocause
the
current
limiting
circuittooperate.
3-22
Reverse
Current
Loading. An active load
connect-
edtothe
power
supply
may
actually
deliver a reverse cur-
renttothe
power
supply
duringaportionofits
operating
cycle. An
external
source
cannot
be allowedtopump
cur-
rent
into
the
supply
without
lossofregulation
and
possible
damage
to
the
output
capacitor.Toavoid
these
effects,
it
is
necessarytopreload
the
supply
withadummy
load
resistor so
that
the
power
supply
delivers
current
through
the
entire
operating
cycleofthe
load device.
3-23
Reverse Voltage
Protection.
Internal
diodes
con-
nected
with
reverse
polarity
across
the
output
terminals
protect
the
output
electrolytic
capacitors
and
the
driver
transistors
from
the
effectsofa reverse voltage applied
across a
supply
output.
Since series
regulator
transistors
cannot
withstand
reverse voltage
either,
diodes
are also
connected
across
them.
When
operating
supplies in parallel,
these
diodes
protectanunenergized
supply
thatisin para-
llel
with
an energized
supply.
3-3
Page 11
SECTION
IV
PRINCIPLES OF OPERATION
4-1
OVERALL
DESCRIPTION
4-2 This section presents
the
principlesofoperation
of
the
Models
6236A
and
6237
A Triple
Output
Power
Supply.
Throughout
this
section
refertothe
combined
schematic
diagram
of
Figure 7-1.
NOTE
All information in this section applies to
both
models unless otherwise indicated.
4-3 The
two
primary
windingsofthe
power
transformer
are
connectedinoneoffour
different
ways by setting
the
two
slide switches
mountedonthe
circuit
board. These
switches select
oneofthe
nominal ac
input
voltages
for
which
the
supplyisdesigned:
100V,
120V,
220V,or240V.
4-4 The
transformer
secondaries,
together
with
recti-
fiers
and
capacitor
filters, provide rawdcfor
the
three
out-
put
regulator circuits and for
another
regulator which pro-
vides reference and bias voltagestothe
output
regulators.
4-5
By
comparing
its
outputtoa high-stability refer-
ence,
the0to
+6-volt regulator (6236A)or0to+18-volt
regulator
(6237
A) holds its
output
voltageatthe
value
determined
by a
front
panel
control.
Any
errorinthe
actual
outputascomparedtothe
desired
output
is
am-
plified by an operational amplifier
and
applied as
fe~dback
to
control
the
conductionofa series
regulator
transistor.
As
a result,
the
voltage across
the
series
transistor
varies so
astohold
the
output
voltage
constantatthe
desired level.
The high gain
of
the
voltage
comparison
amplifier
and
the
stabilityofthe
reference voltage ensure
that
input
voltage
or load
current
variations have Iittle
effectonthe
output
voltage.
4-6
The0to
+6-volt
outputinthe
Model
6236A
is
protected
by a
current
foldback
limiter which minimizes
dissipation in
the
series regulator
transistor
during
overloads.
Inacurrent
foldback
circuit,
the
current
limit
depends
on
the
output
terminal voltage
and
in this
regulator
ranges
from 2.
75A
±5%at6 voltsto1A ±15%
with
the
output
short-
ed. (An
outputof2.
75Ais110%ofthe
rated
maximum
of
2.5Aat6 volts.)
The
operating regionofthe
+6-volt regu-
lator
outputisenclosed by a heavy lineinFigure 3-3.
If
the
operating
point
reaches
the
diagonal
current
limit line,
a decrease in load resistance moves
the
operating
point
4-1
down
the
line, reducing
the
output
voltage
and
current.
Current
foldbackiscontrolledbya
second
operational
amplifier in
the
regulator which
monitors
thedcoutput
current.
This
current
comparison
amplifier
takes
control
of
the
'output
away
from
the
voltage
comparison
amplifier
when
the
current
reaches
the
design limit. Removing
the
overload restores
constant
voltage
operation
automatically.
4-7
The
+20-volt regulator has a fixed
current
limit
at
110%ofits
0.5
amp
maximum
rated
output
butisotherwise
similartothe
+6-volt regulator.
4-8
The0to
-20-volt
regulator is,inturn,
similartothe
+20-volt regulator
except
that
it resembles a
complementary
mirror
imageofthe
latter.
The
output
voltagesofthe
+20-
volt
and
-20-volt
supplies are
both
setbythe
same
front
panel
control
and
track
each
other
within
1%. Precise track-
ing
of
the
two
outputsisachievedbycontrolling
the
positive
output
conventionally
and
using
that
outputasthe
reference
voltage
for
the
negative
output.
4-9
The0to
+18-volt regulator in
the
Model
6237
A
is
similartothe
+20-volt regulator. It has a fixed
current
limitat110%ofits
1.0
amp
output.
4-10
The
reference
and
bias
supply
provides reference
and
bias voltages
for
the
output
regulators.
4-11
The
turn-onlturn-off
control
circuit
prevents
out-
put
transients
when
the
supplyisturnedonor
off. It does
this by delaying
the
applicationofcertain
bias
and
reference
voltages
at
turn-on
and
removing
them
shortly
after
turn-off.
4-12
A
three-position
meter
switch selects whichofthe
supplies has its
output
voltage
and
current
indicatedonthe
front
panel meters.
The
proper
rangeofthe
dual-range
metersisselected
automatically.
4-13
DETAILED
CIRCUIT
DESCRIPTION
4-14 0 To
+20-Volt
Regulator
4-15
Voltage
Comparison
Amplifier.
The
voltage
com-
parison amplifier in
the
+20-volt
supply
controls
the
conduc-
tionofseries regulator
transistorQ1so
that
the
voltages
at
the
two
inputsofthe
amplifier remain equal. A fixed volt-
age divider holds its inverting
input
(U1-2)at-16mV.
Its
non-inverting
input
(U1-3)
monitors
the
output
voltage in
Page 12
series
with
the
voltage across R1. Since R2isconnected
between
the
-6.2V
reference
supply
andapoint
which feed-
back
action
holds near
-16mV,
its
current
remains
constant.
This
current
flows
throughR1to
produce
a voltage
drop
acrossR1proportionaltoits resistance setting,
thus
the
output
voltageofthe
supplyisproportionaltothe
resistance
settingofR1.Atthe
outputofthe
voltage
comparison
amplifier (U1-1), a positive voltage change
correspondstoa
decrease in
the
conductionofQ1.
4-16
CR2
and
CR3
protect
the
inputofthe
amplifier
against
transient
overloads, C2
andR4speeduploop
re,.
sponse
time,
andC4and
R12 stabilize
the
supply's
high
frequency
characteristics.
4-17
OR-Gate.
To
permit
either
the
voltage
comparison
amplifierorthe
current
comparison
amplifiertocontrol
the
series regulator
transistor,
the
outputsofboth
amplifiers
are
connectedtothe
baseofdriverQ2through
an OR-gate
composedofCR5
and
CR6.
CR5isnormally reverse
biased by a negative
output
from
the
current
comparison
amplifier,
permitting
the
voltage
comparison
amplifier
to
driveQ2through
CR6. An overload drives
the
output
of
the
current
comparison
amplifier positive,
forward
biasing
CR5
and
reducing
the
supply
output.
When
the
overload
is
removed,
CR5isreverse biased again
and
the
voltage
com-
parison amplifier resumes
controlofthe
output.
4-18
Driver
and
Series Regulator.
The
-12.4Voutput
of
the
bias
supply
provides
the
turn-on
bias
for
series regu-
lator
transistor
Q1. Its
complete
current
path
includes
Q15,
CR59,
R14,
and
Q1,
and
returnstocommon
through
current
monitoring
resistor R8. (Itisbecause this bias
current
flows
throughR8that
the
output
ammeter
requires
the
zero
off-
set
bias
circuit
describedinparagraph 4-43.)
Through
the
OR-gate,
either
the
voltageorthe
current
comparison
ampli-
fier
controls
the
conductionofdriver Q2, which regulates
the
flowofturn-off
bias
through
Q1's
base-emitter
circuit.
The
algebraic sumofthe
nearly
constant
turn-on
bias
through
R14
and
the
variable
turn-off
bias
throughQ2controls
the
conductionofseries
regulator
transistor
Q1.
4-19
Current
limit
Circuit.Inthe
+20-volt regulator,
the
current
comparison
amplifier
compares
the
voltage
across
current
monitoring
resistor R8tothe
fixed voltage
across
partofcurrent
limit
adjust
potentiometer
R6.
The
current
limit
adjustmentissetsothat
the
input
voltage
to
the
current
comparison
amplifierisnegative in
the
normal
operating
region,
but
becomes zero
when
the
output
current
increasesto0.55
amps. When
the
amplifier's
input
voltage
reaches zero, it
takes
controlofthe
regulator
output
voltage
and
reduces it as necessarytokeep
the
output
current
from
exceeding
0.55
amps. When
the
overloadisremoved,
the
outputofthe
current
comparison
amplifier goes negative,
reverse biasing
CR5
and
returning
controltothe
voltage
4-2
comparison
amplifier.
4-20
Turn-On/Turn-Off
Control.
When
the
power
supply
is
turnedonor
off,
Q15inthe
turn-on
control
circuit
with-
holds
turn-on
bias
fromQ1while
the
regulator
bias voltages
are
too
low. This prevents an
output
voltage
transient
from
occurring before
the
amplifiers are
properly
biased.
The
outputofthe
-6.2V
reference
supplyisalso
temporarily
heldata low voltage by
Q14,
which
conductstoshort
that
output.
4-21 Circuit
Protection
Components.
Diodes CR1,
CR7,
and
CR9
each
protect
the
+20-volt
supply
from
spe-
cific hazards.
Output
diode
CR1
protects
the
supply
com-
ponents
if a reverse voltageisappliedtothe
output
terminals.
A
common
way
for
thistooccurisfor
an unenergized
supply
tobeconnectedinseries
with
another
thatisenergized.
If
the
output
voltageisturned
down
quickly
while a large
capacitorisconnected
across
the
output,
CR7
protects
driverQ2from
excessive dissipationbyshunting
someofits
base
currenttocommon.
The
series
regulator
diode,
CR9
protects
the
series regulator
transistor
from
reverse voltage.
Series regulator voltage
could
occur
if a deenergized sup-
ply were
connectedinparallel
with
an energized one.
4-22 0 To
-20-Volt
Regulator
4-23 Insteadofusing an
NPN
driver
and
a
PNP
series
regulator in
the
negative
output
line asinthe
+20-volt regu-
lator,
the
-20-volt
regulator uses a
PNP
driver
and
an
NPN
series regulator in
the
positive
output
line.
The
-20-volt
regulator
circuitisthe
complementary
equivalentofthe
+20-volt
circuitinother
respects, as well.
Their
current
limit
circuits
operate
similarly.Atthe
outputsofthe
current
and
voltage
comparison
amplifiers in
the
-20-volt
circuit, a neg-
ative voltage change
correspondstoa decreaseinseries regu-
lator
conduction.
The
turn-on
bias
for
its series regulator
transistor,
Q3,issupplied
from
a positive voltage source,
the
+7.5V bias
supply,
andisswitchedonand
offbyQ13
in
the
turn-on
control
circuit.
4-24
The
-20-volt
supply
uses
the
outputofthe
+20-volt
supply
as
its reference voltage. As a result,
both
outputs
are
set
by a single
front
panel
control
and
track
each
other
with-
in
1%.Two
resistorsinresistor
networkZ1are
connected
in
series
between
the
+20-volt
and
-20-volt
outputs.
These
resistors are closely
matchedinresistance
and
temperature
coefficientsothat
the
voltage across eachisexactly
half
of
the
total.
The
midpointofthis dividerisconnectedtothe
non-inverting
inputofthe
-20-volt
supply's
voltage com-
parison amplifier.
The
amplifier's inverting
inputisconnect-
edtocommon
through
R32tohold itatzero volts.
The
amplifier keeps its differential
input
voltageatzerobymatch-
ing
the
output
voltageofthe
-20-volt
supplytothatofthe
+20-volt
supply.
Page 13
4-25 0 To +6-Volt Regulator (Model 6236A)
4-26 Except
for
differing
component
designations and
values, paragraphs
4-15
through
4-18,4-20,
and 4-21,
which
describe the voltage comparison
amplifier,
OR-gate, driver,
series regulator,
turn-on
control,
and
circuit
protection
componentsofthe
+20-volt
regulator
circuit,
also apply
to
the
+6-volt
regulator. The
only
difference in
circuit
opera-
tion
lies in the
controlofthe
current
comparison
amplifier,
and thus the
typeofcurrent
limit
the
supply
has.
4-27
Current
Foldback
Circuit.
(For
this discussion refer
to
the Figure
7-1
schematic andtoFigure 4-1.) The
differ-
ential
input
signaltothe
current
comparison
amplifieristhe
algebraic sum
of
three
circuit
voltages:
1.
The voltage across R49. ER49 remains constant
at
-305mV.
2.
The voltage across the
lower
partofR46
(see
Figure
4-1). E
R46
is
proportionaltothe regulator
output
voltage and equals
440mV
when the supply
output
is
6 volts.
3. The voltage across
current
monitoring
resistor R48.
E
R48
is
proportionaltothe sumofthe regulator
output
current
and the
0.22A
bias
current
that
flows
through
R54 and R48.
-12.4V
Z1
- 1
-305mV
30K
g~~~~~TSON
~t---_5"-i+
AMPLIFIER
put.
When this happens, the
outputofthis
amplifier
goes
positive and
forward
biases CR45. Since the
current
through
CR45
tendstoreduce the
outputofthe supply, the
output
of
the voltage comparison
amplifier
goes
negative in oppo-
sition
to
this change and reverse
biases
CR46toleave the
current
comparison
amplifierincontrolofthe
output.
Now
that
the
current
comparison
amplifierisin
control
and
for
as
longasthe overload remains, the supply's
output
voltage
and
current
varysoastomaintain this
amplifier's
differen-
tial
input
signal near zero volts. This results in the
output
current
limit
characteristics shown in Figure 3-3.
4-29
Ifweassume
for
example
that
the voltage
control
is
set
for
5 volts and the load resistanceisslowly
decreased,
the supply
goes
into
current
limitatabout
2.47 amps. Here
is
whyitoccurs at
that
value.Ata
5-volt
supply
output,
E
R46
is
5/6of440mV,or367mV.
In order
for
the algebraic
sum
of
E
R46
and E
R48
togoas
far
negativeas-305m
V and
drive the
amplifier
output
positive, E
R48
must reach
-672mV.
Once E
R48
reaches this value, the
current
com-
parison
amplifier
controls the series regulator transistor
so
astoprevent ER48 (and thus the supply's
output
current)
from
increasing
further.
At
0.25
ohms, R48 develops
-672mVat2.69 amps. Since 0.22 ampsofthe
current
through
R48isbias
current
for
Q7, the nominal
current
limit
correspondingtoa 5-volt
outputis2.69 amps minus
0.22
amps,orabout
2.47 amps.
4-30
If
the load resistance continuestodecrease,itpulls
the
output
voltage lower. This reduces E
R46
until
at a zero
output
voltage ER46 becomes zero, leaving ER48 equal in
magnitude
to
E
R49
. This
-305mV
drop
across
R48
corre-
sponds
to
a 1.22-amp
current
through
R48 and a 1-amp short-
circuit
currentatthe
outputofthe supply.
CR45
U3
CR44
+--looT
6
R49
750
+
R47
23K
R48
_
0.25
+
R46
3K
CURRENT
+}
LIMIT _ E
R46
ADJ.
+--
lOUT
+0.22A07BIAS
0.22A07BIAS
Figure 4-1. Foldback
Current
Limit
Circuitin6V
Supply
4-31 In the
+6-volt
regulator,asin the
+20-volt
regulator,
the
turn-on
bias
current
for
the series regulator transistor
is
switched on and
offbyQ15
in the
turn-on
control
circuit
to
prevent
output
voltage transients.
4-28 When the supply's
output
currentisbelow
the cur-
rent
limit
that
correspondstoits
output
terminal
voltage
(see
Figure 3-3), the
inv~rting
input
(U3-6)ofthe
current
• comparison
amplifierismore positive than its non-inverting
input
(U3-5),
whichisheldat-305mV.
The negative am-
plifier
output
which
resultsisclampedbyCR44 and reverse
biases
OR-gate diode CR45, leaving the voltage comparison
amplifierincontrolofthe supply's
output.Ifthe load
resis.:
tanceisdecreased, the higher
output
current
increases ER48
until
the algebraic sumofE
R48
and E
R46
makes the cur-
rent comparison
amplifier's
inverting
input
slightly
more
negative than the
-305mV
potential on its non-inverting in-
4-32 0 To +18-Volt Regulator (Model 6237A)
4-33 Except
for
differing
component
designations and
values, paragraphs
4-15
through
4-21,
which
describe the
voltage comparison
amplifier,
OR-gate, driver, series regu-
lator,
current
limit
circuit,
turn-on
control,
and
circuit
protection
componentsofthe
+2o-volt
regulator
circuit,
also
applytothe
+18-volt
regulator. In the
+18-volt
regulator,
as
in the
+20-volt
regulator, the
turn-on
bias
current
for
the
series regulator transistor
is
switched on and
offbyQ15
in
the
turn-on
control
circuittoprevent
output
voltage
transients.
4-3
Page 14
4-34 Reference and
Bias
Supply
4-35
The reference
and
bias supply powers
the
operation-
al
amplifiers and provides
the
bias
and
reference voltages used
throughout
the
supply. A
shunt
zener regulates its +7.5V
output.
A series transistor regu lates its
-12.4Voutput,
using 6.2-volt zener VR1asits voltage reference.
The
-12.4V
output
provides a
constant
currenttoVR 1, whichisthe
pri-
mary voltage reference for
the
entire supply.
4-36
Two
equal resistors are
connectedinseries across
the
-12.4V
output.
To
regulate this
output,
voltage com-
parison amplifierU4compares
the
voltage across
one
of
these resistorstothe
-6.2V
reference and controls
the
con-
ductionofseries regulator
011
through driver
012.
The
voltage
drop
across
011iscontrolled by feedback so
that
the
voltagesatthe
two
inputsofU4
remain equal. Driver
012
controls
011
by shunting
partofthe
base bias supplied
by R68.
4-37 During turn-on,
the
-6.2V
reference supply
is
temporarily
shortedby014inthe
turn-on control circuit.
By
tryingtomatch this low reference,
011isinitially
turned
off. While
011isturned
off, R69 bypasses
currenttothe
-12.4V
output
until
the
output
reaches-9volts and
the
turn-on control circuit removes
the
short
from
the
reference
and enables
the
-12.4-volt
regulatortooperate
normally.
4-38
Turn-On/Turn-Off
Control
Circuit
4-39 Immediately
after
the
supplyisenergized and until
the
outputofthe
-12.4-volt
regulator reaches
about
-9
volts,
the
turn-on control circuit withholds turn-on bias
from series regulator transistors
01,
03,
and07and holds
4-4
the
-6.2V
referenceata low value. This prevents an
out-
put
voltage
transient
by ensuring
that
the
operational am-
plifiers are energized and
other
essential bias voltages are
present before
the
series regulator transistors are
turned
on.
The circuit also prevents an
output
transient when
the
sup-
plyisturned
off
by removing
the
turn-on bias from
the
se-
ries regulators and shorting
the
-6.2V
reference supply
as
the
voltageofthe
-12.4
V supply falls below-9volts.
4-40
013
switches
the
biastothe
-20-volt
regulator
on
and off,
014
switches
the
short
across
the
-6.2-volt
refer
...
ence supply, and
015
switches
the
biastothe
+20-volt
and
+6-voltor+18-volt regulators.
015
remains
turned
off
until
VR2
conductsat9 voltstoswitch it on. While
015isoff,
it holds
013
biased
off
and
014
on;
when
015
conducts,
it
turns
013
and
014
off.
4-41 Meter Circuits
4-42
Voltmeter.
Twoofthe
resistors in resistor
network
Z1
are range resistors for
the
voltmeter. The accurate ratio
of these resistors permits a single calibration
potentiometer,
R58toadjust
both
ranges simultaneously.
4-43
Ammeter.
The range switch
connects
the
ammeter
across the
current
monitoring resistorofa supply: R48
in
the
+6-voltor+18-volt supply, R8inthe
+20-volt supply,
or
R28inthe
-20-volt
supply. Eachofthese resistors con-
ducts a
constant
bias
current
for its series regulator transistor
in
additiontothe
supply's
output
current.Ifno compen-
sation were used, this additional
current
would raise
the
indicated
output
by upto8%offull scale.
The
resistor net-
works
connectedtoeach rangeofthe
ammeter
selector
switch apply a biastothe
metertooffset
this error. R59
calibrates
all
ammeter
ranges.
Page 15
5-1
INTRODUCTION
SECTION V
MAINTENANCE
5-5
Table
5-1
lists
the
test
equipment
requiredtoper-
form
the
various
procedures
describedinthis
section.
5-2
Upon
receiptofthe
power
supply,
the
performance
testofParagraph 5-6 can be
made.
This
testissuitable
for
incoming
inspection.
Section
III
containsaquick
but
less
comprehensive
checkout
procedure
which
can
be used in
lieu
of
the
performance
test
if desired.
5-3 If a
faultisdetectedinthe
power
supply
while
making
the
performance
testorduring
normal
operation:
proceedtothe
troubleshooting
procedure
in Paragraph 5-32.
After
troubleshooting
and
repair,
repeat
the
performance
testtoensure
that
the
fault
has
been
properly
corrected
and
thatnoother
faults
exist. Before
performing
any
mainte-
nance
checks,
turnonthe
power
supply
and
allow
a half-
hour
warm-up.
5-4 TEST EQUIPMENT
REQUIRED
5-6 PERFORMANCE TEST
5-7
The
following
test
canbeusedasan
incoming
in-
spection
check
and
appropriate
portionsofthe
test
can
be
repeatedtocheck
the
operationofthe
instrument
after
repairs. If
the
correct
resultisnot
obtained
foraparticular
check,
proceedtothe
troubleshooting
procedures
of
Para~
graph
5-32.
--
CAUTION--
Before
applying
power
to the supply, make
certain
that
its line voltage selector
switch
(S3)
is
set
for
the line voltage to be
used.
(See
CA
UTION
noticeinParagraph 3-2
for
addi-
tional
information
on S3.)
Table
5-1.
Test
Equipment
Required
REQUIRED
RECOMMENDED
TYPE
CHARACTERISTICS
USE
MODEL
,
Digital
Sensitivity:
100J1V fyll scale Measure DC voltages: HP
3450A
Voltmeter
(min.).
Input
impedance:
calibration
procedures
10
megohms
(min.'.
Variable
Range:
90-130
Vac Vary AC
input
------
Voltage
Equipped
with
voltmeter
Transformer
accurate
within1volt
Oscilloscope
Sensitivity:
100J1V/cm.
Display
transient
re- HP
180A
with
1821A,
Differential
input.
sponse
and
ripple
and
and
1801Aor1803A
noise
waveforms.
plug-ins.
Repetitive
Rate:
60
Hz,
2J1sec.
Measure
transient
See Figure 5-5.
Load Sw.
rise
and
fall
time
response.
Resistive
Val ue: See Paragraph 5-11.
Power
supply
load
James
G. Biddle
Loads
Tolerance:
±5%
resistor (fixed resistor
("Lubri-Tact"
or
rheostat).
Rheostat)
Current
Value:
See Paragraph 5-13.
Measure
output
current
Simpson
Portable
Sampling
Accuracy:
1%
(minimum)
Shunt,
06703.
Resistor
(Shunt)
5-1
Page 16
5-8 General Measurement Techniques
5-9
Connecting
Measuring Devices.
To
achieve valid
results
when
measuring
the
load
effect,
PARD (ripple
and
noise),
and
transient
recovery
timeofthe
supply,
measuring
devices
mustbeconnected
as closetothe
output
terminals
as
possible. A
measurement
made
across
the
load includes
the
impedanceofthe
leadstothe
load.
The
impedance
of
the
load leads can easily be several
ordersofmagnitude
greater
than
the
supply
impedance
and
thus
invalidate
the
measurement.
To
avoid
mutual
coupling effects, each
measuring device
mustbeconnected
directlytothe
output
terminals by separate pairsofleads.
5-10 When
measurements
are
madeatthe
front
panel
terminals,
the
monitoring
leads
mustbeconnectedatpoint
A,asshowninFigure 5-1,
and
notatpointB.Connecting
the
measuring deviceatpointBwould
resultina measure-
ment
that
includes
the
resistanceofthe
leads
between
the
output
terminals
and
the
pointofconnection.
LOAD LEAD
Figure 5-1.
Front
Panel Terminal
Connections
5-11 Selecting Load Resistors. Power
supply
specifica-
tions
are
checked
with
a full load resistance
connected
across
the
supply
output.
The
resistance
and
wattage
of
the
load resistor,
therefore,
must
permit
operationofthe
supplyatits rated
output
voltage
and
current.
For
example,
a
supply
ratedat20
volts
and
0.5
amperes
would
require a
load resistance
of40ohmsatthe
rated
output
voltage.
The
wattage
ratingofthis resistor
would
havetobeatleast
10
watts.
5-12 Either a fixed
or
variable resistor (rheostat) can be
used as
the
load resistance. Using a
rheostat
(aloneorin
series
with
a fixed resistor)isoften
more
convenient
than
using fixed resistors as loads because
the
latter
maybemore
difficulttoobtaininthe
exact
resistance required. A sup-
plier
of
rheostats
appropriate
for
testing
these
supplies
is
listedinTable 5-1.
5-13
Output
Current
Measurements.
For
accurate
out-
put
current
measurements,acurrent
sampling resistor
should
be inserted
between
the
load resistor
and
the
output
of
the
supply. An
accurate
voltmeteristhen
placed across
the
sampling resistor
and
the
output
current
calculated
by
5-2
dividing
the
voltage across
the
sampling resistorbyits
ohmic
value.
The
total
resistanceofthe
series
combination
should
be equaltothe
full load resistance as
determined
in
the
preceding paragraphs.Ofcourse,ifthe
valueofthe
sampling resistorisvery low
when
comparedtothe
full
load resistance,
the
valueofthe
sampling resistor
may
be
ignored.
The
meter
shunt
recommendedinTable 5-1,
for
example,
has a resistanceofonly
1 milliohm
and
can be
neglected
when
calculating
the
load resistanceofthe
sup-
ply.
5-14 Figure 5-2 shows a
four
terminal
meter
shunt.
The
load
current
throughashunt
must
be fedtothe
extremes
of
the
wire leadingtothe
resistor while
the
sampling con-
nections are
made
as close as possibletothe
resistance
portion
itself.
CURRENT
SAMPLING
TERMINALS
TO UNGROUNDED
TO
GROUNDED
TERMINAL
OF
"-.JV.'(/\r---~\/v\,,-I(",l--'"
TERMIN
AL OF
POWER
SUPPLY
POWER
SUPPLY
Figure 5-2.
Current
Sampling
Resistor
Connections
NOTE
All
instructions in this section apply to Models
6236A
and
6237
A unless otherwise indicated.
5-15 Rated
Output,
Tracking, Meter Accuracy,
and
Current
limit
5-16
To
check
that
all supplies will furnish
their
maxi-
mum
rated
output
voltage
and
current,
that
the
±20V
out-
puts
track
each
other,
that
the
front
panel meters are accu-
rate,
and
that
the
current
limit circuits
function,
proceed
as follows:
Voltmeter
Accuracy
a. Withnoloads
connected:
energize
the
supply,
con-
nect
a digital
voltmeter
between
the
+6V terminal (+18V
in
Model
6237A)and
common
(COM),
and
set
the
+6V
(+18V) VOLTAGE
controlsothat
the
DVM indicationisas
near
as
possibleto6 volts
(18
volts).
b.
Set
the
METER switchtothe
+6V (+18V) range
and
check
the
front
panel
voltmeter
indication. It
should
be
within 4%
of
the
DVM indication.
c. Check
the
+20V
and
-20V
rangesofthe
panel volt-
meter
similarly by
connecting
the
DVMtoeachofthese
outputsinturn,
setting
the
±20V
VOLTAGE
control
for
a
Page 17
20V
DVM
indication,
and
verifying
that
the
panel
meter
is
accurate
within
4%.
Tracking
d.
Connect
the
DVMtothe
+20V
output,
set
the
±20V
VOLTAGE
control
for
a DVM
indicationof20
volts,
and
reconnect
the
DVMtothe
-20V
output
without
disturbing
the
voltage
control.
The
voltageatthe
-20V
output
should
be
within1%of
the
+20V
output.
Rated
Output
and
Ammeter
Accuracy
e.
Connect
40[2
10W load resistors across
bothofthe
20V
outputsofthe
supply
and
set
the
±20V
vaL
TAG
E
control
fora±20V
output.
(All
three
supplies
must
be
fully
loaded
while
checking
the
rated
output
voltage
and
currentofeach
supply.)
f.
Connect
the
test
setup
showninFigure 5-3tothe
+6V
(or
+18V)
output.
Make
the
total
resistanceofRL
and
the
current
sampling resistor
2.4
ohms
for
the
Model
6236A
(or
18
ohms
for
the
6237A)to
permit
operating
the
output
at
full load. RLshould
have a
power
ratingofat
least20watts.
g.
Close
the
switch
and
set
the
+6V
(+18V)
VOLTAGE
controlsothat
the
DVM indicates a voltage
drop
across
the
current
sampling resistor
that
correspondstoa
current
of
2.5
amps
(6236A)or1.0
amp
(6237
A).
h.
Set
the
METER
switchtothe
+6V (+18V) range
and
verify
that
the
front
panel
ammeter
indicationiswithin
4%
of
2.5
amps
((6236A)or1.0
amps
(6237
A).
i.
Connect
the
DVM
directly
across
the
output
terminals
of
the
+6V
(+18V)
supply,
record
the
DVM reading,
and
then
open
the
switchinthe6V(18V)
load
circuit
without
disturbing
the
supply's
output
terminals.
The
DVM indica-
tion
should
not
changebymore
than
2.6mV
(6236A)
or
3.8mV
(6237
A).
j.
Check
the
rated
output
and
ammeter
accur'!cyofthe
+20V
and
-20V
supplies similarlybyconnecting
the
test
setupofFigure 5-3toeach
outputinturn.
For
each
20V
supply:
make
the
total
resistanceofRL
and
the
current
sampling resistor40ohms,
set
the
±20V
VOLTAGE
con-
trol
foracurrent
indicationonthe
DVMof0.5A,
check
that
the
panel
meter
indicationiswithin4%of
0.5A,
connect
the
DVMtothe
fully loaded
output
terminals,
and
compare
the
output
voltage
before
and
after
the
load
circuitisopened.
The
voltage
should
not
changebymore
than
4mV.
While
checking
each
supply,
the
other
two
must
be fully
loaded.
Current
Limit
k.
Disconnect
all loads
from
the
supply.
I.
Connect
the
test
setup
showninFigure 5-3tothe
+20-
volt
output.
Substituteashort
forRLand
leave
the
load
circuit
switch
open.
m.
Set
the
voltageofthe
:t20V
suppliesto20
volts.
n. Close
the
load
switch
and
determine
the
current
flow
through
the
current
sampling resistor
(meter
shunt)
by
measuring its voltage
drop
with
the
DVM.
The
current
5-3
shouldbe0.55A
±5%.
o. Check
the
current
limitofthe
-20V
supplyinthe
same way. Its
short-circuit
current
should
also be
0.55A
±5%.
p. (Model
6237A
only).
Check
the
current
limitofthe
+18V
supply
similarly by
setting
its
output
for18volts
and
using a DVMtomeasure
the
current
which flows
through
a low-resistance
current
sampling resistor.
The
short-circuit
currentofthe
+18V
supply
should
be 1.1 A ±5%.
q. (Steps (q)
through
(s)
applytothe
6236A
only.)
Connect
the
test
setup
shown
in Figure 5-3tothe
+6V
out-
put.
Close
the
switch,
set
the
total
resistanceofR
Land
the
current
sampling resistortoan
initial valueof2.4
ohms
or
greater,
and
set
the
output
voltageto6 volts.
r.
Reduce
the
valueofRL
gradually
while observing
the
output
current
indicatedbythe
DVM.
The
current
should
increasetoa
maximumof2.75A
±5%
before
it begins
to
decrease.
s.
Connectashort
across RL
and
then
recheck
the
current
indicatedbythe
DVM.
The
short-circuit
currentofthis
output
should
be 1A ±15%.
Disconnect
the
test
setup
from
the
supply.
5-17 Load
Effect
(Load Regulation)
Definition:
The
change
~EOUT
in
the
static
valueofdc
output
voltage resulting
from
a change in load
resistance
from
open
circuittoa value which yields maxi-
mum
rated
output
current
(or vice versa).
5-18
To
check
the
load
effect:
a.
Connect
a full load resistance
and
a digital
voltmeter
across
the
outputofthe
+20V
supply.
b.
Turnonthe
supply
and
adjust
its voltagetoits
maxi-
mum
rated
value.
c.
Record
the
voltage
indicatedonthe
DVM.
d.
Disconnect
the
load resistance
and
recheck
the
DVM
indication.Itshouldbewithin
.01% plus
2mVofthe
read-
ing
in
step
(c).
e.
Repeat
steps
(a)
through
(d)
for
eachofthe
remain-
ing
supply
outputs.
POWER
SUPPLY
UNDER TEST
-
COM.
+
R
L
0
()
("\.
)'
TV
1
DIGITAL
(RHEOSTAT)
VOLTMETER
CURRENT
+ - G
SAMPLING
(
(l9
RESISTOR
~
-
f'
.~
-
(SHUNT)
Figure 5-3.
Output
Current,
Test
Setup
Page 18
5-19 Source
Effect
(Line Regulation)
Definition:
The
change,
b.
E
OUT
' in
the
static
valueofdc
output
vcltage resulting
fromachange
in ac
input
voltage over
the
specified range
from
low line (typi-
cally
104
Vac)tohigh line (typically
127
Vac),orfrom
high linetolow line.
rectification),
an oscilloscope display showing a
120
Hz
fundamental
componentisindicativeofa
"c1ean"
measure-
ment
setup,
while
the
presenceofa60Hz
fundamental
usually
means
thatanimproved
setup
will resultina
more
accurate
(and lower) valueofmeasured
ripple.
5-24 Figure
5-48
shows a
correct
methodofmeasuring
the
output
rippleofa
constant
voltage
power
supply
using
a single-ended
scope.
The
ground
loop
pathisbroken
by
floating
the
power
supply
output.
To
ensure
thatnopoten-
tial
difference
exists
between
the
supply
and
the
oscilloscope,
it
is
recommended
that
they
both
be plugged
into
the
same
ac
power
bus.Ifthe
same bus
cannot
be used,
both
ac
grounds
mustbeat
earth
ground
potential.
5-20
To
test
the
source
effect:
a.
Connect
a variable
autotransformer
between
the
in-
put
power
source
and
the
power
supply
line plug.
b.
Connect
a full load resistance
and
a digital
voltmeter
across
the
outputofthe
+20V
supply.
c.
Adjust
the
autotransformer
for
a low line
input.
d.
Turnonthe
power,
adjust
the
outputofthe
supply
to
its
maximum
rated
voltage,
and
record
the
DVM indica-
tion.
e.
Adjust
the
autotransformer
for
a high line
input
and
recheck
the
DVM
indication.Itshouldbewithin
.01 %plus
2mVofthe
readinginstep
(d).
f.
Repeat
steps (b)
through
(e)
for
eachofthe
remaining
supply
outputs.
POWER SUPPLY CASE
OSCILLOSCOPE CASE
Figure 5-4. Ripple
and
Noise,
Test
Setup
AC-+--­ACC GND
,..---f-..,.,....,~
AC
ACC GND
I
I
I
VERTICAL I
.xr-+----~~G
INPUT I
:--~~EG
I
L
~_~~
__
---_J
A.
INCORRECT METHOD - GROUND CURRENTIGPRODUCES
60
CYCLE
DROPINNEGATIVE LEAD WHICH
ADDSTOTHE
POWER
SUPPLY
RIPPLE
DISPLAYED
ON SCOPE.
POWER
SUPPLY
CASE
OSCILLOSCOPE CASE
AC
f,C
ACC
ACC
GND
GND
+
+
- VERTICAL
G
G
INPUT
POWER
SUPPLY CASE
OSCILLOSCOPE CASE
AC
AC
ACC
ACC
GND
GND
+
+
- VERTICAL
G
G
INPUT
B.
A CORRECT
METHOD
USING A
SINGLE
-ENDED
SCOPE.
OUTPUT FLOATED TO
BREAK
GROUND CURRENT LOOP,
TWISTED
PAIR
REDUCES
STRAY
PICKUPONSCOPE
LEADS.
C.
A CORRECT METHOD USING A
DIFFERENTIAL
SCOPE WITH
FLOATING INPUT. GROUND CURRENT PATH
IS
BROKEN;
COMMON MODE REJECTION
OF
DIFFERENTIAL
INPUT
SCOPE
IGNORES DIFFERENCE IN GROUND
POTENTIAL
OF POWER
SUPPLY 8 SCOPE, SHIELDED TWO WIRE FURTHER
REDUCES
STRAY PICKUPONSCOPE LEADS.
5-21 PARD (Ripple and Noise)
Definition:
The
residual ac voltage whichissuper-
imposedonthedcoutputofa regulated
power
supply.
Ripple
and
noise
may
be specified
and
measuredinterms
of
its rmsorpeak-to-peak
value.
5-22
Measurement
Techniques.
Figure 5-4A
shows
an
incorrect
methodofmeasuring
Pop
ripple. Note
that
a con-
tinuous
ground
loop
exists
from
the
third
wireofthe
input
power
cordofthe
supplytothe
third
wireofthe
input
power
cordofthe
oscilloscope via
the
grounded
power
sup-
ply case,
the
wire
between
the
negative
output
terminal
of
the
power
supply
and
the
vertical
inputofthe
scope,
and
the
grounded
scope
case.
Any
ground
current
circulating
in this
loop
as a resultofthe
differenceinpotential
E
G
between
the
two
ground
points
causes an IR
drop
which
isinseries
with
the
scope
input.
This IR
drop,
normally
having a60Hz
Iine
frequency
fundamental,
plus
any
pick-
uponthe
unshielded
leads
interconnecting
the
power
sup-
ply
and
scope,
appearsonthe
faceofthe
CRT.
The
magni-
tudeofthis
resulting signal can easily be
much
greater
than
the
true
ripple
developed
between
the
plus
and
minus
out-
put
terminalsofthe
power
supply
and
can
completely
in-
validate
the
measurement.
5-23
The
same
ground
current
and
pickup
problems
can
exist
if an rms
voltmeterissubstitutedinplaceofthe
oscil-
loscope
in
Figure 5-4. However,
the
oscilloscope display,
unlike
the
true
rms
meter
reading, tells
the
observer imme-
diately
whether
the
fundamental
periodofthe
signal dis-
playedis8.3
milliseconds
(1/120
Hz)or16.7
milliseconds
(1/60
Hz). Since
the
fundamental
ripple
frequency
present
on
the
outputofan HP
supplyis120Hz(duetofull-wave
5-4
Page 19
c.
Repeat
for
the
remaining
supply
outputs.
OSCILLOSCOPE
RT
(NOTE
4)
NOTES:
I.
THIS
DRAWING
SHOWS
A
SUGGESTED METHOD
OF BUILDING A LOAD SWITCH. HOWEVER. OTHER METHODS
COULD BE USED; SUCH AS A TRANSISTOR SWITCHING NETWORK. MAXIMUM
LOAD RATINGS
OF
LOAD SWITCH ARE:
5AMPS.500V,
250W
(NOT
2500W
l.
2.
USE
MERCURY RELAY
CLARE TYPE HGP
1002
OR
W.E. TYPE
276B.
3.
SELECT CONTACT
PRO­TECTION NETWORK ACCORDINGTOMERCURY
RELAY MANUFACTURERS INSTRUCTIONS
4.
EACH RTIS
EQUAL TO
TWICE THE
NORMAL
FULL
LOAD RESISTANCE
(2
XRL)
USED IN PREVIOUS TESTS.
CONTACT
PROTECTION
NETWORK
r-
(NOTE
3)------
r----
-----
I N.C.
I
I
I
I
-,
I
:t :
I N.C. I
I I
I
I
I
I
I
I
I I
I
REPETITIVE
I
~~~
~W~~_(!::02.E~)
__
.J
+
POWER SUPPLY
UNDER TEST
Figure 5-5. Load
Transient
Recovery
Time,
Test
Setup
5-29 Load Transient Recovery Time
Definition:
The
time
"x"
for
output
voltage
recovery
to
within
"Y"
millivoltsofthe
nominal
output
voltage following a
"Z"
amp
step
changeinload
current,
where:
"X"
equals 50J,lsec,
"Y"
equals
15mV,
and
"z"
is
the
specified load
current
change,
equaltohalfofthe
cur-
rent
ratingofthe
supply.
The
nominal
output
voltage
is
definedasthedclevel
halfway
between
the
static
output
voltage
before
and
after
the
imposed
load change.
5-30
Measurement
Techniques.
Care
mustbetaken
in
switching
the
load resistanceonand
off. A
hand-operated
switchinseries
with
the
loadisnot
adequate
since
the
re-
sulting
one-shot
displays are
difficulttoobserveonmost
oscilloscopes
and
the
arc
energy
occurring
during
switching
completely
masks
the
display
with
a noise burst.
Transistor
load
switching
devices are expensive if
reasonably
rapid load
current
changes aretobe achieved. Instead, a
mercury-
wetted
relay
should
be used
for
loading
and
unloading
the
supply.
Connect
it in
the
load switching
circuit
shown
in
Figure 5-5. When
this
load
switchisconnectedtoa60Hz
ac
input,
the
mercury-wetted
relay will
open
and
close
60
times
per
second.
The
25K
control
adjusts
the
duty
cycle
of
the
load
current
switchingtoreduce
jitterinthe
oscillo-
scope display. This relay
may
also be used
witha50
Hz
ac
input.
5-25
Eitheratwisted
pair
or,
preferably,
a shielded
two-wire cable
should
be usedtoconnect
the
output
termin-
alsofthe
power
supplytothe
vertical
input
terminals
of
the
scope. When using a
twisted
pair, care
mustbetaken
that
oneofthe
two
wiresisconnectedtothe
grounded
in-
put
terminalofthe
oscilloscopetoensure
that
the
supply
outputissafely
grounded.
When using shielded two-wire,
it
is
essential
for
the
shieldtobe
connectedtoground
at
one
end
onlytoprevent
ground
current
flowing
through
this shield
from
inducing a signal in
the
shielded leads.
5-27
In
most
cases,
the
single-ended
scope
method
of
Figure 5-4B will be
adequatetoeliminate
non-real
compon-
entsofripple so
thatasatisfactory
measurement
may
be
obtained.
However,inmore
stubborn
cases (or if high
frequency
noiseupto20MHz
mustbemeasured),itmay
be necessarytouse a differential
scope
with
floating
input
as
showninFigure 5-4C. If desired,
two
single-conductor
shielded cables
maybesubstitutedinplaceofthe
shielded
two-wire cable
with
equal success. Becauseofits
common
mode
rejection, a
differential
oscilloscope displays
only
the
difference
in signal
between
its
two
vertical
input
terminals,
thus
ignoring
the
effectsofany
common
mode
signal pro-
ducedbythe
differenceintheacpotential
between
the
power
supply
case
and
scope
case. Before using a differen-
tial
input
scopeinthis
manner,
however, itisimperative
that
the
common
mode
rejection
capabilityofthe
scope'
be verifiedbyshorting
together
its
two
input
leadsatthe
power
supply
and
observing
the
traceonthe
CRT.itthis
traceisa
straight
line,
then
the
scopeisproperly
ignoring
any
common
mode
signal
present.Ifthis
traceisnot
a
straight
line,
then
the
scopeisnot
rejecting
the
ground
signal-and
must
be realignedinaccordance
with
the
manu-
facturer's
instructions
until
proper
common
mode
rejection
is
attained.
5-26
To
verify
that
the
oscilloscopeisnot
displaying
ripple
thatisinducedinthe
leadsorpickedupfrom
the
grounds,
the
(+)
scope
lead
shouldbeshortedtothe
(-)
scope leadatthe
power
supply
terminals.
The
ripple value
obtained
when
the
leads are
shorted
shouldbesubtracted
from
the
actual
ripple-measurement.
5-28
Measurement
Procedure.
To
measure
the
ripple
and
noiseoneach
supply
output,
follow
the
steps
below,
If
a high
frequency
noise
measurementisdesired, an oscil-
loscope
with
sufficient
bandwidth
(20 MHz)
must
be used.
Ripple
and
noise
measurements
canbemadeatany
input
ac line voltage
combined
with
anydcoutput
voltage
and
load
current
within
rating.
a.
Connect
an oscilloscopeorrms
voltmeter
across an
outputofthe
supplyasshowninFigures 5-4Bor5-4C.
b.
Energize
the
supply
and
observe
the
oscilloscope
or
meter
indication.
The
ripple
and
noise
should
not
be
greater
than
0.35mV
rmsor1.5mV
peak-to-peak.
5-5
Page 20
5-31
Measurement
Procedure.
To
measure
the
load
transient
recovery
time,
follow
the
steps
below
for
each
supply
output.
Transient
recovery
time
maybemeasured
at
any
input
line voltage
and any
output
voltage
within
rating.
For
this
supply
the
specified load changeisbetween
half load
and
full load.
a.
Connect
the
test
setup
showninFigure 5-5. Both
load resistors (RT) are
twice
the
normal valueofa full load
resistance.
b.
Turnonthe
supply
and
close
the
line switchonthe
repeti+ive load switch.
c.
Set
the
oscilloscope
for
internal
sync
and
lock
on
either
the
positiveornegative load
transient
spike.
d.
Set
the
vertical
inputofthe
oscilloscope
foraccoup-
ling so
that
smalldclevel changesinthe
output
voltage
of
the
power
supply
will
not
cause
the
displaytoshift.
e.
Adjust
the
horizontal
positioning
controlsothat
the
trace
startsata
point
coincident
withamajor
graticule
division. This
point
then
represents
time
zero.
f.
Adjust
the
vertical
centeringofthe
scopesothat
the
tail
endsofthe
no-load
and
full-load
waveforms
are
symmet-
rically displaced
about
the
horizontal
center
lineofthe
oscil-
loscope. This
center
line
now
represents
the
nominal
output
voltage
definedinthe
specification.
g.
Increase
the
sweep rate so
that
a single
transient
spike
canbeexaminedindetail.
h.
Adjust
the
sync
controls
separately
for
the
positive
and
negative going
transientssothat
not
only
the
recovery
waveshape
but
also as
much
as possibleofthe
rise
time
of
the
transientisdisplayed.
i.
Starting
from
the
major
graticule division representing
time
zero,
counttothe
right
50psec
and
vertically
15mV.
Recovery
shouldbewithin
these
tolerances,
as illustrated
in
Figure 5-6.
5-32 TROUBLESHOOTING
5-33 Before
attemptingtotroubleshoot
this
instrument,
ensure
that
the
faultisin
the
instrument
itself
and
notinan
associated piece
of
equipment.
You can
determine
this
with-
out
removing
the
covers
from
the
instrument
by using
the
appropriate
portionsofthe
performance
testofParagraph
5-6.
5-34 A
good
understandingofthe
principlesofopera-
tionisa helpful aidintroubleshooting,
and
the
reader
is
advisedtoreview
SectionIVof
the
manual
before
begin-
ning
detailed
troubleshooting.
Once
the
principlesofoper-
ation
are
understood,
proceedtothe
initial
troubleshoot-
ing
procedures
in Paragraph 5-35.
--
CAUTION--
Before
applying
power
to the supply, make
certain
that
its line voltage selector switch (S3)
is
set
for
the line voltage to be
used.
(See
CAUTION
noticeinParagraph 3-2
for
additional
information
on S3.)
5-35
Initial
Troubleshooting Procedure
5-36 If a
malfunctionisfound,
follow
the
steps below:
a.
Disconnect
input
power
from
the
supply
and
remove
all
loads
from
the
output.
b.
Table
5-2 lists
the
symptoms
and
probable
causes
of
several possible
troubles.Ifthe
symptomisoneofthose
listed,
make
the
recommended
checks.
c. If
noneofthe
symptomsofTable 5-2
apply,
proceed
to
Table
5-3. This
table
provides an initial
troubleshooting
procedure
that
also
directs
youtothe
more
detailed
pro-
cedures
which
follow
it.
Figure 5-6. Load
Transient
Recovery
Time
Waveforms
POSITIVE
OUTPUT-UNLOADING TRANSIENT LOADING TRANSIENT
NEGATIVE OUTPUT-LOADING TRANSIENT UNLOADING TRANSIENT
Open
Fuse
Troubleshooting
5-38
5-37
The
numbered
test
points
referredtoin
the
trouble-
shooting
procedures
are
identifiedonthe
circuit
schematic
andonthe
component
location
diagramatthe
rearofthe
manual.
5-39
Although
transientsorfatigue
can
cause a fuse
to
blow,itisagood
ideatoinspect
the
unit
for
obvious
shorts
such as
damaged
wiring,
charred
components,orextraneous
metal
partsorwire clippingsincontact
with
circuit
board
conductors
before
replacing
the
fuse.
The
ratingofthe
correct
replacement
fuse
dependsonthe
line voltage
option
of
the
instrument:
for
Options
100or120,
use a normal
time-constant
2-amp fuse (HP
Part
No.
2110-0002);
for
Options
220or240,
use a
normal
time-constant
1-amp
fuse (HP
Part
No.
2110-0001).
v
15MV
~
14----.~--
50",
SECONDS
E
NOM
-r--,---------
50",
SECONDS
15
MV
T
5-6
Page 21
Table 5-2. Miscellaneous
Troubles
SYMPTOM
CHECK - PROBABLE CAUSE
High ripple
a.
Check
operating
setup
for
ground
loops (see Paragraph 5-22).
b. Check main rectifiers (CR11,
CR12,
CR31,
CR32,
CR51,
CR52)
for
open.
c.
Supply
may be
operatingincurrent
limit mode. Check
current
limit
adjustment,
Paragraph 5-16, steps (k)
thru
(s).
Will
not
current
limit
Check
for
open
OR-gate diodes (CR5,
CR25,
CR45)ordefective
current
limit amplifier (U1, U2, U3).
Poor
loadorline regulation
a.
Check bias
and
reference voltages, Table 5-4.
b.
Check main rectifiers
and
filters
for
opens.
Oscillation
or
poor
transient
a.
High
frequency
oscillations (above50KHz) can be caused by an
recovery
time
open
C4, C14,orC24.
b.
A defective
output
capacitor
(C1, C11,orC21) can cause
oscillations
in
oneofmany
frequency
ranges.
c.
Oscillation
onlyinthe
current
limiting
mode
can be caused
by an
open
C3, C13,orC23.
Transient
voltage
overshoot
a.
Overshoot
onlyinthe
-20V
supply
can be caused by a
at
turn-onorturn-off.
shorted
013.
b.
Overshootinall
three
supply
outputs
can
be caused by an
open
014ora
shorted
015.
/
..
Table 5-3. Initial
Troubleshooting
Procedure
STEP
ACTION
RESPONSE
NEXT ACTION
1
Check
output
voltageof+20V
q.
Normal
a.
Proceed
to
step
(2).
supply.
b.
Zero
volts
b.
Check ac line fuse (F1).
If
blown,
proceed
to
Paragraph
5·38.Ifnot
blown,
check
bias
and
reference voltages (Table 5-4).
c.
Output
voltage lower
c.
Check bias
and
reference voltages
or
higher
than
rating.
(Table 5-4).
2
Check
output
voltageof-20V
a.
Normal
a.
If
+20V
and
-20V
outputs
are
both
supply.
normal
with
no load, a
supply
might
be
current
limiting
under
load.
To
check
this
adjustment
see Paragraph 5-16,
steps (k)
thru
(0).
b.
High, low,
or
zero
b.
Proceed
to
-20V
supply
troubleshooting,
output
voltage.
Table 5-6.
5-7
Page 22
Table 5-3.
Initial
Troubleshooting Procedure (Continued)
STEP
ACTION
RESPONSE
NEXT
ACTION
3
Check
outputof+6V
supply
a.
Normal
a.
If
the
outputofthis supplyisnormal
(Model
6236A)
unloaded
but
its voltage falls when
or
+18V
supply
loaded, check the current
limit
adjust-
(Model 6237 A).
ment, Paragraph 5-16, steps (p)
thru
(s).
b.
High, low,orzero
b.
ProceedtoTable 5-7.
output
voltage.
Table 5-4.
Bias
and Reference Voltage Check
STEP
ACTION
RESPONSE
PROBABLE CAUSE
1
Check +7.5V bias,
TP1
to
a.
Normal
a.
Proceedtostep (2).
common
(+7.5V ±5%)
b.
Voltage high
b.
Check
VR3
for
open.
c.
Voltage
low
c.
Check
VR3
for
short.
Note: A short
within
U1, U2, U3,orU4
can
cause
low
+7.5Vor-12.4V
bias voltages.
2
Check
-6.2V
reference,
a.
Normal
a.
Proceedtostep (3).
TP2
to
common
(-6.2V
±5%)
b.
Voltage high
b.
Check V R1
for
open.
c.
Voltage
low
c.
Check VR1 and Q14
for
short,
VR2
and Q15
for
open.(Ashort
within
U4
could reduce this voltage.)
3
Check
-12.4
V bias,
a.
Normal
a.
Proceedto+20V
supply troubleshooting.
TP3
to
common
(-12.4V
±5%)
Table 5-5.
b.
High voltage
b.
Check
Q11
for
short, Q12
for
open,
and
Z1
for
open between pins 3 and
5.
c.
Low
voltage
c.
Check
Q11
for
open, Q12
for
short,
and
Z1
for
open between pins 1 and 3.
5-8
Page 23
Table 5-5.
+20V
Supply
Troubleshooting
SYMPTOM
High
output
voltage
(higher
than
rating)
Low
output
voltage
(lower
than
rating)
STEP
- ACTION
1.
Attempttoturn
down
loopbyshorting
015
emitter-
to-base
2. Measure voltage
at
OUt-
putofOR-gate (TP4).
1. Measure voltage
at
out-
putofOR-gate (TP4).
2. Measure voltage
at
TP8.
3. Measure voltage
at
TP7.
4. Measure voltage
at
TP13.
/
RESPONSE - PROBABLE CAUSE
a.
If
output
voltage remains high,
check
01,
015,
and
CR9
for
short.
b.
If
output
voltage fallstonear zero, remove
short
from
015
and
proceedtostep
(2).
a.IfTP4isapprox.
-0.7V,
check
for
open
CR6
or
R1,
and
defective U1.
b.
:f
TP4isapprox.
+0.7V,
check
for
defective
02.
a.
If
TP4isbetween
zero
and
-0.
7V,
check
for
open
01,
015,R14,orCR59,
and
defective
02.
b.
If
TP4isapprox.
+0.7V,
proceedtostep
(2).
a.
If
voltageatTP8ispositive,
check
Z1
for
open
between
pins 5
and
13,
check
R8 for
open,
and
check
for
defective R6orU1.
b.
If
TP8isapprox.
-0.7V,
proceedtostep
(3).
a.
If
TP7isapprox.
+0.7V,
check
CR6
for
short.
b.
If
TP7isapprox.
+1.4V,
proceedtostep
(4).
a.
If
TP13isapprox.
-0.7V,
replace U1.
b.
If
TP13iszero
volts,
check
for
open
R10,
and
shorted
CR2orCR3.
c.
If
TP13isapprox.
+0.7V,
check
for
open
R2,
shorted
R1,orleakyorshorted
C2.
.
Table 6-6.
-20V
Supply
Troubleshooting
SYMPTOM
STEP
- ACTION
RESPONSE - PROBABLE CAUSE
NOTE:
The
+20V
supply
must
operate
properly
before
troubleshooting
the
-20V
supply.
High
output
vo1tage
1.
Attempttoturn
down
a.
If
output
voltage remains high,
check
03,
CR29,
(more
than
1% greater
loop
by
shorting
013
and
013
for
short.
than
+20V
supply)
emitter-to-base.
b.
If
output
fallstonear zero, remove
short
from
013
and
proceedtostep
(2).
2.
Measure voltage
at
out-
putofOR-gate (TP5)
a.
If
voltageatTP5iszeroornegative,
check
for
defective
04.
b.IfTP5ispositive,
proceedtostep
(3)
5-9
Page 24
Table 5-6.
-20V
Supply
Troubleshooting
(Continued)
SYMPTOM
STEP
- ACTION
RESPONSE - PROBABLE CAUSE
3.
Measure voltage
at
TP14.
a.
If
TP14isapprox.
-O.7V,
check
for
open
CR26
or
defective U2.
b.
If
TP14isapprox.
+0.7V,
checkZ1for
open
from
pin 7to12orfor
short
from
pin 6
to
1~.
Low
output
voltage
1.
Measure voltage
at
TP5.
a.
If
voltageatTP5iszeroorpositive,
check
for
open
(more
than
1% lower
Q3,
Q13,orR34,
and
defective Q4.
than
+20V
supply)
b.
If
TP5
voltageisapprox.
-0.7V,
proceedtostep
(2).
2.
Measure voltageatTP9.
a.
If
TP9isnegative,
check
for
openZ1between
pins 5
and
15,
open
R28,
and
defective R26orU2.
b.
If
TP9isapprox.
+0.7V,
proceedtostep
(3).
3. Measure voltage
at
TP10.
a.
If
TP10isapprox.
-0.7V,
check
CR26
for
short.
b.
If
TP10is-1.0
to
-1.4V,
proceedtostep
(4).
4.
Measure voltageatTP14.
a.
If
TP14isapprox.
+0.7V,
replace U2.
b.
If
TP14iszero
volts,
check
for
shorted
CR22
or
CR23.
c.IfTP14isapprox.
-0.7V,
check~1for
open
between
pins 6
and12or
short
between
pins 7
and
12,
and
check
for
leakyorshorted
C12.
Table 5-7. +6V
or
+18V
Supply
Troubleshooting
SYMPTOM
STEP
- ACTION
RESPONSE - PROBABLE CAUSE
.
High
output
voltage 1.
Attempttoturn
down
loop
a.
If
output
voltage remains high,
check
Q7,
Q15,
(higher
than
rating)
by
shorting
Q15
emitter-to-base.
and
CR49
for
short.
b.
If
output
voltage fallstonear zero, remove
short
from
Q15
and
proceedtostep
(2).
2.
Measure voltage
at
output
a.
If
TP6isapprox.
-0.7V,
check
for
open
CR46
or
of
OR-gate (TP6).
R41,
and
defective U3.
b.
If
TP6isapprox.
+0.7V,
check
for
defective Q8.
Low
output
voltage
1. Measure voltage
at
output
a.
If
TP6isbetween
zero
and
-0.
7V,
check
for
open
(lower
than
rating)
of
OR-gate (TP6).
Q7,
Q15,
R54,orCR59,
and
defective Q8.
b.
If
TP6isapprox.
+0.7V,
proceedtostep
(2).
5-10
Page 25
Table 5-7.
+6Vor+18V
Supply
Troubleshooting
(Continued)
SYMPTOM
STEP
- ACTION
RESPONSE - PROBABLE CAUSE
2.
Measure voltageatTP12.
a.
If
voltageatTP12ispositive,
check
for
shorted
R49,
open
R48,
openZ1between
pins 5
and
14,
and
defective R46orU3.
b.
If
TP12
is
a~prox.
-0.7V,
proceedtostep
(3).
3.
Measure voltageatTP11
..
a.IfTP11isapprox.
+0. 7V,
check
CR46
for
short.
b.
If
TP11isapprox.
+1.4V,
proceedtostep
(4).
4.
Measure voltage
at
TP15.
a.
If
TP15isapprox.
-0.7V,
replace U3.
b.
If
TP15iszero
volts,
check
for
open
R50, and
shorted
CR42orCR43.
c.
If
TP15isapprox.
+0.7V,
check
for
shorted
R41,
open
R42,orleakyorshorted
C22.
5-40
REPAIR
AND
REPLACEMENT
becauseofinclusion in this table.
Series
Regulator Replacement
5-46
ADJUSTMENT
AND
CALIBRATION
5-42
To
remove
and
replace a series regulator
transistor:
a.
Remove
the
top
and
bottom
covers from
the
instru-
ment.
b.
Remove
the
collector
screws
and
unsolder
the
base
and
emitter
leads from
the
boardtoremove
the
transistor.
c.
To
replace
the
transistor,
follow
the
below reassembly
order,asviewed
from
the
bottomofthe
heat
sink:
collector
screws,P.C.
board,
heat
sink,
two
insulating bushiflgs (in
collector
screw holes in
heat
sink), silicon grease
(Dow
DC-3
or
HP6040-0209),
mica insulator,
another
coatingofsilicon
grease,
transistor,
lock-washers,
and
hex-nuts.
d. Resolder
the
emitter
and
base pinstothe
circuit
board.
5-43 Semiconductor Replacement
5-44 Table 5-8
contains
replacement
data
for
the
semi-
conductors
usedinthis
power
supply.
When replacing a
semiconductor,
use
the
listed Hewlett-Packard
partorexact
commercial
replacementifthese
are available.Ifneither
of
these are
immediately
available
andapartisneeded
without
delay
for
operationortroubleshooting
verification,
the
parts
listed in
the
Alternate
column
canbetried
with
a high
probabilityofsuccess.
5-45 Notice
that
both
the
commercial
and
alternate
re-
placements
listed in Table 5-8
apply
onlytotheHPpower
supplies covered by this manual
and
their
useinany
other
Hewlett-Packard
instrumentisnot
necessarily
recommended
5-11
5-47 Current
Limit
Adjustment
5-48
±20V
Supplies. Perform
the
following steps
to
adjust
the
current
limit
circuitinthe
+20Vor-20V
supply.
Potentiometer
R6 sets
the
+20V
and
R26
the
-20V
current
limit.
a.
Turn
the
current
limit
adjustment
pot
(R6orR26)
fully
counterclockwisetoits
minimum
setting.
b.
Connect
the
test
circuitofFigure 5-3tothe
output
of
the
supplytobe
adjusted.
Use a
40n
10W resistor
for
RL·
-c.
Turnonthe
supply
and
set
the
±20V
VOLTAGE
control
for
maximum
output
(fully clockwise).
d.
Turn
the
current
limit
pot
(R6orR26) slowly
clockwise until
the
DVM indicates a voltage
drop
across
the
shunt
correspondingtoa
currentof0.55A
±5%.
5-49
+6V
Supply
(Model
6236A).
To
adjust
the
current
limit
circuitinthe
+6V
supply,
proceedasfollows:
a. Check
the
settingofthe
current
limit by
performing
steps (q)
and
(r)ofParagraph 5-16. (Be suretoset
the
output
voltageto6 volts.)Ifreducing
the
load resistance
permits
the
currenttoexceed
2.9A,
stop,
turn
R46 slightly
clockwise,
and
repeat
the
test. If, instead,
the
cur-
rent
beginstofall
before
it reaches
2.6A,
turn
R46 slightly
counterclockwise
and
repeat
the
test.
b. Recheck
the
setting
and
readjust R46 until
the
test
shows
that
the
current
limit
circuit
beginstoreduce
the
current
when
a decreasing load resistance increases 'it
to
2.75A
±5%.
Page 26
Table 5-8.
Semiconductor
Replacement
Data
Reference
HP
Exact
Designator
Part
No.
Commercial
Alternate
Replacement
CR1, 9,
11-12,21,28-29,
1901-0327
1
N5059
31-32, 55-56,
59
CR2-7 ,22-26,42,43,45-47
1901-0033
lN485B
CR41,
49,
51-52
1901-0416
lN4999
CR44,57
1901-0460
STB523
01,
7
1853-0063
SJ1528
02,
12,
15
1854-0448
SSl147
Mot
03,8
1854-0563
2N3055
04
1853-0012
2N2904A
011
1853-0052
2N3740
.
013
1853-0041
2N4036
014
1854-0027
2N2714A
Ul-3
1826-0092
CA
3458T
RCA
U4
1820-0223
LM
301AH
Nat
VRl
1902-1221
lN825
VR2
1902-3149
lN4353B
VR3
1902-0650
1N5343B
5-50
+18V
Supply
(Model
6237A).
To
adjust
the
current
limit circuit in
the
+18V supply, proceed as follows:
a. Turn
current
limit
adjustment
pot
(R46) fully clock-
wise
to
its minimum setting.
b.
Connect
the
test
circuitofFigure 5-3tothe
output
of
the
+18V supply.
Usean18n
20W resistor for RL.
c. Turn on
the
supply and set
the
+18V VOLTAGE
control
for
maximum
output
(fully clockwise).
d.
Turn
current
limit
pot
(R46) slowly counterclockwise
until
the
DVM
indicates a voltage
drop
across
the
shunt
correspondingtoa
currentof1.1 A ±5%.
5-51 Meter Calibration
5-52
Panel
Voltmeters.
Check
the
accuracyofthe
panel
voltmeter
by performing steps (a), (b),
and
(c)ofthe
pro-
cedure
in
Paragraph 5-16. Since
the
same range resistors are
used
in
both
20-volt ranges,
their
accuracy will be
the
same.
Adjust R58 so
that
the
percentage
errorinthe
+6V range
(or +18V range)
is
equaltothe
errorinthe
20-volt ranges.
Turn
R58 clockwisetoincrease
the
indicationsorcounter-
clockwisetodecrease
them.IfR58
cannot
calibrate
all
voltmeter
rangestowithin
the
±4% specification,
check
the
valuesofthe resistorsinthe
voltmeter
circuit.
5-53 Panel
Ammeter.
Check and calibrate
the
panel
ammeter
by following
the
steps below.
a.
Connect
the
test
setup
showninFigure 5-3tothe
+6V
(or +18V)
output.
Make
the
total
resistanceofRL and
the
current
sampling resistor 2.4
ohms
(Model
6236A)or18
ohms (6237A)to
permit
operating
the
supplyatits full
rated
output.
RL should have a
power
ratingofat
least
20
watts.
b. Close
the
switch and
set
the
+6V (+18V) VOLTAGE
controlsothat
the
DVM
indicates an
outputof2.5A
(6236A)or1.0A
(6237A).
c. Check
and
record
the
panel
ammeter
accuracyonthe
+6Vor+18V range.
d. Check each
of
the
20-volt
ammeter
ranges similarlY,
using
the
same
test
setup
but
making RL a
40n
lOW resistor
and setting
the
voltage
control
for a
0.5A
output
current.
Record
the
panel
ammeter
accuracyoneach 20-volt range.
e.
Turn
R59 clockwisetoincrease
the
indicatio~s
on
all
three
rangesorcounterclockwisetodecrease
them.
f.IfR59
cannot
calibrate
all
three
ammeter
ranges
to
within
the
±4% specification, check
the
valuesofthe
resis-
tors in
the
circuit, including
current
monitoring resistors
R8, R28, and R48.
5-12
Page 27
SECTION
VI
REPLACEABLE
PARTS
6-'
INTRODUCTION
Table 6-1. Reference Designators
(Continued)
Table 6-1. Reference Designators
6-3 ORDERING INFORMATION
6-2 This section contains
information
for
ordering
re-
placement parts. Table 6-4 lists parts in alpha-numeric
order
by
reference designators and provides the
following
informa-
tion:
/
6-4
To
order a replacement part, address order''6r in-
quiry
to
your
local Hewlett-Packard
sales
office
(s~~
lists at
rear
of
this manual
for
addresses). Specify
the
following
information
for
each
part:
Model,
complete
serial number,
and any
Option
or
special
modification
(J)
numbers
of
the
instrument;
Hewlett-Packard
part
number;
circuit
reference
designator; and description.
To
order a
part
not
listed
in
Table 6-4, give a
complete
description
of
the part, its func-
tion,
and its
location.
v
= vacuum tube,
neon bulb, photocell,
etc.
VR
= zener diode
X = socket
Z
= integrated cir-
cu
it
or
network
Table 6-2.
Description
Abbreviations
= plug = transistor = resistor
= switch =
transformer
= terminal
block
= thermal
switch
P
o
R
S
T
TB TS
A
= ampere
mod. =
modular
or
ac
= alternating
current
modified
assy.
= assembly
mtg
=
mounting
bd = board
n
= nano = 10-
9
bkt
= bracket
NC =
normally
closed
°c
= degree Centigrade
NO =
normally
open
cd
= card
NP
= nickel-plated
coef
=
coefficient
n
=
ohm
comp
=
composition
obd =
order
by
CR.T
= cathode-ray tube
description
CT
= center-tapped
OD
= outside
diameter
dc
=
direct
current
p
=
pico
= 10-
12
DPDT=
double
pole,
P.C.
=
printed
circuit
double
throw
pot. =
potentiometer
DPST=
double
pole,
POp
= peak-to-peak
single
throw
ppm
= parts per
million
elect =
electrolytic
pvr
= peak reverse
encap= encapsulated
voltage
F
= farad
rect =
rectifier
OF
= degree Farenheit rms
=
root
mean square
f~d
=
fixed
Si
= silicon
Ge
= germanium
SPDT= single pole,
H
=
Henry
double
throw
Hz
=
Hertz
SPST = single pole,
IC
= integrated
circuit
single
throw
ID
= inside
diameter
SS
= small signal
incnd = incandescent T =
slow-blow
k
=
kilo
=
10
3
tan. =
tantulum
m
=
milli
= 10-
3
Ti
=
titanium
M
= mega = 10
6
V
=
volt
J1
=
micro
= 10-
6
var = variable
met. = metal
ww
=
wirewound
mfr
=
manufacturer
W
=
Watt
= miscellaneous
electronic
part = fuse = jack,
jumper = relay =
inductor
= meter
E
F
J
K
L
M
A = assembly
B =
blower
(fan)
C = capacitor CB
=
circuit
breaker
CR =
diode
DS = device, signal ing
(lamp)
a.
Reference Designators. Refer
to
Table 6-1.
b. Description. Refer
to
Table 6-2
for
abreviations.
c.
Total
Ouantity
(TO).
Given
only
the
first
time
the
part
number
is
Iisted except in instruments
containing
many sub-modular assembl
ies,
in
which
case
the
TO
appears
the
first
time
the
part
number
is
listed in
each
assembly.
d. Manufacturer's Part
Number
or
Type.
e.
Manufacturer's Federal
Supply
Code
Number.
Refer
to
Table 6-3
for
manufacturer's name and address.
f. Hewlett-Packard Part
Number.
g.
Recommended Spare Parts
Quantity
(RS)
for
complete maintenance
of
one
instrument
during
one year
of
isolated service.
h. Parts
not
identified
by
a reference designator
are
listed at the end
of
Table 6-4 under Mechanical
and/or
Miscellaneous. The
former
consists
of
parts belonging
to
and
grouped
by
individual assemblies; the
latter
consists
of
all
parts
not
immediately
associated
with
an
assembly.
6-1
Page 28
Table 6-3. Code
ListofManufacturers
CODE
MANUFACTURER
ADDRESS
CODE
MANUFACTURER
ADDRESS
00629 00656 00853
01121 01255 01281
01295 01686 01930 02107 02114 02606 02660 02735
Q3508
03797
03877
03888
04009
04072 04213
04404
04713
05277
05347 05820
06001
06004
06486
06540
06555
06666 06751
06776
06812
EBY
Sales
Co., Inc. Jamaica, N.Y.
Aerovox Corp. New Bedford,
Mass.
Sangamo Electric Co.
S.
Carolina Div. Pickens,
S.C.
Allen Bradley Co. Milwaukee,
Wis.
Litton
Ind. Beverly Hills, Calif.
TRW Semiconductors, Inc.
Lawndale, Calif.
Texas Instruments, Inc. Dallas, Texas
RCL Electronics, Inc. Manchester, N.H. Amerock Corp. Rockford, III. Sparta Mfg. Co. Dover,
Oh
io Ferroxcube Corp. Saugerties, N.Y. Fenwal Laboratories
Morton
Grove, III.
Amphenol Corp. Broadview, III.
Radio Corp.
of
America, Solid State
and
Receiving Tube Div. Somerville, N.J.
G.E. Semiconductor Products Dept.
Sy
racuse,
N.Y.
Eldema Corp. Compton,
Cal
if.
Transitron Electronic Corp.
Wakefield,
Mass.
Pyrofilm
Resistor Co., Inc.
Cedar Knolls, N.J.
Arrow,
Hart
and
Hegeman Electric Co.
Hartford,
Conn.
ADC Electronics, Inc. Harbor
City,
Calif.
Caddell
& Burns Mfg.
Co.
Inc.
Mineola, N.Y.
*Hewlett-Packard Co. Palo
Alto
Div.
Palo
Alto,
Calif.
Motorola Semiconductor Prod. Inc.
Phoenix, Arizona
Westinghouse Electric Corp.
Semiconductor Dept. Youngwood,
Pa.
Ultronix,Inco
Grand
Junction,
Colo.
Wakefield Engr. I
nco
Wakefield,
Mass.
General Elect. Co. Electronic
Capacitor
& Battery Dept. Irmo,
S.C.
Bassik
Div. Stewart-Warner Corp.
Bridgeport, Conn.
I
RC
Div.ofTRW Inc.
Semiconductor Plant Lynn,
Mass.
Amatom
Electronic Hardware Co. Inc.
New Rochelle, N.Y.
Beede
Electrical Instrument Co.
Penacook, N.H.
General Devices Co. Indianapolis, Ind. Semoor Div. Components, h;c.
Phoenix, Arizona
Robinson N,ugent, Inc.'New Albany,
N.Y.
Torrington Mfg. Co. Van Nuys, Calif.
07137
07138 07263
07387 07397
07716
07910
07933
08484 08530 08717 08730
08806
08863 08919
09021
09182
09213
09214
09353 09922
11115
11236 11237
11502 11711 12136 12615 12617 12697 13103 14493 14655
14936
15801 16299
Transistor Electronics Corp.
Minneapolis, Minn.
Westinghouse Electric Corp. Elmira, N.Y.
Fairchild Camera and Instrument
Mountain View, Calif.
Birtcher Corp., The
Los
Angeles, Calif.
Sylvania Electric Prod. Inc.
Mountainview, Calif.
IRC Div.
of
TRW Inc. Burlington, Iowa
Continental Device Corp.
Hawthorne, Calif.
Raytheon Co. Components Div.
Mountain View, Calif.
Breeze
Corporations, Inc. Union, N.J.
Reliance Mica Corp.
Brooklyn,
N.Y.
Sloan Company, The
Sun
Valley, Calif.
Vemaline Products Co. Inc.
Wyckoff,
N.J.
General Elect. Co. Minature
Lamp Dept. Cleveland, Ohio
Nylomatic
Corp. Norrisville,
Pa.
RCH
Supply Co. Vernon, Calif.
Airco
Speer Electronic Components
Bradford,
Pa.
*Hewlett-Packard Co. New Jersey Div.
Rockaway, N.J.
General Elect. Co. Semiconductor
Prod. Dept. Buffalo, N.Y.
General Elect. Co. Semiconductor
Prod. Dept.
Auburn,
N.Y.
C
& K Components Inc. Newton,
Mass. Burndy Corp. Norwalk, Conn. Wagner
Electric
Corp.
Tung-Sol Div. Bloomfield, N.J.
CTS
of
Berne, Inc. Berne, Ind.
Chicago TelephoneofCal. Inc.
So.
Pasadena,
Calif.
IRC Div.
of
TRW Inc. Boone, N.C.
General Instrument Corp. Newark, N.J. Philadelphia Handle Co. Camden, N.J. U.S. Terminals, Inc. Cincinnati, Ohio Hamlin Inc. Lake Mills, Wisconsin Clarostat Mfg. Co. Inc. Dover, N.H. Thermalloy Co. Dallas, Texas
*Hewlett-Packard Co. Loveland, Colo.
Cornell-Dubilier Electronics Div.
Federal Pacific Electric Co.
Newark, N.J.
General Instrument Corp. Semicon-
ductor
Prod. Group Hicksville,
N.Y.
Fenwal Elect. Framingham,
Mass.
Corning
Glass
Works Raleigh, N.C.
*Use Code
28480
assignedtoHewlett-Packard Co., Palo
Alto,
California
6-2
Page 29
Table 6-3. Code
ListofManufacturers
CODE
MANUFACTURER
ADDRESS
CODE'
MANUFACTURER
ADDRESS
Globe-Union Inc.
Fullerton, Calif.
Fenwal, Inc. Ashland,
Mass.
Hughes
Aircraft
Co. Electron
Dynamics Div. Torrance, Calif.
Amperex Electronic
Hicksville,
N.Y.
Bradley Semiconductor Corp.
New Haven, Conn.
Carling Electric, l!lc.
Hartford,
Conn.
Federal Screw Products, Inc.
Chicago, III. Heinemann Electric Co. Trenton, N.J. Hubbell Harvey I
nco
Bridgeport, Conn.
Amphenol Corp. Amphenol RF Div.
Danbury, Conn.
E.F. Johnson Co.
Waseca,
Minn.
Thomas and Betts Co. Philadelphia,
Pa.
Union Carbide Corp. New
York,
N.Y.
Ward Leonard Electric Co.
Mt.
Vernon, N.Y.
Amperite Co. Inc. Union
City,
N.J.
Beemer Engrg Co.
Fort
Washington,
Pa. Belden Corp. Chicago, III. Bud Radio, Inc. Willoughby, Ohio
Cambridge Thermionic Corp.
Cambridge,
Mass.
Bussmann Mfg. Div.of McGraw &
Edison Co. St. Louis, Mo.
CTS Corp. Elkhart, Ind.
I.T.T. Cannon Electric Inc.
Los
Angeles, Calif.
Milwaukee,
Wis.
General Cable Corp. Cornish
Wire Co. Div. Williamstown,
Mass.
Coto Coil Co. Inc. Providence, R.I.
Chicago Miniature Lamp Works
Chicago, III.
Cinch Mfg. Co. and Howard
B.
Jones Div. Chicago, III. Dow Corning Corp. Midland, Mich. Electro Motive Mfg. Co. Inc.
Willimantic, Conn.
Dialight Corp.
Brooklyn,
N.Y.
General Instrument Corp. Newark, N.J. Drake Mfg. Co. HarwoOd Heights, III. Elastic Stop
Nut
Div.
of
Amerace
Esna
Corp. Union, N.J.
Erie Technological Products
Erie,
Pa.
Hartford,
Conn.
Hart
Mfg. Co.
Beckman Instruments
71785
73096 73138
73445
72619
72699 72765 72962
71450 71468
71400
70903 71218 71279
71984 72136
72982
73168 73293
70563 70901
59730 61637 63743
73506
73559 73734
74193 74545 74868
71700
74970
71707 71744
·71590
Delco Radio Div.
of
General Motors
Corp.
Kokomo,
Ind.
Atlantic
Semiconductors, Inc.
Asbury Park, N.J.
Fairchild Camera
and
Instrument Corp.
Mountain View, Calif.
Daven Div. Thomas A. Edison Industries
McGraw-Edison Co. Orange, N.J.
Signetics Corp. Sunnyvale, Calif.
Bendix Corp. The Navigation and
Control Div. Teterboro, N.J.
Electra/Midland Corp.
Mineral Wells, Texas
Fansteel Metallurgical Corp.
No. Chicago, III.
Union Carbide Corp. Electronics Div.
Mountain View, Calif.
UID
Electronics Corp.
Hollywood,
Fla.
Pamotor, Inc. Pampa, Texas
General Electric Co. Schenectady,
N.Y.
General Electric Co.
Nela Park, Cleveland, Ohio
General Radio Co.
West
Concord,
Mass.
LTV
Electrosystems Inc. Memcor/Com-
ponents Operations
Huntington,
Ind.
Dynacool Mfg.
Co.
Inc. Saugerties, N.Y.
National Semiconductor Corp.
Santa Clara, Calif.
Hewlett-Packard Co. Palo
Alto,
Calif.
Heyman Mfg. Co.
Kenilworth,
N.J: IMC Magnetics Corp. Rochester,.!J.H. SAE Advance Packaging, Inc.
Santa Ana, Calif. Budwig Mfg. Co. Ramona, Calif. G.E. Co. Tube Dept. Owensboro,
Ky.
Lectrohm, Inc. Chicago, III.
P.R. Mallory
& Co. Indianapolis, Ind.
Muter Co. Chicago, III. New Departure-Hyatt Bearings Div.
General Motors Corp.
Sandusky, Ohio Ohmite Manufacturing Co. Skokie, III. Penn
Engr. and Mfg. Corp.
Doylestown,
Pa.
Polaroid Corp. Cambridge,
Mass.
Raytheon Co. Lexington,
Mass.
Simpson Electric Co.
Div~
of
American
Gage
and
Machine Co. Chicago, III.
Sprague Electric Co.
North
Adams,
Mass. Superior Electric Co. Bristol, Conn. Syntron Div.
of
FMC Corp.
Homer
City,
Pa.
22753 23936 24446 24455
58474 58849
22229
44655
46384
28480 28520 28875 31514
56289
31827 33173 35434 37942
42190 43334
21520
47904
49956
55026
16758
17870
17803
19701
24655 24681
17545
18324
19315
26982 27014
6-3
Page 30
Table 6-3. Code ListofManufacturers
CODE
MANUFACTURER
ADDRESS
75042
IRC Div.
of
TRW, Inc. Philadelphia,
Pa.
75183
*Howard
B.
Jones Div.ofCinch
Mfg. Corp.
New
York,
N.Y.
75376 Kurz and Kasch, Inc.
Dayton, Ohio
75382 Kilka Electric Corp.
Mt.
Vernon, N.Y.
75915 Littlefuse, Inc.
Des
Plaines, III.
76381
Minnesota Mining
and
Mfg. Co.
St. Paul, Minn.
76385 Minor Rubber
Co.
Inc.
Bloomfield, N.J.
76487
James
Millen Mfg. Co. Inc.
Malden,
Mass.
76493
J.W.
Miller
Co. Compton, Calif.
76530 Cinch
CityofIndustry, Calif.
76854
Oak
Mfg. Co. Div.ofOak
Electro/
Netics Corp. Crystal Lake, III.
77068 Bendix Corp., Electrodynamics Div.
No.
Hollywood,
Calif.
77122 Palnut
Co.
Mountainside, N.J.
77147
Patton-MacGuyer Co.
Providence,
R.1.
77221
Phaostron Instrument
and
Electronic Co.
South
Pasadena,
Calif.
77252
Philadelphia Steel
and
Wire Corp.
Philadelphia,
Pa.
77342
American Machine
and
Foundry Co.
Princeton, Ind.
77630 TRW Electronic Components Div.
Camden, N.J.
77764
Resistance Products Co.
Harrisburg,
Pa.
78189
Illinois Tool Works Inc.
Elgin, III.
78452
Everlook Chicago, Inc. Chicago, III.
78488 Stackpole Carbon Co.
St. Marys,
Pa.
78526
Stanwyck Winding Div.
San
Fernando
Electric Mfg. Co. Inc. Newburgh, N.Y.
78553
Tinnerman Products, Inc. Cleveland, Ohio
78584 Stewart Stamping Corp. Yonkers, N.Y.
79136
Waldes
Kohinoor, Inc.
L.I.C., N.Y.
79307 Whitehead Metals Inc. New
York,
N.Y.
79727 Continental-Wirt Electronics Corp.
Philadelphia,
Pa.
79963
Zierick Mfg. Co.
Mt.
Kisco, N.Y.
80031 Mepco
Morristown, N.J.
80294
Bourns, Inc.
Riverside, Calif.
81042
Howard Industries
Racine, Wisc.
81073
Grayhill, Inc.
La
Grange, III.
81483
International Rectifier
EI
Segundo, Calif.
817'51
Columbus Electronics
Yonkers, N.Y.
82099
Goodyear Sundries
& Mechanical Co. Inc.
New
York,
N.Y.
82142
Airco
Speer
Electronic Components
Du Bois,
Pa.
82219
Sylvania Electric Products Inc.
Emporium,
Pa.
82389
Switchcraft, Inc.
Chicago, III.
82647
Metals and Controls Inc.
Attleboro,
Mass.
*Use Code 71785
assignedtoCinch Mfg. Co., Chicago, III.
6-4
CODE
MANUFACTURER
ADDRESS
82866
Research
Products Corp.
Madison, Wisc.
82877
Rotron Inc.
Woodstock, N.Y.
82893
Vector Electronic Co.
Glendale, Calif.
83058
Carr Fastener Co.
Cambridge,
Mass.
83186
Victory
Engineering
Springfield, N.J.
83298
Bendi x Corp.
Eatontown, N.J.
83330
Herman H. Smith, Inc.
Brooklyn,
N.Y.
83385
Central Screw
Co.
Chicago, III.
83501
Gavitt Wire
and
Cable
Brookfield,
Mass.
83508 Grant Pulley
and
Hardware Co.
West
Nyack, N.Y. 83594 Burroughs Corp. Plainfield, N.J. 83835
U.S. Radium Corp.
rvi'orristown, N.J.
83877
Yardeny Laboratories New
York,
N.Y.
84171
Arco Electronics, Inc.
Great Neck, N.Y.
84411
TRW Capacitor Div.
Ogallala, Neb.
86684
RCA Corp.
Harrison, N.J.
86838
Rummel Fibre Co.
Newark, N.J.
87034 Marco
& Oak Industries
Anaheim, Calif.
87216
Phi
Ico Corp.
Lansdale,
Pa.
87585
Stockwell Rubber Co.
Philadelphia,
Pa.
87929
Tower-Olschan Corp.
Bridgeport, Conn.
88140 Cutler-Hammer Inc.
Lincoln, III.
88245
Litton
Precision Products Inc, USECO
Van Nuys, Calif.
90634
Gulton Industries Inc.
Metuchen, N.J.
90763
United-Car Inc.
Chicago, III.
91345
Miller
Dial
and
Nameplate Co.
EI
Monte, Calif.
91418 Radio Materials Co.
Chicago, III.
91506
Augat, Inc.
Attleboro,
Mass.
91637
Dale
Electronics, Inc.
Columbus, Neb.
91662 Elco Corp.
Willow Grove,
Pa.
91929
Honeywell Inc.
Freeport, III. 92825 Whitso, Inc. Schiller Pk., III. 93332 Sylvania Electric Prod.
Woburn,
Mass.
93410
Essex
Wire Corp.
Mansfield, Ohio
94144
Raytheon Co.
Quincy,
Mass.
94154
Wagner Electric Corp. Livingston, N.J.
94222 Southco Inc.
Lester,
Pa.
95263
Leecraft Mfg. Co. Inc.
L.I.C., N.Y.
95354 Methode Mfg. Co.
Rolling Meadows, III.
95712 Bendix Corp.
Franklin, Ind.
95987
Weckesser
Co. Inc.
Chicago, III.
96791
Amphenol Corp.
Janesville,
Wis.
97464
Industrial Retaining Ring Co.
Irvington, N.J.
97702
IMC Magnetics Corp.
Westbury, N.Y.
98291
Sealectro Corp.
Mamaroneck, N.Y.
98410
ETC Inc.
Cleveland,
Oh
io
98978
International Electronic
Research
Corp.
Burbank, Calif.
99934
Renbrandt, Inc.
Boston,
Mass.
Page 31
Table 6-4. Replaceable
Parts
REF.
MFR.
DESIG.
DESCRIPTION
TQ*
MFR. PART NO.
CODE
HP
PART NO.
RS
Printed Circuit Board Assy.
Cl
fxd, elect 180pF 50V
2/3
28480
0180-0634
1
C2
fxd, tant 6.8pF
35V
3
150D685X9035B2
56289
0180-0116
1
C3,4
fxd, mylar .0022pF 200V
2
292P22292-PTS
56289
0160-0154
1
C7
fxd, elect 1450pF
45V
2
(Type 68D) D39532 56289
0180-1893
1
C8,9
fxd, cer .05pF 400V
6/4
33C17A3-CDH
56289
0150-0052
1
Cll
fxd, elect 180pF 50V
28480
0180-0634
C12
fxd, tant 6.8pF 35V
150D685X9035B2
56289
0180-0116
C13
fxd, mylar .01pF 200V
2
292Pl0392-PTS
56289
0160-0161
1
C14
fxd, mylar .0033pF 200V
1 292P33292-PTS
56289
0160-0155
1
C17
fxd, elect 1450pF
45V
(Type 68D) D39532 56289
0180-1893
C18,19
fxd, cer .05pF
400V
33C17A3-CDH
56289
0150-0052
C21
6236A
fxd, elect 1000pF 12V
1
28480
0180-0633
1
6237A
fxd, elect 180pF 50V
28480
0180-0634
C22
fxd, tant 6.8pF 35V
150D685X9035B2
56289
0180-0116
C23
fxd, cer .005pF 100V
1
C023B
101
E502MS27 56289
0160-2639
1
C24
fxd, mylar .01pF 200V
292Pl0392-PTS
56289
0160-0161
C27
6236A
fxd,
elect 5600pF 25V
1
(Type 32D) D40018 56289
0180-1921
1
6237A
fxd, elect 3000pF
40V
1
32D5278-DOB
56289
0180-1899
1
C28,
29
6236A
fxd, cer .05pF
400V
33C17A3-CDH
56289
01.50-0052
6237A
Not
used
C30
6236A
Not
used
6237A
fxd, cer O.lpF 500V
1
41
C92B5-CDH 56289
0160-0269
1
C31
6236A
fxd, tant 0.47pF
35V
/
1
150D474X9035A2
56289
0180-0376
1
6237A
fxd, elect 0.15pF
35V
'"
1
Tll0A
154K035AS
61637
0180-0218
1
C32
fxd, mica 330pF 500V
1 obd
72136
0160-2012
1
C33
fxd, elect 490pF 85V
1
(Type 68D) D38618 56289
0180-1888
1
C34
fxd,
mylar O.lpF 250Vac
1
28480
0160-4065
1
CRl
Diode,Si1A 200V
13/15
lN5059
28480
1901-0327
7
CR2-7
Diode,
Si
17
lN485B
28480
1901-0033
7
CR9,11,12,21
Diode,
Si
1A 200V
lN5059
28480
1901-0327
CR22-26
Diode,
Si
1N485B
28480
1901-0033
CR28,29,31,32
Diode,
Si
1A 200V
1N5059
28480
1901-0327
CR41
Diode,Si1.5A 200V
3
1N4999
28480
1901-0416
3
CR42,43
Diode,
Si
1N485B
28480
1901-0033
CR44
Diode, stabistor 150mA 15V
2
STB523
03508
1901-0460
2
CR45-47
Diode,
Si
1N485B
28480
1901-0033
CR49
Diode,
Si
1A 200V
1N5059
28480
1901-0327
CR51,52
Diode,Si1.5A 200V
1N4999
28480
1901-0416
CR53,54
6236A
Not
used
6237A
Diode,Si1A 200V
lN5059
28480
1901-0327
CR55,56
Diode,Si1A 200V
1N5059 28480
1901-0327
CR57
Diode, stabistor 150mA 15V
STB523
03508
1901-0460
CR59
Diode,
Si
1A 200V
1N5059
28480
1901-0327
*6236A/6237A
6-5
Page 32
Table 6-4. Replaceable
Parts
(Continued)
REF.
MFR.
DESIG.
DESCRIPTION
TQ*
MFA.
PART NO.
CODE
HP
PART NO.
RS
CR60
Diade,5i
1N485B
28480
1901-0033
L1,2
Inductar, ferrite
bead
2
56-590-65/4A6
02114
9170-0894
1
Q2
55
NPN
5i
3
28480
1854-0448
3
Q4
55
PNP
5i
1
2N2904A
04713
1853-0012
1
Q11
Pawer
PNP
5i
1
2N3740
04713
1853-0052
1
Q12
55
NPN
5i
28480
1854-0448
Q13
55
PNP
5i
1 2N4036
28480
1853-0041
1
Q14
55
NPN
5i
1
2N2714A
28480
1854-0027
1
Q15
55
NPN
5i
28480
1854-0448
R2
fxd,
film
2.61k1%1/8W 1
Type MF4C, T-9
19701
0698-0092
1
R3
fxd,
ww
0.1
10%
3W
2
K46505
14841
0811-1827
1
R4
fxd,
camp 185%1/2W
3
EB1805
01121
0686-1805
1
R6
var.
ww
3k
3
Type
11
0-F4
71450
2100-1823
1
R8
fxd,
ww
1.251/2%
5W
2
28480
0811-3384
1
R9
fxd,
film
5.49k 1% 1/8W
1
Type MF4C,T-0
19701
0698-3382
1
R10
fxd,
film
1.5k 1% 1/8W
1
Type MF4C,T-0
19701
0757-0427
1
R11
fxd,
film11Ok
1% 1I8W
2
Type MF4C,
T-O
19701
0757-0466
1
R12
fxd,
film
139 1% 1/8W
3
Type CEA,
T-O
07716
0698-4099
1
R13
fxd, camp 15k
5%
1/2W
1
EB1535
01121
0686-1535
1
R14
fxd, camp 510
5%
1W
1
GB5115
01121
0689-5115
1
R15
fxd, camp 10k
5%
1/2W
2
EB1035
01121
0686-1035
1
R23
fxd,
ww
0.25
10%
3W
1
K46593
14841
0811-1829
1
R24
fxd,
camp 185%1/2W
EB1805
01121
0686-1805
R26
var. ww
3k
Type 110-F4
71450
2100-1823
R28
fxd,
ww
1.25 1/2%
5W
28480
0811-3384
R32
fxd,
film
1391%
1/8W
Type CEA,
T-O
07716
0698-4099
R33
fxd,
film
15k 1% 1/8W
2
Type MF4C,
T-O
19701
0757-0446
1
R34
fxd, camp
5105%
1/2W
1
EB5115
01121
0686-5115
1
R35
fxd, camp 10k
5%
1/2W
EB1035
01121
0686-1035
R42
-
6236A
fxd,
film
8.66k 1% 1/8W
1
Type MF4C, T-9
19701
0698-8076
1
6237A
fxd,
film
2.87k 1% 1/8W
1
Type MF4C-1
19701
0698-7631
1
R43
fxd,
ww
0.1
10%
3W
K46505
14841
0811-1827
R44
fxd, camp 18
5%
1/2W
EB1805
01121
0686-1805
R45
6236A
Nat
used
6237A
fxd,
film
2k 1%1/8W
1
CEA993
07716
0757-0283
1
R46
var.
ww
3k
Type110-F4
71450
2100-1823
R47
6236A
fxd,
film
23k 1%1/8W
1
Type MF4C,
T-O
19701
0698-3269
1
6237A
Nat
used
R48
6236A
fxd,
ww
0.25 1/2%
5W
1
28480
0811-3383
1
6237A
fxd,
ww
0.625 1/2%
5W
1
28480
0811-3395
1
R49
6236A
fxd,
film
750 1%1/8W
1
Type MF4C,
T-O
19701
0757-0420
1
6237A
Nat
used
6-6
Page 33
Table 6-4. Replaceable
Parts
(Continued)
REF.
MFR.
DESIG.
DESCRIPTION
TQ*
MFR. PART NO.
CODE
HP
PART NO.
RS
R50
6236A
fxd,
film
330 1%1/8W
1
Type MF4C, T-9
19701
0698-5663
1
6237A
fxd,
film
3.83k 1%1/8W
1
Type MF4C·1
19701
0698-3153
1
R51
fxd,
film
110k1%1/8W
Type MF4C,
T-O
19701
0757-0466
R52
fxd,
film
139 1% 1/8W
Type CEA,
T-O
07716
0698-4099
R53
fxd, comp
7.5k5%
1/2W
1
EB7525
01121
0686-7525
1
R54
6236A
fxd,
ww505%
10W
1
Type 247E 56289
0811-1902
1
6237A
fxd,
ww
1355%
10W
1
Type 247E 56289
0811-1905
1
R55
6236A
fxd,
comp 2.2k5%1/2W
1
EB2225
01121
0686-2225
1
6237A
fxd,
comp11k5%1/2W
1
EB1135
01121
0686-1135
1
R56
fxd,
film
270 1%1/8W
1
Type CEA,
T-O
07716
0757-0269
1
R57
fxd,
film
221
k 1% 1/8W
1
Type MF4C,
T-O
19701
0757-0473
1
R58,59
var.
ww
250
2
Type 110
71450
2100-0439
1
R60
fxd,
film
15k 1% 1/8W
Type MF4C,
T-O
19701
0757-0446
R61
fxd,
comp 2405%1/2W
1
EB2415
01121
0686-2415
1
R62
fxd,
film11k 1% 1/8W
2
Type MF4C,
T-O
19701
0757-0443
1
R63
fxd,
film
3.6k2%1/8W
1
Type MF4C,
T-O
19701
0757-0937
1
R64
fxd,
film
11k1%1/8W
Type MF4C,
T-O
19701
0757-0443
R65
fxd,
film
16.2k 1%1/8W
1
Type MF4C,
T-O
19701
0757-0447
1
R66
fxd,
film
470 1%1/4W
1
Type MF52C,
T-O
19701
0698-3506
1
R67
6236A
fxd,
ww
1355%3W
1
Type 242E
56289
0812-0112
1
6237A
fxd,
ww
2205%2W
1
Type
BWH
75042
0811-1763
1
R68
6236A
fxd,
ww
2505%3W
1
Type 242E 56289
0811-1219
1
6237A
fxd,
ww490
5%
3W
1
Type 242E
56289
0811-1801
1
R69
/
'"
6236A
fxd,
ww
1005%10W
1
Type 247E 56289
0811-1903
1
6237A
fxd,
ww
1505%10W
1
Type 247E
56289
0811-1906 1
R70
6236A
fxd,ww405%5W
1
Type 243E
56289
0812-0083
1
6237A
fxd,ww75
5%
5W
1
Type 5XM
14841
0812-0097 1
R71
fxd,
film
471
1%
1!8W
1
Type CMF-55-1,
T-1
91637
0698-5514
1
R72
fxd, comp 33k
5%
1/2W
1
EB3335
01121
0686-3335
1
R73
6236A
Not
used
6237A
fxd, comp
1.1m5%
112W
1
EB1155
01121
0686-1155 1
R74
6236A
(jumper installed)
6237A
fxd,
film
6.98k 1%1/8W
1
Type
CM
F-55-1,
T-1
91637
0698-4470
1
53
sl
ide switch, dual DPDT
1
28480
3101-1914
1
T1
Power Transformer
28480
06236-80091
U1-3
Dual op amp,
IC
3
28480
1826-0092
3
U4
Operational amp, IC
1
LM301AH 27014
1820-0223
1
VR1
Diode, zener 6.2V
1 1N825
28480
1902-1221
1
VR2
Diode, zener 9.09V
1 1N4353B
28480
1902-3149
1
VR3
Diode, zener 7.5V
1
28480
1902-0650
1
Z1
Resistor network
1
28480
1810-0217
1
6-7
Page 34
Table 6-4. Replaceable Parts (Continued)
REF.
MFR.
DESIG.
DESCRIPTION
TQ*
MFR.
PART
NO.
CODE
HP
PART NO.
RS
Front
Panel
- Electrical
OS1
Indicator light, LINE ON
1
599-237-WHITE
72765
1450-0419
1
M1
6236A
Voltmeter 1
28480
1120-1380
1
6237A
Voltmeter
1
28480
1120-1382
1
M2
6236A
Ammeter
1
28480
1120-1381 1
6237A
Ammeter
1
28480
1120-1383 1
S1
Toggle Switch, LINE
ON
1
7318-PHI
09353
3101-1694
1
S2
3-position rotary switch, METE R
1
28480
3100-1943
1
R1,
R41
var.
10k
2
Series
43
12697
2100-1854 1
Rear
Heat
Sink·
Electrical
F1
Fuse,2A250V (Std. Option
and
Option 100)
1 312002
75915
2110-0002
5
F1
Fuse,
1A 250V (Options 220
and
240)
1 312001
75915
2110-0001
5
01,7
Power
PNP
Si
2
SJ1528
04713
1853-0063
2
03,8
Power
NPN
Si
2
28480
1854-0563
2
Circuit
Ebard
. Mechanical
Heat Oissipator (CR51, 52,
02
in
6236A;02in 6237A) 3/1
207-CB
05820
1205-0033
Heat Sink
(011)
1
28480
5000-6025
Spacer
(for 011 heat sink) 2
28480
0380-0716
Rubber bumper
4
28480
0403-0086
Front
Panel· Mechanical
Binding Post,
red
4
28480
1510-0091
Binding Post, black
1
28480
1510-0107
Hex
nut, nylon,
3/8
-32
5
28480
2950-0144
Meter
bezel
2
28480
4040-0571
Spring, compression (meter mount) 8
28480
1460-0720
Retainer, push-on
(for
OSI)
1
28480
0510-0509
Knob (R1, R41,
S2)
3
28480
0370-1099
Miscellaneous
Bushing, transistor insulator
8
28480
0340-0168
Transistor insulator, mica
4
28480
0340-0174
Fuse
holder
1 342014
75915
1400-0084
Lockwasher, fuseholder
1
28480
2190-0054
Nut, nylon
1/2
- 24
1
28480
2950-0131
Foot, rubber
4
28480
0403-0088
Line cord strain relief
1
28480
0400-0013
Line cord
1
see
par.
2-21
Chassis
assembly,
left
1
28480
5060-7955
Chassis
assembly, right
1
28480
5060-7956
Front
panel (6236A)
1
28480
06236-60001
Front
panel (6237A)
1
28480
06236-60001
Heat sink,
rear
1
28480
5020-8423
Cover,
top
and
bottom
2
28480
5000-9424
Packing carton
1
28480
9211-0848
Floater pad, packing carton
2
28480
9220-1218
6-8
Page 35
SECTION
VII
CIRCUIT
DIAGRAMS
7-1
COMPONENT
LOCATION
DIAGRAM
7-3
SCHEMATIC
DIAGRAM
7-2
The
component
location
diagram
for
power
supply
Models
6236A
and
6237Ais
given
below.
The
illustration
shows
the
physical
locations
and
reference
designations
of
parts
mountedonthe
printed
circuit
card.
(Notall
parts
are
usedinboth
models.)
7-4 Figure 7-1isa
combined
schematic
diagramofthe
6236A
and
'6237A.The
test
points
(circled
numbers)
shown
on
the
schematic
correspondtothoseonthe
component
location
diagram
andinthe
troubleshooting
procedure
in
Section
V.
The
tinted
areasonthe
schematic
indicate
components
and
jumpers
usedinone
model
only.
Models
6236A
and 6237A,Componen;t Locations
II.
PIN
LOCATIONS
FOR
TRANSISTORS
ARE
SHONN
BELOW:
(TOP VIEWS)
12.
PIN
LOCATIONS
FOR
INTEGRATED CIRCUITS
AND
THE
RESISTOR
NETWORK
ARE
SHOWN
BELOW:
SCHEMATIC NOTES
I.
ALL
COMPONENTS
ARE
LOCATEDONP.C.
BOARD, UNLESS
OTHERWISE
INDICATED.
2.tDENOTES
CHASSIS MOl.tITED
COMPONENTS.
3.
-----
DENOTES
CONSTANT VOLTAGE FEEDBACK
PATH.
4.
---
DENOTES
CURRENT LIMIT
FEEDBACK
PATH.
5.
ALL
RESISTORSINOHMS,
I/BW
1%, UNLESS OTHERWISE INDICATED.
6.
THE
SQUARE
PLATED
PADSONTHE
P.C.
BOARD
INDICATE
ONEOFTHE
FOLLOWING;
A.PIN
1
OFANI.C.ORTRANSFORMER.
B.
POSITIVE
ENDOFA
POLARIZED
CAPACITOR.
C.
CATHOOEOFA
DIODE OR
EMITTEROFA TRANSISTOR.
7.
IN
RESISTOR
NETWORK
Zi:
Z1-J
AND
ZI-K
ARE
MATCHEDTOWITHIN 1%,
AND
Z1-L
AND
Z1-M
ARE
MATCHEDTOWITHIN
0.5%
AND
TRACK
WITHIN
±50
PPM/oC.
8.
FOR
l00VOR120V
OPERATION
USE
A 2A FUSE,HPPART
NO.
21'
0-0002;
FOR
220VOR240V
OPERATION
USE
A 1A FUSE,HPPART
NO.
211
0 -
0001.
9. THE LOCATION
AND
PART
NO.OFR46
IS THE SAME
FOR
MODELS
6236A
AND
6237A
BUT
ITS
ORIENTATIONONTHE BOARD DIFFERS.
'0.
THE TINT
AREASONTHE SCHEMATIC INDICATE COMPONENTS
AND
JUMPERS
THAT
ARE
USED
IN ONE MODEL
ONLY.
7-1
O
B
OC
CO
eE
TO-3
-
-,8l
.2
6-
.3~5.
Ul-U4
(TOP
VIEWS)
m
\:7
PL-5
ZI
~
~
TO-5
Page 36
TURN-ON/TURN-
OFF
,~----,REFERENCE
AND
BIAS
SUPPLY-----
.......
,,---
CONTROl.
CIRCUIT~
+20V
....
~-
CR41
R43
0.1
10%
3W
C21
+
SEE
TABLE
NOTE
10
FOR 6237A ONLY
C
22
+ t
fjccw,
fVO[fAGEl
6.8/
R41
~
R5035 V
~~K
OR
SEE 18,5%
VOLTAGE
TABLE 1/2W
+18V
~
R43
R42
CR42
i~~LE
-6.2V
C
Z~
:~~_~
12AV
Q)jD
+7.5V
- -
6.2V
LQJ
~
R62 11K
~
R63
3.6K
VR2
2%,1/8W
VA
9V
R65
16.2K
CR.9
r:;:
R61
R64
240
11K
M
013
vB
R60
015
SD
15K
12.4V
+
C31
;;:: SEE TAElE
NOTE
NOTE
10
R45
10
FOR
R49
2t<
6237A
6236A
750
ONLY
ONLY
t
R48
I,
SEE
TABLE
r
~ZI-K
1 IIOK L
;I~W
1
r
lZ1-J
1 IIOK
L
J5%
31/8W
NOT[
7
VRI
62V
R66 470
1/4W
VR3
7.5V
CR461
\.S)
-l
~~5
CR~~
f~OOV
/l~E-~
FYO
U3
12
CUR.COMP
AMPL.
1
~55~
-12.4V P/O
U3
I~iw
1
VOLT.
COMP.
CP5
............
---JI/\/\r---~
AMPL.
yA3
-
--II~51
C24
8 2 1I0K
01
-124V
200VT+75V
R52 139
R47
23K
1
W
JI
R46
~6
...
..--
....,~
~TE"-----"""
[
II
9
~~~
J3
-
~
NOTE
5
cw
9
CR47
CR49
R70 SEE TABLE
R54 SEE
TABL£
08
'---
DRIVER
'~v.-'A---------O
TO
'1-20 VOLT
REGULATOR----------~,
R55 SEE
TABLE
+C33
~
i'
490
3~3p2F
85V
500V
7~
QI2
CR,5768'
+1,
0--
R67
U4
N~2
----
...
!
SEE
TABLE
~:~~
b,.QII
TABLEf
.
(f
\)
'Y--._--..-..------....--..--
..........
--.+-------4--......L--------
CR51
~
~
TABLE
~
0TO1-6
VOLT
REGULATOR f6236AJ
.......
, J;©
'VA
0TO1-18
VClTREGULATOR
(6237AJ
GYl
......
------1---.~-
....
------------------____1----
....-.....
----____1-~a
OR
~
CR!50
CR52
CR56
"
C30
~V
~R53~+~~~~
6237A
TAB...E
OR.Y
C28
J4
.05
/~
4fX:N
NOTE
10
II'
NOTE 10
C29
FOR
.05
6236A
4(X)J
ONLY
I
1
TI
7
r-=-I
R72 33K
L~
6
5%
C34
J
1/2W
8
,,-.0.1
250V
9;"
I
2
9
3
ZI-A
612
0.5%,1/8W
r--_---:.:..
17
1J1Nr.--'v-',...:.4__-.
Zl-G
~~:
3.26K
TABLE' 1%,1I8W
9---,10
~
-O~O+6V
S~A
(OR+18V)
I
OTO
+20V S2ARI
02
/o----~-flJ
......
o
TO
~
R58
~
VOLTMETER
Zl-H
3
250
WAOJUST
12.26K
""',l/ew
R71
R56
......-__8:=-="
471
270
-20V
....
-------<1'1
6
+6V
OR
+18V
S3
LINE
VOLTAGE
SELECTOR SWITCH
,..---
240V-----,
r--
220V----,
r--120V-----,
r-IOOV....,
L.......o
5
V'D-
S
_
2AR2
-----'
-
,.----METER
CIRCUIT·-----
.....,
+
V MI t
R73
SEE
TABLE
+7.5V
......
--~I\r---
.....
Zl-E
5.!3!~4
-12
.4V
....
-----<~~--
....
1%,I';ew
ZI-B
OT025A
612
(OR
IA)
S2B
.5%,1/8W
0
TO
1
......-_....:..7=--=--=16
r+
O
5A
32
V S2BRI
CR60
:i,~
96.~:f
-12.4V
--+...
I
J
3
--
flJ
CW
R59
~
AMMETER
250
UAOJUST
CRII
RI5 10K 5% 112W
RI4
510
5-.4
IW
-6.2V
R3
0.1 10% 3W
CRI
J1
~-----4.....,J
[2
~
-o5o
V S2BR2
Z~~2C
6
,-
.5%,1/8W
.....--
__
17-+r.N-V\,...,~2--
....
C9
.05
400V
CRI2
..i
CI
T
180 50V
1
Zl-F
251K
1%,1/8W
+
7.5V....
_...;.;8::...+=I\I~VV-:....=2=--_~
CR21
R23
0.25 10% 3W
R28
'3
1.25
t
~~%
[£Q0
)p-
.....
4----------_-~~~~~flJ-C""'URN
..........
P-----
......
~--t---,...-
......
~O
r--~.------..._-_+__1~'MIT
ADJ. W 6
~
'~l
-12.4V
6
fW
r
~Z'-N
r
~~6:
CR24
200~
7 • -
m~
~I:~.
l
,{~~
c.!CII
AMPL. I~1/8W
7
rl'180
1 9 8 + 5
-12.4V
50V
....---,
+7.5V
EJR22
CR23
~5
~~RRITE
5 1
~60~332~~~
5%
BEAD
CR25
~
200V
-
1/2W CR26 1 ,
fJ
~}'
04
~'i'
R33J
GJ7E
10
+~3_-------.._---_.
DRIVER CR28
15K
f ® P/O U2
~24
I~
Z'-L
t7.5V
V~~~p.
CI2
+
r;~W
: I
~~K
6.8
,..r:
l
~
1/4W
35V
~
L---
.....
- ......
---
....
--------------------
.....
----...-----4
...-~O
MODEL
6236A
6237A
CR31
OTOt20
VATOTO
0.5A
o
TO
t20VAT0TO0.5A
13
OUTPUTS
oro
+6VATUPTO
2.5A
o
TO
+18VAT0TOlA
C21
1000
F
12V
18Q.F
50V
~bt-f'
C27
5600,-
F,25V
3000ILF,40V
400V
C31
0.47
F,35V
0.15,.F,35V 14
R42
866K1%
1/8W
2.87K1%118W CI91
R48
0.25
1/2%,5W
0.625,
1/2%.5W
R50
330
1%,1/8W
3.83K,I%,1/8W
.O~T
R54
50,
5%,IOW
1355%lOW
400V
CR32
R55
2.2K
5%
1/2W
IIK,5%,'/2W
15
R67
1355%3W
2205%
2W
'6
R68
2505%3W
490,5%,3W
r7
CI7
+
R69
1005%lOW 1505%lOW
1450
f'
R70
40,
5%.5W
755%5W
45V
R73
NOT USED
1.1M5%
1/2W
R74
JUMPER
INSTALL
ED
6.98K,
1%
1/8W
Figure
7-1_
Models
6236A
and
6237A,
Schematic Diagram
Page 37
MANUAL
CHANGES
Models
6236A
and 6237 A
DC
Power Suppl
ies
ManualHPPart No. 5950-1737
Make all corrections in the manual according
to
errata below, then check the
following
table
for
your
power supply serial
number and enter any listed change(s) in the manual.
Model
6236A
SERIAL
MAKE
CHANGES
Prefix
Number
All
-
Errata
1436A
00101-00127
(see
note)
1436A
00128-00140
1
(see
note)
1507A
00141-00350
1,2
1525A
00351-up
1,2,3
Model
6237A
SERIAL
MAKE
CHANGES
Prefix Number
All
-
Errata
1fOllA
00101-00170
1
1526A
00171-up
1,3
NOTE:
This manual appliesto6236A
supplies
with
a serial numjter
prefixof1436A
\,':ith this exception: the
part
number
forR1and
R41
shouldbe2100-3461.
ERRATA:
On
the
title
page,
change the applicable serial numbers
to:
Model
6236A,
Serials
1436A-0010l
and above.
Model 6237A,Serials 1511 A-OOl01and above.
CHANGE
1:
To
the parts Iist and the schematic, add ferrite
bead
inductor
L3,HPPart Number 9170-0894. L3
is·
installed on either
leadofdiode CR49.
CHANGE
2:
This change
to
the Model
6236A
replaces the
printed
circuit
board mounted pots
used
previously
for
R1 and
R41
with
front
panel mounted pots. TheirHPPart Numberis2100-
1854.
CHANGE
3:
Delete
Rl
and
R41
from
the parts list under
Front
Panel
-
Electrical, and add R1 and
R41
(10kD. variable,HPPart
Number 2100-3461) under Printed
Circuit
Board Assembly.
ERRATA:
In
the Exact Commercial Replacement columnofTable 5-8,
and the
Mfr.
Part No. columnofTable 6-4, delete the entries
for
VR2
and
VR3
and insert the
following:
VR2
SZ 10939-170 (Motorola)
VR3
1N4353B
8-26-75
Page 38
HEWLETT
PACKARD,SALES
AND
SERVICE
WORLD WIDE SALES
&SERVICE OFFICES
UNITED
STATES
ALABAMA
COLORADO
INDIANA MINNESOTA
NEW YORK OKLAHOMA
205
Billy
Mitchell
Road
8290
Whitesburg
Dr.,
S.E.
5600
South
Ulster
Parkway
3839
Meadows
Drive
2400N.Prior
Ave.
6
Automation
Lane
P.O.
Box
32008
San
Antonio
78226
P.O.
Box
4207
Englewood
80110
Indianapolis
46205
Roseville
55113
Computer
Park
Oklahoma City
73132
Tel:
(512)
434-8241
Huntsville
35802
Tel:
(303)
771-3455
Tel:
(317)
546-4891
Tel:
(612)
636-0700
Albany
12205
Tel:
(405)
721-0200
TWX:
910-871-1170
Tel:
(205)
881-4591
TWX:
910-935-0705
TWX:
810-341-3263
TWX:
910-563-3734
Tel:
(518)
458-1550
TWX:
910-830-6862
UTAH
TWX:
810-726-2204
TWX:
710-441-8270
"Birmingham
CONNECTICUT
IOWA MISSISSIPPI
OREGON
2890
South
Main
Street
12
Lunar
Drive
1902
Broadway
"Jackson
New York City
17890SWBoones
Ferry
Road
Salt Lake City
84115
Medical
Service
only
New Haven
06525
Iowa City
52240
Medical
Service
only
Manhattan,
Bronx
Tualatin
97062
Tel:
(801)
487-0715
Tel:
(205)
879-2081
Tel:
(203)
389-6551
Tel:
(319)
338-9466
Tel:
(601)
982-9363
Contact
Paramus,NJOffice
Tel:
(503)
620-3350
TWX:
910-925-5681
ARIZONA
TWX:
710-465-2029
Night:
(319)
338-9467
MISSOURI
Tel:
(201)
265-5000
TWX:
910-467-8714
2336E.Magnolia
SI.
Brooklyn,
Queens,
Richmond
VIRGINIA
FLORIDA
"KANSAS
11131
Colorado
Ave.
Contact
Woodbury,NYOffice
PENNSYLVANIA
"Norfolk
Phoenix
85034
P.O.
Box
24210
~~?r'6)
267-3655
Kansas City
64137
Tel:
(516)
921-0300
111
Zeta
Drive
Medical
Service
only
Tel:
(602)
244-1361
2806W.Oakland
Park
Blvd.
Tel:
(816)
763-8000
201
South
Avenue
Pittsburgh
15238
Tel:
(804)
497-1026
TWX:
910-951-1331
Ft. Lauderdale
33307
TWX:
910-771-2087
Tel:
(412)
782-0400
2424
East
Aragon
Rd.
Tel:
(305)
731-2020
LOUISIANA
Poughkeepsie
12601
Night:
782-0401
P.O.
Box
9854
P.O.
Box
840
148
Weldon
Parkway
iWlJt6-~~t~~~g
2914
Hungary
Springs
Road
Tucson
85706
TWX:
510-955-4099
Maryland Heights
63043
TWX:
710-795-3124
Richmond
23228
Tel:
(602)
889-4661
3239
Williams
Boulevard
"Jacksonville
Kenner
70062
iWPJt6-~~:b~~~
39
Saginaw
Drive
1021
8th
Avenue
Tel:
(804)
285-3431
CALIFORNIA
Medical
Service
only
Tel:
(504)
721-6201
Rochester
14623
KingofPrussia
Industrial
Park
TWX:
710-956-0157
1430
East
Orangethorpe
Ave.
Tel:
(904)
725-6333
TWX:
810-955-5524
NEBRASKA
Tel:
(716)
473-9500
KingofPrussia
19406
WASHINGTON
Fullerton
92631
P.O.
Box
13910
MARYLAND
(Medical
Only)
TWX:
510-253-5981
iWpm-~g~:~~n
8ellefield
Office
Pk.
Tel:
(714)
870-1000
6177
Lake
Ellenor
Dr.
TWX:
910-592-1288
Orlando
32809
6707
Whitestone
Road
11902
Elm
Street
5858
East
Molloy
Road
1203-114th
SE
Tel:
(305)
859-2900
Baltimore
21207
Suite
4C
Syracuse
13211
SOUTH CAROLINA
Bellevue
98004
3939
Lankershim
Boulevard
Tel:
(301)
944-5400
Omaha
6B144
Tel:
(315)
455-2486
6941-0N.Trenholm
Road
Tel:
(206)
454-3971
North Hollywood
91604
TWX:
810-850-0113
TWX:
710-862-9157
Tel:
(402)
333-6017
TWX:
710-541-0482
Columbia
29260
TWX:
910-443-2446
Tel:
(213)
877-1282
21
East
Wright
SI.
4
Choke
Cherry
Road
"NEVADA
1
Crossways
Park
West
Tel:
'(803)
782-6493
"WEST VIRGINIA
TWX:
910-499-2170
S~ite
1
6305
Arizona
Place
Pensacola
32501
Rockville
20850
Las Vegas
Woodbury
11797
TENNESSEE
Charleston
Tel:
(904)
434-3081
Tel:
(301)
948-6370
Tel:
(702)
382-5777
Tel:
(516)
921-0300
"Memphis
Tel:
(304)
345-1640
Los
Angeles
90045
TWX:
710-828-9685
TWX:
510-221-2168
Medical
Service
only
Tel:
(213)
649-2511
GEORGIA
710-828-0487
NEW JERSEY
Tel:
(901)
274-7472
WISCONSIN
TWX:
910-328-6147
P.O.
Box
28234
W.
120
Century
Rd.
NORTH CAROLINA
9431W.Beloit
Road
"Los Angeles
450
Interstate
North
P.O.
Box
1648
Paramus
07652
P.O.
Box
5188
"Nashville
Suite
117
Tel:
(213)
776-7500
Atlanta
30328
2
Choke
Cherry
Road
iWx(2m_~~~:~~g~
1923
North
Main
Street
Medical
Service
only
Milwaukee
53227
iWx(
4gt6_
j~:~~~g
Rockville
20850
High Point
27262
Tel:
(615)
244-5448
Tel:
(414)
541-0550
3003
Scott
Boulevard
Tel:
(301)
948-6370
Tel:
(919)
885-8101
Santa Clara
95050
TWX:
710-828-9684
NEW MEXICO
TWX:
510-926-1516
TEXAS
Tel:
(408)
249-7000
HAWAII
P.O.
BOx
8366
P.O.
Box
1270
TWX:
910-338-0518
2875
So.
King
Street
MASSACHUSETTS
Station
C
OHIO
201E.Arapaho
Rd.
32
Hartwell
Ave.
6501
Lomas
Boulevard
N.E.
16500
Sprague
Road
Richardson
75080
"Ridgecrest
Honolulu
96814
Lexington
02173
Cleveland
44130
iWPJi6-~~j:~m
Tel:
(714)
446-6165
Tel:
(808)
955-4455
Tel:
(617)
861-8960
Albuquerque
87108
Tel:
(216)
243-7300
Tel:
(505)
265-3713
2220
Watt
Ave.
ILLINOIS
TWX:
710-326-6904
TWX:
910-989-1665
~~~~:
l,i?--Il~-~43'
P.O.
Box
27409
Sacramento
95825
(Calculators
Only)
MICHIGAN
6300
Westpark
Drive
Tel:
(916)
482-1463
156
Wyatt
Drive
TWX:
910-367-2092
100S.Wacker
Drive
23855
Research
Drive
Las Cruces
88001
330
Progress
Rd.
Suite
10.0
FOR U.S. AREAS NOT LISTED:
Suite
1100
~~~Tdr3~t~f6~~d
iWl8r
6-§~3:~~~~
Dayton
45449
Houston
77027
Contact
the
regional
office
9606
Aero
Drive
Chicago
60606
Tel:
(513)
859-8202
iWPJ~U~1:~g~g
nearest
you:
Atlanta,
Georgia
..
P.O.
Box
23333
Tel:
(312)
346-9701
TWX:
810-242-2900
TWX:
810-459-1925
North
Hollywood,
California
...
San Diego
92123
5500
Howard
Street
1041
Kingsmill
Parkway
Rockville,(4Choke
Cherry
Rd.)
Tel:
(714)
279-3200
Skokie
60076
Columbus
43229
Maryland
...
Skokie,
Illinois.
TWX:
910-335-2000
Tel:
(312)
677-0400
Tel:
(614)
436-1041
Their
complete
addresses
TWX:
910-223-3613
are
listed
above.
"St. Joseph
"Service Only
Tel:
(217)
469-2133
CANADA
/
ALBERTA
BRITISH COLUMBIA
MANITOBA
NOV4
SCOTIA ONTARIO QUEBEC
Hewlett-Packard
(Canada)
Ltd.
Hewlett-Packard
(Canada)
Ltd.
Hewlell-Packard
(Canada)
Ltd.
Hewlett-Packard
(Canada)
Ltd.
Hewlett-Packard
(Canada)
Ltd.
Hewlett-Packard
(Canada)
Ltd.
Hewlell-Packard
(Canada)
Ltd.
2376
Galvani
Street
11748
Kingsway
Ave.
837E.Cordova
Street
513
Century
SI.
8lltl
Windmill
Road
1785
Woodward
Dr.
275
Hymus
Blvd.
StB-Foy
GIN
4G4
Edmonton
TSG
OX5
Vancouver
V6A
3R2
SI.
James
Dartmouth
B3C
1L1
Ottawa
K2C
OP9
Pointe Claire
H9R
lG7
Tel:
(418)
688-8710
Tel:
(403)
452-3670
Tel:
(604)
254-0531
Winnipeg
R3H
OL8
Tel:
(902)
469-7820
iWx(6m_~~~:~~~g
Tel:
(514)
697-4232
TWX:
610-831-2431
TWX:
610-922-5059
iWl8i6-m:~~~1
TWX:
610-422-3022
Hewlett-Packard
(Canada)
Ltd.
Hewlett-Packard
(Canada)
Ltd.
Tl.X:
05-821521
HPCL
915-42
Avenue
S.E.
Suite
102
6877
Goreway
Drive
Calgary
T2G
lZ1
Mississauga
L4V1L9
FOR CANADIAN AREAS NOTLISTED:
Tel:
(403)
287-1672
Tel:
(416)
678-9430
Contact
Hewlett-Packard
(Canada)
TWX:
610-492-4246
Ltd.inMississauga.
CENTRAL
AND
SOUTH
AMERICA
ARGENTINA
Hewlett-PackardDoBrasil
COLOMBIA
MEXICO PANAMA
PERU
Montevideo
Hewlett-Packard
Argentina
I.E.C.
Ltda.
Instrumentaci6n
Hewlett-Packard
Mexicana,
Electr6nico
Balboa,
SA
Compaiiia
Electro
M~dica
S.A.
Tel:
40-3102
S.A.C.e.1
Praca
Dom
Feliciano,
78-8°
HenrikA.Langebaek&Kier
SA
SAdeC.V.
P.O.
Box
4929
Ave.
Enrique
Canaual
312
Cable:
RADIUM
Montevideo
Lavalle
1171-3°
Piso
andar
(Sal
a
806/8)
Carrera7No.
48-59
Torres
Adalid
No.
21,
11°
Piso
Calle
Samuel
Lewis
San
Isidro
VENEZUELA
Buenos Aires
9000-POrto Alegre-RS
Apartado
Mreo
6287
Col.
del
Valle
Cuidad de Panama
Cas
ilia
1030
Hewlett-PackarddeVenezuela
Tel:
35-0436.
35-0627.
35-0341
Tel:
25-84-70-000
(0512)
Bogota, 1
D.E.
Mexico
12,
D.F.
Tel:
64-2700
Lima
C.A.
Telex:
012-1009
Cable:
HEWPACK
POrto
Alegre
Tel:
45-78-06,
45-55-46
Tel:
(905)
543-42-32
Telex:
3431103
Curunda,
Tel:
22-3900
Apartado
50933
Cable:
HEWPAC
ARG
Hewlett-PackardDoBrasil
~I~:i
:t4~51~~f8~
Telex:
017-74-507
Canal
Zone
Cable:
ELMEDLima
I.E.C.
Ltda.
Hewlett-Packard
Mexicana,
Cable:
ELECTRON
Panama
Edificio
Segre
BOLIVIA
PUERTO RICO
Tercera
Transversal
Stambuk&Mark
(Bolivia)
Ltda.
Rua
SiQueira
Campos,
53.
COSTA RICA
SAdeC.V.
PARAGUAY
San
Juan
Electronics,
Inc.
Los
Ruices
Norte
Av.
Mariscal,
Santa
Cruz
1342
andar
Copacabana
Lie.
Alfredo
Gallegos
Gurdian
Ave.
Constituci6n
No.
2184
Z.J.
Melamed
S.R.L.
P.O.
Box
5167
Caracas
107
La
Paz
2000-Rio de Janelro-GB
Apartado
10159
Monterrey,
N.L.
Division:
AparatosyEQuipos
PoncedeLe6n
154
Tel:
35-00-11
Tel:
40626,
53163,
52421
Tel:
257-80-94-000
(021)
San Jose
Tel:
48-71-32,
48-71-84
Medicos
Pda.
3-PTAdeTierra
Telex:
21146
HEWPACK
Telex:
3560014
Telex:
210079HEWPACK
Tel:
21-86-13
NICARAGUA
Division:
AparatosyEQuipos
San Juan
00906
Cable:
HEWPACK
Caracas
Cable:
BUKMAR
Cable:
HEWPACK
Cable:
GALGUR
San
Jos~
Roberto
Teran
G.
Scientificosyde
Tel:
(809)
725-3342,
722-3342
RiodeJaneiro
Apartado
Postal
689
I
nvestigacion
Cable:
SATRONICS
San
Juan
BRAZIL
CHILE
GUATEMALA
P.O.
Box
676
Telex:
SATRON
3450
332,
FOR AREAS NOT LISTED, CONTACT:
Hewlett-PackardDoBrasil
IPESA
Edificio
Teran
Chile,
482,
Edificio
Victoria
Hewlett-Packard
I.E.C.
Ltda.
CalcagniyMetcalfe
Ltda.
AvenidaLaReforma
3-48,
Managua
Asuncion
URUGUAY
Inter-Americas
Rua
Frei
Caneca,
1.152-Bela
Vista
Calle
Lira
81,
Oficina
5
Zona
9
Tel:
3451,
3452
Tel:
4-5069,
4-6272
Pablo
Ferrando
SA
3200
Hillview
Ave.
01307
-Sao Paulo-SP
Casilla
2118
Guatemala
Cable:
ROTERAN
Managua
Cable:
RAMEL
ComercialeIndustrial
Palo Alto,
California
94304
Tel:
288-71-11,287-81-20,
Santiago
Tel:
63627,
64736
Avenida
Italia
2877
Tel:
(415)
493-1501
287-61-93
Tel:
398613
Telex:
4192
TELTRO
GU
CasilladeCorreo
370
TWX:
910-373-1260
Telex:
309151/213
Cable:
CALM
ET
Cable:
HEWPACK
Palo
Alto
Cable:
HEWPACK
Sao
Paulo
Telex:
034-8300,
034-8493
EUROPE
AUSTRIA
BELGIUM
DENMARK
Hewlett-Packard
A/S
FINLAND FRANCE
Hewlett-Packard
France
Hewlett-Packard
Ges.m.b.H.
Hewlett-Packard
Benelux
Hewlett-Packard
AlS
Navervej
1
Hewlett-Packard
Oy
Hewlett-Packard
France
Agence
R~gional
Handelska
52/3
SA/N.v.
8~~a;t~t~irkerPd
DK-8600
Silkeborg
Nahkahousuntie
5
QuartierdeCourtaboeuf
Chemin
des
Mouilles
P.O.
Box
7
AvenuedeCol-Vert,
"
Tel:
(06)8271
66
P.O.
Box
6
Boite
Postale
NO.6
Boite
Postale
No.
12
A-1205
Vienna
(Groenkraaglaan)
Tel:
(01)816640
Telex:
16640hp
as
SF-00211
Helsinki
21
F-91401
Orsay
F-69130
Ecully
Tel:
(0222)336606to
09
B-1170
Brussels
Cable:
HEWPACK
AS
Cable:
HEWPACK
AS
Tel:
6923031
Tel:
(1)
9077825
Tel:
(78)3381
25,
Cable:
HEWPAK
Vienna
Tel:
(02)
6722240
Telex:
16640hpas
Cable:
HEWPACKOY
Helsinki
Cable:
HEWPACK
Orsay
836525
Telex:
75923
hewpak
a
Cable:
PALOBEN
Brussels
Telex:
12-15363
Telex:
60048
Telex:31617
Telex:23494
paloben
bru
Loading...