FUJITSU MB91230 User Guide

FUJITSU SEMICONDUCTOR
DATA SHEET
32-bit Microcontroller
CMOS
DS07-16506-2E
FR60Lite
MB91230 Series
MB91233L/MB91F233A/MB91F233L/MB91V230

DESCRIPTION

The MB91230 series is a line of standard microcontrollers, based on a 32-bit high-performance RISC CPU and containing variety of I/O resources, for embedded control applications which require high CPU performance at high speed processing.
Audio motor control storage : Designed to specifications for embedded control applications which high CPU performance power processing.
The MB91230 series belongs to the FR60Lite.

FEATURES

• 32-bit RISC, load/store architecture with a 5 stage pipeline
• Maximum operating frequency: 33.6 MHz (oscillation frequency = 4.2 MHz, oscillation frequency 8-multiplier (PLL clock multiplication method) )
• 16-bit fixed length instructions (basic instructions)
• Execution speed of instructions : 1 instruction per cycle
(Continued)

PACKAGES

401-pin Ceramic PGA 120-pin Plastic LQFP 128-pin plastic FLGA
(PGA-401C-A02) (FPT-120P-M05) (LGA-128P-M01)
MB91230 Series
(Continued)
• Memory-to-memory transfer, bit handling, and barrel shift instructions, etc. : Instructions suitable f or embedded applications
• Function entry/exit instructions, multiple-register load/store instructions : Instructions adapted for C-language
• Register interlock function : Facilitates coding in assembler
• Built-in multiplier with instruction-level support
- 32-bit multiplication with sign : 5 cycles
- 16-bit multiplication with sign : 3 cycles
• Interrupt (PC and PS save) : 6 cycles (16 priority levels)
• Harvard architecture allowing program access and data access to be executed simultaneously
• Instruction compatible with FR family
• Capacity of built-in ROM and ROM type
- MASK ROM : 256 Kbytes
- FLASH ROM : 256 Kbytes
• Capacity of built-in RAM : 16 Kbytes
• General-purpose ports : Maximum 98 ports (including N-ch open-drain port : 4 ports)
• A/D converter (series-parallel type)
- Resolution : 10-bit : 8 channels (4 channels × 2 unit)
- Conversion time : 1.69 µs (Minimum conversion time)
• D/A converter (R-2R type)
- Resolution : 8-bit : 2 channels (independence)
- Conversion speed : 0.6 µs (when load capacitance 20 pF)
• External interrupt input : 16 channels
• Bit search module (for REALOS)
- Function for searching the MSB (Upper bit) in each word for the first “0” or “1” inverted point
• UART (full-duplex double buffer) : 4 channels
- Selectable parity On/Off
- Asynchronous (start-stop synchronized) or clock-synchronous communications selectable
- Internal timer for dedicated baud rate (U-timer) on each channel
- External clock can be used as transfer clock
- Error detection function for parity, frame and overrun
• PPG : 16-bit × 6 channels
• Up/down counter : 2 channels (8-bit × 2 channels or 16-bit × 1 channel)
• Reload timer : 16-bit × 4 channels
• Free-run timer : 16-bit × 2 channels
• Watch timer : 15-bit × 1 channel
• PWC : 8-bit × 2 channels
• Input capture : 2 channels (interface with free-run timer 0)
• Output compare : 4 channels (free-run timer 0 and output compare unit 0/1 cooperate, free-run timer 1
and output compare units 2/3)
• LCD controller : SEG0 to SEG31/COM0 to COM3 (also serving as a port)
• Clock monitor (peripheral clock output function) : 1 channel
• Timebase/watchdog timer (26-bit)
• Real-time clock (counting even with the real-time clock stopped)
• Low Power Consumption Mode
• Sleep/stop function
• Package : LQFP-120, FLGA-128
• Technology : CMOS 0.35 µm
• Power supply
• Dual power supply configuration [internal logic 3.3 V, I/O 5.5 V(3.3 V for A/D converter and D/A converter
input/output)]
Note : Do not set the external bus mode in which the MB91230 series cannot operate.
2

PIN ASSIGNMENT

P P
P
3
2
1
0
MB91233L, MB91F233A, MB91F233L
P25/SOT2
P24/SIN2
P23/PWI1/OP
120
119
118
X0A X1A
CC
3B
SS
V
VCC3
1 2 3 4 5 6 7 8
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
P26/SCK2
P27/SIN3 P30/SOT3 P31/SCK3
P32/AIN0
P33/BIN0
P34/ZIN0
P35/AIN1
P36/BIN1
P37/ZIN1 P40/PPG0 P41/PPG1
V
P42/PPG2 P43/PPG3
P44/TOT0 P45/TOT1 P46/TOT2
P47/CKOT
P50/INT8
P51/INT9
P52/INT10 53/INT11/PPG4 54/INT12/PPG5
P55/INT13/TIN2 P56/INT14/TIN1
P22/PWI0/OP
P21/CKI1/OP
P20/CKI0/OP
P17/INT7
P16/INT6
P15/INT5
117
116
115
114
113
112
(TOP VIEW)
P14/INT4
P13/INT3
P12/INT2X0X1
111
110
109
108
107
VSSVCCP11/INT1
P10/INT0
P07/IC1
P06/IC0
106
105
104
103
102
101
MB91230 Series
P05/SCK1
P04/SOT1
P03/SIN1
P02/SCK0
P01/SOT0
P00/SIN0V3V2V1V0
999897969594939291
100
INIT
90
MD0
89
MD1
88
MD2
87
P73/COM3
86
P72/COM2
85
P71/COM1
84
P70/COM0
83
P67/SEG31
82
P66/SEG30
81
P65/SEG29
80
P64/SEG28
79
PB3/SEG27
78
PB2/SEG26
77
V
76
SS
75
V
CC
74
PB1/SEG25
73
PB0/SEG24
72
PA7/SEG23
71
PA6/SEG22
70
PA5/SEG21
69
PA4/SEG20
68
PA3/SEG19
67
PA2/SEG18
66
PA1/SEG17
65
PA0/SEG16
64
P97/SEG15
63
P96/SEG14
62
P95/SEG13
61
P94/SEG12
∗ ∗ ∗ ∗
3132333435363738394041424344454647484950515253545556575859
SS
CC
AV
AV
AVRH
PD0/DA0
PD1/DA1
PF3/TOT3
PF4/TIN3/ADTG1
57/INT15/TIN0/ADTG0
PC0/AN0
PC1/AN1
PC2/AN2
PC3/AN3
PC4/AN4
SS
V
PC5/AN5
PC6/AN6
PC7/AN7
3IO
CC
V
P80/SEG0
P81/SEG1
P82/SEG2
P83/SEG3
P84/SEG4
P85/SEG5
P86/SEG6
P87/SEG7
60
P90/SEG8
P91/SEG9
P92/SEG10
P93/SEG11
* : Open-drain
(FPT-120P-M05)
(Continued)
3
MB91230 Series
M
H G
D C
(Continued)
MB91F233L
M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12
L
K
J
F E
B A A2A3A4A5A6A7A8A9A10A11A12
INDEX
L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12
K1 K2 K3 K4 K5 K6 K7 K8 K9 K10 K11 K12
J1 J2 J3 J4 J5 J6 J7 J8 J9 J10 J11 J12 H1 H2 H3 H4 H9 H10 H11 H12 G1 G2 G3 G4 G9 G10 G11 G12
BOTTOM VIEW
F1 F2 F3 F4 F9 F10 F11 F12 E1 E2 E3 E4 E9 E10 E11 E12 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 A1
123456789101112
(LGA-128P-M01)
4
MB91230 Series
Pin correspondence table of LQFP-120 and FLGA-128 in MB91230 series (LGA-128P-M01)
FLGA-128
LQFP-120
No.
No.
(JEDEC
Signal
name
LQFP-120
No.
No.)
1 A1 P26/SCK2 98 C9 P03/SIN1 18 G1 P42/PPG2
120 A2 P25/SOT2 93 C10 V2 15 G2 V
FLGA-128
No.
(JEDEC
No.)
Signal
name
LQFP-120
No.
FLGA-128
No.
(JEDEC
)
No.
Signal
name
3B
CC
117 A3
P22/PWI0/
OP2
85 C11 P72/COM2 *
2
G3*
4
VCC3*
4
114 A4 P17/INT7 87 C12 MD2 17 G4 VCC3
A5 *
5
10 D1 P37/ZIN1 71 G9 109 A6 P12/INT2 6 D2 P33/BIN0 75 G10 V 107 A7 X1 8 D3 P35/AIN1 74 G11
103 A8 P10/INT0 119 D4 P24/SIN2 77 G12
PA6/
SEG22
CC
PB1/
SEG25
PB2/
SEG26
100 A9 P05/SCK1 111 D5 P14/INT4 21 H1 P45/TOT1
97 A10 P02/SCK0 D6 *
5
19 H2 P43/PPG3 94 A11 V3 101 D7 P06/IC0 23 H3 P47/CKOT 91 A12 V0 95 D8 P00/SIN0 20 H4 P44/TOT0
4 B1 P31/SCK3 89 D9 MD0 65 H9
118 B2
115 B3
P23/PWI1/
OP3
P20/CKI0/
OP0
86 D10 P73/COM3 72 H10
82 D11
P67/
SEG31*
1
69 H11
PA0/
SEG16
PA7/
SEG23
PA4/
SEG20
112 B4 P15/INT5 84 D12 P71/COM1 73 H12
PB0/
SEG24 110 B5 P13/INT3 13 E1 X0A 24 J1 P50/INT8 106 B6 V
SS
9 E2 P36/BIN1 22 J2 P46/TOT2
104 B7 P11/INT1 12 E3 P41/PPG1 26 J3 P52/INT10
99 B8 P04/SOT1 5 E4 P32/AIN0 29 J4
96 B9 P01/SOT0 81 E9
P66/
SEG30*
1
35 J5 PD1/DA1
P55/INT13/
TIN2
92 B10 V1 83 E10 P70/COM0 40 J6 PC1/AN1 88 B11 MD1 80 E11 90 B12 INIT
E12 *
P65/
SEG29*
5
1
47 J7 V
SS
50 J8 P81/SEG1
(Continued)
5
MB91230 Series
(Continued)
FLGA-128
LQFP-120
No.
No.
(JEDEC
Signal
name
LQFP-120
No.
No.)
7 C1 P34/ZIN0 16 F1 V
2 C2 P27/SIN3 F2 *
3 C3 P30/SOT3 14 F3 X1A 66 J11
116 C4
P21/CKI1/
OP1
11 F4 P40/PPG0 70 J12
113 C5 P16/INT6 78 F9
108 C6 X0 79 F10
105 C7 V
CC
76 F11 V
102 C8 P07/IC1 F12 *
41 K5 PC2/AN2 36 L4 AV 44 K6 PC5/AN5 *
3IO 43 L6 PC4/AN4 42 M5 PC3/AN3
48 K7 V
CC
3
53 K8 P84/SEG4 45 L7 PC6/AN6 46 M6 PC7/AN7 56 K9 P87/SEG7 49 L8 P80/SEG0 M7 *
63 K10
62 K11
67 K12
P96/
SEG14
P95/
SEG13
PA2/
SEG18
52 L9 P83/SEG3 51 M8 P82/SEG2
55 L10 P86/SEG6 54 M9 P85/SEG5
58 L11 P91/SEG9 57 M10 P90/SEG8
P56/
30 L1
INT14/
64 L12
TIN1 P54/
28 L2
INT12/
31 M1
PPG5
32 L3 PF3/TOT3 34 M2 PD0/DA0
FLGA-128
No.
(JEDEC
No.)
4
L5*
Signal
name
SS
5
PB3/
SEG27
P64/
SEG28*
SS
5
CC
AVRL*
P97/
SEG15
P57/
INT15/
TIN0/
ADTG0
LQFP-120
1
4
FLGA-128
No.
No.
(JEDEC
)
No.
59 J9
68 J10
27 K1
25 K2 P51/INT9
33 K3 38 K4 AV
37 M3 AVRH 39 M4 PC0/AN0
60 M11
61 M12
Signal
name
P92/
SEG10
PA3/
SEG19
PA1/
SEG17
PA5/
SEG21
P53/
INT11/
PPG4
PF4/TIN3/
ADTG1
SS
5
P93/
SEG11
P94/
SEG12
*1 : Open-drain
3) on the LQFP product
*2 : Connected to pin 17(V *3 : Connected to pin 38(AV
CC
) on the LQFP product
SS
*4 : Signals added to the FLGA product *5 : NC pin on the FLGA product
6

PIN DESCRIPTION

MB91230 Series
Pin no.
LQFP FLGA
1A1
2C2
3C3
4B1
5E4
6D2
7C1
8D3
Pin name Circuit type Description
UART2 clock input/output.
SCK2
D
P26
SIN3
D
P27
SOT3
B
P30
SCK3
B
P31
AIN0
B
P32
BIN0
B
P33
ZIN0
B
P34
AIN1
B
P35
This function is valid when corresponding bit of PFR2 register is set to peripheral function.
General purpose input/output port. This function is valid when corresponding bit of PFR2 register is set to port function.
UART3 data input. When using this function, corresponding bit of DDR2 register is set to input.
General purpose input/output port. This function is always valid.
UART3 data output. This function is valid when corresponding bit of PFR3 register is set to peripheral function.
General purpose input/output port. This function is valid when corresponding bit of PFR3 register is set to port function.
UART3 clock input/output. This function is valid when corresponding bit of PFR3 register is set to peripheral function.
General purpose input/output port. This function is valid when corresponding bit of PFR3 register is set to port function.
Up/down counter 0 AIN input. When using this function, corresponding bit of DDR3 register is set to input.
General purpose input/output port. This function is always valid.
Up/down counter 0 BIN input. When using this function, corresponding bit of DDR3 register is set to input.
General purpose input/output port. This function is always valid.
Up/down counter 0 ZIN input. When using this function, corresponding bit of DDR3 register is set to input.
General purpose input/output port. This function is always valid.
Up/down counter 1 AIN input. When using this function, corresponding bit of DDR3 register is set to input.
General purpose input/output port. This function is always valid.
(Continued)
7
MB91230 Series
Pin no.
LQFP FLGA
9E2
10 D1
11 F4
12 E3
Pin name Circuit type Description
Up/down counter 1 BIN input.
BIN1
B
P36
When using this function, corresponding bit of DDR3 register is set to input.
General purpose input/output port. This function is always valid.
Up/down counter 1 ZIN input.
ZIN1
B
P37
When using this function, corresponding bit of DDR3 register is set to input.
General purpose input/output port. This function is always valid.
PPG0 output.
PPG0
This function is valid when corresponding bit of PFR4 register is set to peripheral function.
D
General purpose input/output port.
P40
This function is valid when corresponding bit of PFR4 register is set to port function.
PPG1 output.
PPG1
This function is valid when corresponding bit of PFR4 register is set to peripheral function.
D
General purpose input/output port.
P41
This function is valid when corresponding bit of PFR4
register is set to port function. 13 E1 X0A 14 F3 X1A 15 G2 V 16 F1 V 17 G4 V
CC
SS
CC
PPG2
18 G1
P42
PPG3
19 H2
P43
K Sub-clock oscillation pin (32 kHz)
3B Power supply pin for backup (RTC)
Power supply pin (GND)
3 Power supply pin (3.3 V internal logic)
PPG2 output.
This function is valid when corresponding bit of PFR4
register is set to peripheral function.
D
General purpose input/output port.
This function is valid when corresponding bit of PFR4
register is set to port function.
PPG3 output.
This function is valid when corresponding bit of PFR4
register is set to peripheral function.
D
General purpose input/output port.
This function is valid when corresponding bit of PFR4
register is set to port function.
(Continued)
8
MB91230 Series
Pin no.
LQFP FLGA
20 H4
21 H1
22 J2
23 H3
24 J1
Pin name Circuit type Description
Reload timer 0 output port.
TOT0
D
P44
TOT1
D
P45
TOT2
D
P46
CKOT
D
P47
INT8
C
P50
This function is valid when corresponding bit of PFR4
register is set to peripheral function.
General purpose input/output port.
This function is valid when corresponding bit of PFR4
register is set to port function.
Reload timer 1 output port.
This function is valid when corresponding bit of PFR4
register is set to peripheral function.
General purpose input/output port.
This function is valid when corresponding bit of PFR4
register is set to port function.
Reload timer 2 output port.
This function is valid when corresponding bit of PFR4
register is set to peripheral function.
General purpose input/output port.
This function is valid when corresponding bit of PFR4
register is set to port function.
Clock monitor function output pin.
This function is valid when corresponding bit of PFR4
register is set to peripheral function.
General purpose input/output port.
This function is valid when corresponding bit of PFR4
register is set to port function.
External interrupt input.
When using this function, corresponding bit of DDR5
register is set to input.
General purpose input/output port.
This function is always valid.
25 K2
26 J3
INT9
P51
INT10
P52
External interrupt input.
When using this function, corresponding bit of DDR5
C
C
register is set to input.
General purpose input/output port.
This function is always valid.
External interrupt input.
When using this function, corresponding bit of DDR5
register is set to input.
General purpose input/output port.
This function is always valid.
(Continued)
9
MB91230 Series
Pin no.
LQFP FLGA
27 K1
28 L2
Pin name Circuit type Description
PPG4 output.
PPG4
INT11
P53
PPG5
INT12
P54
C
C
This function is valid when corresponding bit of PFR5
register is set to peripheral function.
External interrupt input.
This function is enabled when corresponding bit of
PFR5 register is set to port function and corresponding
bit of DDR5 resister is set to input.
General purpose input/output port.
This function is valid when corresponding bit of PFR5
register is set to port function.
PPG5 output.
This function is valid when corresponding bit of PFR5
register is set to peripheral function.
External interrupt input.
This function is enabled when corresponding bit of
PFR5 register is set to port function and corresponding
bit of DDR5 resister is set to input.
General purpose input/output port.
This function is valid when corresponding bit of PFR5
register is set to port function.
29 J4
30 L1
TIN2
INT13
P55
TIN1
INT14
P56
Reload timer 2 event input pin.
This function is valid when corresponding bit of DDR5
register is set to input.
C
C
External interrupt input.
This function is valid when corresponding bit of DDR5
register is set to input.
General purpose input/output port.
This function is always valid.
Reload timer 1 event input pin.
This function is valid when corresponding bit of DDR5
register is set to input.
External interrupt input.
This function is valid when corresponding bit of DDR5
register is set to input.
General purpose input/output port.
This function is always valid.
(Continued)
10
MB91230 Series
Pin no.
LQFP FLGA
31 M1
32 L3
33 K3
34 M2
35 J5
36 L4 AV 37 M3 AVRH Analog reference power supply (for A/D, D/A converter) . 38 K4 AV
Pin name
ADTG0
TIN0
INT15
P57
TOT3
PF3
ADTG1
TIN3
PF4
DA0
PD0
DA1
PD1
CC
SS
Circuit
type
External trigger input pin of A/D converter 0. This function is valid when corresponding bit of DDR5 reg­ister is set to input.
Reload timer 0 event input pin. This function is valid when corresponding bit of DDR5 reg-
C
D
D
F
F
Analog power supply (for A/D, D/A converter) .
GND level input for analog circuit (for A/D, D/A converter) .
ister is set to input. External interrupt input.
This function is valid when corresponding bit of DDR5 reg­ister is set to input.
General purpose input/output port. This function is always valid.
Reload timer 3 output port. This function is valid when corresponding bit of PFRF register is set to peripheral function.
General purpose input/output port. This function is valid when corresponding bit of PFRF register is set to port function.
External trigger input pin of A/D converter 1. This function is valid when corresponding bit of DDRF register is set to input.
Reload timer 3 event input pin. This function is valid when corresponding bit of DDRF register is set to input.
General purpose input/output port. This function is always valid.
D/A converter 0 output pin. This function is valid when corresponding bit of PFRD register is set to peripheral function.
General purpose input/output port. This function is valid when corresponding bit of PFRD register is set to port function.
D/A converter 1 output pin. This function is valid when corresponding bit of PFRD register is set to peripheral function.
General purpose input/output port. This function is valid when corresponding bit of PFRD register is set to port function.
Description
(Continued)
11
MB91230 Series
Pin no.
LQFP FLGA
M4, J6, K5,
39 to 46
M5, L6, K6,
L7, M6
47 J7 V 48 K7 V
L8, J8, M8,
49 to 56
L9, K8, M9,
L10, K9
M10, L11, J9,
57 to 64
M11, M12,
K11, K10, L12
Pin name Circuit type Description
Analog input pin for A/D converter.
AN0 to AN7
This function is valid when corresponding bit of PFRC register is set to peripheral function.
E
General purpose input/output port.
PC0 to PC7
This function is valid when corresponding bit of PFRC register is set to port function.
SS
3IO Power supply pin (analog-shared pin I/O)
CC
SEG0 to
SEG7
Power supply pin (GND)
LCD controller/driver LCD segment output pin. This function is valid when corresponding bit of PFR8 register is set to peripheral function.
I
General purpose input/output port.
P80 to P87
This function is valid when corresponding bit of PFR8 register is set to port function.
SEG8 to
SEG15
LCD controller/driver LCD segment output pin. This function is valid when corresponding bit of PFR9 register is set to peripheral function.
I
General purpose input/output port.
P90 to P97
This function is valid when corresponding bit of PFR9 register is set to port function.
H9, J11, K12,
65 to 72
J10, H11, J12,
G9, H10
73, 74 H12, G11
75 G10 V
76 F11 V
77, 78 G12, F9
SEG16 to
SEG23
PA0 to PA7
SEG24,
SEG25
PB0, PB1
CC
SS
SEG26,
SEG27
PB2, PB3
LCD controller/driver LCD segment output pin. This function is valid when corresponding bit of PFRA register is set to peripheral function.
I
General purpose input/output port. This function is valid when corresponding bit of PFRA register is set to port function.
LCD controller/driver LCD segment output pin. This function is valid when corresponding bit of PFRB register is set to peripheral function.
I
General purpose input/output port. This function is valid when corresponding bit of PFRB register is set to port function.
Power supply pin (5 V I/O MB91V230/F233A)
Power supply pin (3.3 V internal logic, I/O MB91F233L/ MB91233L)
Power supply pin (GND)
LCD controller/driver LCD segment output pin. This function is valid when corresponding bit of PFRB register is set to peripheral function.
I
General purpose input/output port. This function is valid when corresponding bit of PFRB register is set to port function.
(Continued)
12
MB91230 Series
Pin no.
LQFP FLGA
79 to 82
83 to 86
87 to 89 C12, B11, D9
90 B12 INIT
91 to 94
95 D8
F10, E11, E9,
D11
P64 to P67
E10, D12,
C11, D10
P70 to P73
A12, B10,
C10, A11
Pin name Circuit type Description
SEG28 to
SEG31
COM0 to
COM3
MD2, MD1,
MD0
V0 to V3
SIN0
P00
J
I
H Mode input pin.
G External reset input.
D
LCD controller/driver LCD segment output pin. This function is valid when corresponding bit of PFR6 register is set to peripheral function.
General purpose input/output port. (open-drain) This function is valid when corresponding bit of PFR6 register is set to port function.
LCD controller/driver common pins. This function is valid when corresponding bit of PFR7 register is set to peripheral function.
General purpose input/output port. This function is valid when corresponding bit of PFR7 register is set to port function.
LCD controller/driver reference power supply input pins.
UART0 data input. When using this function, corresponding bit of DDR0 register is set to input.
General purpose input/output port. This function is always valid.
96 B9
97 A10
98 C9
SOT0
P01
SCK0
P02
SIN1
P03
UART0 data output. This function is valid when corresponding bit of PFR0
D
D
D
register is set to peripheral function. General purpose input/output port.
This function is valid when corresponding bit of PFR0 register is set to port function.
UART0 clock input/output. This function is valid when corresponding bit of PFR0 register is set to peripheral function.
General purpose input/output port. This function is valid when corresponding bit of PFR0 register is set to port function.
UART1 data input. This function is valid when corresponding bit of DDR0 register is set to input.
General purpose input/output port. This function is always valid.
(Continued)
13
MB91230 Series
Pin no.
LQFP FLGA
99 B8
100 A9
101 D7
102 C8
Pin name Circuit type Description
UART1 data output.
SOT1
D
P04
SCK1
D
P05
IC0
D
P06
IC1
D
P07
This function is valid when corresponding bit of PFR0 reg­ister is set to peripheral function.
General purpose input/output port. This function is valid when corresponding bit of PFR0 reg­ister is set to port function.
UART1 clock input/output. This function is valid when corresponding bit of PFR0 reg­ister is set to peripheral function.
General purpose input/output port. This function is valid when corresponding bit of PFR0 reg­ister is set to port function.
Input capture input 0. This function is valid when corresponding bit of DDR0 register is set to input.
General purpose input/output port. This function is always valid.
Input capture input 1. This function is valid when corresponding bit of DDR0 register is set to input.
General purpose input/output port. This function is always valid.
INT0
103 A8
P10
INT1
104 B7
P11
105 C7 V
106 B6 V 107 A7 X1 108 C6 X0
CC
SS
External interrupt input. This function is valid when corresponding bit of DDR1
A
A
Power supply pin (GND)
K Main-clock oscillation pin
register is set to input. General purpose input/output port.
This function is always valid. External interrupt input.
This function is valid when corresponding bit of DDR1 register is set to input.
General purpose input/output port. This function is always valid.
Power supply pin (5 V I/O MB91V230/F233A) Power supply pin (3.3 V internal logic, I/O MB91F233L/
MB91233L)
(Continued)
14
MB91230 Series
Pin no.
LQFP FLGA
109 A6
110 B5
111 D5
112 B4
Pin name Circuit type Description
External interrupt input.
INT2
A
P12
INT3
A
P13
INT4
A
P14
INT5
A
P15
This function is valid when corresponding bit of DDR1 register is set to input.
General purpose input/output port. This function is always valid.
External interrupt input. This function is valid when corresponding bit of DDR1 register is set to input.
General purpose input/output port. This function is always valid.
External interrupt input. This function is valid when corresponding bit of DDR1 register is set to input.
General purpose input/output port. This function is always valid.
External interrupt input. This function is valid when corresponding bit of DDR1 register is set to input.
General purpose input/output port. This function is always valid.
113 C5
114 A4
115 B3
INT6
P16
INT7
P17
CKI0
OP0
P20
External interrupt input. This function is valid when corresponding bit of DDR1
A
A
D
register is set to input. General purpose input/output port.
This function is always valid. External interrupt input.
This function is valid when corresponding bit of DDR1 register is set to input.
General purpose input/output port. This function is always valid.
External clock input pin for free-run timer 0. This function is enabled when corresponding bit of PFR2 register is set to port function and corresponding bit of DDR2 register is set to input.
Output compare 0 output pin. This function is valid when corresponding bit of PFR2 register is set to peripheral function.
General purpose input/output port. This function is valid when corresponding bit of PFR2 register is set to port function.
(Continued)
15
MB91230 Series
(Continued)
Pin no.
LQFP FLGA
116 C4
117 A3
118 B2
119 D4
120 A2
(38) L5 AVRL
A5, D6, E12,
F2, F12, M7
Pin name Circuit type Description
CKI1
OP1
P21
PWI0
OP2
P22
PWI1
OP3
P23
SIN2
P24
SOT2
P25
NC Unconnected pin.
External clock input pin for free-run timer 1. This function is enabled when corresponding bit of PFR2 register is set to port function and corresponding bit of DDR2 register is set to input.
D
D
D
D
D
Output compare1 output pin. This function is valid when corresponding bit of PFR2 register is set to peripheral function.
General purpose input/output port. This function is valid when corresponding bit of PFR2 register is set to port function.
Pulse width counter 0 input. This function is enabled when corresponding bit of PFR2 register is set to port function and corresponding bit of DDR2 register is set to input.
Output compare2 output pin. This function is valid when corresponding bit of PFR2 register is set to peripheral function.
General purpose input/output port. This function is valid when corresponding bit of PFR2 register is set to port function.
Pulse width counter 1 input. This function is enabled when corresponding bit of PFR2 register is set to port function and corresponding bit of DDR2 register is set to input.
Output compare3 output pin. This function is valid when corresponding bit of PFR2 register is set to peripheral function.
General purpose input/output port. This function is valid when corresponding bit of PFR2 register is set to port function.
UART2 data input. This function is valid when corresponding bit of DDR2 register is set to input.
General purpose input/output port. This function is always valid.
UART2 data output. This function is valid when corresponding bit of PFR2 register is set to peripheral function.
General purpose input/output port. This function is valid when corresponding bit of PFR2 register is set to port function.
Analog reference power supply (for A/D converter)
inside the IC on LQFP
AVRL pin is connected to AV package product.
SS
16
MB91230 Series

I/O CIRCUIT TYPE

Type Circuit type Remarks
With Pull-up control (50 kΩ)
Pull-up control
PP
A
N
Output drive Pch Output drive Nch
CMOS level output I
= 4 mA/IOL = 4 mA
OH
CMOS hysteresis input (with standby control)
CMOS hysteresis input
Standby control
Pull-up control
PP
Output drive Pch
With Pull-up control (50 kΩ) CMOS level output
I
= 4 mA/IOL = 4 mA
OH
CMOS hysteresis input (with standby control)
N
B
Output drive Nch
CMOS hysteresis input
Test pin for FLASH
Standby control Test pin for FLASH Analog SW control
N
CMOS level output
P
C
N
Output drive Pch Output drive Nch
CMOS hysteresis input (with standby control)
CMOS hysteresis input
Standby control
P
N
D
Output drive Pch Output drive Nch
CMOS hysteresis input
CMOS level output I
= 4 mA/IOL = 4 mA
OH
CMOS hysteresis input (with standby control) Test pin for FLASH
Standby control Test pin for FLASH
Analog SW control
N
(Continued)
17
MB91230 Series
t
ut
Type Circuit type Remarks
P
N
Output drive Pch Output drive Nch
CMOS level output I
= 4 mA/IOL = 4 mA
OH
CMOS hysteresis input (with standby control) Also serving as an analog input
E
CMOS hysteresis input
Standby control Analog input
Analog SW control
N
P
N
F
Output drive Pch Output drive Nch
CMOS hysteresis input
CMOS level output I
= 4 mA/IOL = 4 mA
OH
CMOS hysteresis input (with standby control) Also serving as an analog input
Standby control Analog input
Analog SW control
N
With Pull-up (50 kΩ) CMOS hysteresis input
PP
18
G
N
CMOS hysteresis input
High withstand-voltage input CMOS input (hysteresis level)
N
Low impedance inpu High impedance inp
H
N
N
N
N
High voltage detection output
(Continued)
MB91230 Series
X
X
(Continued)
Type Circuit type Remarks
P
N
Output drive Pch Output drive Nch
I
CMOS hysteresis input
Standby control LCDC output
CMOS level output
I
= 4 mA/IOL = 4 mA
OH
CMOS hysteresis input (with standby control) LCDC output
P
CMOS level output (open-drain)
I
= 20 mA
OL
CMOS hysteresis input (with standby control) LCDC output
N
Output drive Nch
J
CMOS hysteresis input
Standby control LCDC output
1, X1A
Oscillation circuit
Oscillation output
K
0, X0A
Standby control
19
MB91230 Series

HANDLING DEVICES

Preventing Latch-up
Latch-up may occur in a CMOS IC if a voltage greater than V pin or if an above-rating voltage is applied between V
and VSS.
CC
A latch-up, if it occurs, significantly increases the power supply current and may cause thermal destruction of an element. When you use a CMOS IC, be very careful not to exceed the absolute maximum rating.
Treatment of Unused Pins
Do not leave an unused input pin open, since it may cause a malfunction. Handle by, for example , using a pull­up or pull-down resistor.
Treatment of Pins at Unusing LCD
Leave COM0 to COM3 pins open. V0 to V3 pins should always be pulled up or down through resistance of at least 2 kΩ.
About Power Supply Pins
or less than VSS is applied to an input or output
CC
In products with multiple V
or VSS pins, the pins of the same potential are internally connected in the device
CC
to avoid abnormal operations including latch-up. However, you must connect the pins to external power supply and a ground line to lower the electro-magnetic emission le vel, to prevent abnormal operation of strobe signals caused by the rise in the ground level, and to conform to the total output current rating.
Moreover, connect the current supply source with the V It is also advisable to connect a ceramic bypass capacitor of approximately 0.1 µF between V
and VSS pins of this device at the low impedance.
CC
and VSS near
CC
this device.
About Crystal Oscillator Circuit
Noise near the X0, X1, X0A and X1A pins may cause the de vice to malfunction. Design the printed circuit board so that X0, X1, X0A and X1A the crystal oscillator (or ceramic oscillator) , and the bypass capacitor to ground are located as close to the device as possible.
It is strongly recommended to design the PC board artwork with the X0, X1, X0A and X1A pins surrounded by ground plane because stable operation can be expected with such a layout.
Please ask the crystal maker to evaluate the oscillational characteristics of the crystal and this device.
Treatment of NC and OPEN Pins
Pins marked as NC and OPEN must be left open-circuit.
About Mode Pins (MD0 to MD2)
These pins should be connected directly to V
or VSS.
CC
To prev ent the device erroneously s witching to test mode due to noise, design the printed circuit board such that the distance between the mode pins and V
or VSS is as short as possible and the connection impedance is low.
CC
20
Operation at Start-up
MB91230 Series
Be sure to execute setting initialized reset (INIT) with INIT
pin immediately after start-up.
Also, in order to provide the oscillation stabilization w ait time f or the oscillation circuit immediately after start-up, hold the “L” level input to the INIT
pin for the required stabilization wait time. (For INIT via the INIT pin, the
oscillation stabilization wait time setting is initialized to the minimum value) .
About Oscillation Input at Power On
When turning the power on, maintain clock input until the device is released from the oscillation stabilization wait state.
Clock Control Block
Input the “L” signal to the INIT
pin to assure the clock oscillation stabilization wait time.
Switch Shared Port Function
To switch between the use as a port and the use as a dedicated pin, use the port function register (PFR) .
Low Power Consumption Mode
To enter the standby mode, use the synchronous standb y mode (set with the SYNCS bit as bit 8 in the TBCR : timebase counter control register) and be sure to use the following sequence
(LDI #value_of_standby, R0) : value_of_standby is write data to STCR.
) of STCR.
(LDI #_STCR, R12) : _STCR is address (481
H
STB R0, @R12 : Writing to standby control register (STCR) LDUB @R12, R0 : STCR read for synchronous standby LDUB @R12, R0 : Dummy re-read of STCR NOP : NOP × 5 for arrangement of timing NOP NOP NOP NOP
In addition, please set I flag, ILM, and ICR to diverge to the interruption handler that is the return factor after the standby returns.
• Please do not do the following when the monitor debugger is used.
• Break point setting for above instruction lines
• Step execution for above instruction lines
Power-on sequence for dual-power-supply model
• Notes on the power-on and power-off sequences Power-on sequence : Vcc3B, Vcc3→Vcc→Vcc3IO, AVRH, V0 to V3 Power-off sequence : Vcc3IO, AVRH, V0 to V3, Vcc3→Vcc→Vcc3B, Vcc3
When V
• The LCD power supply V3 must not exceed V
• Turn on V
is turned on earlier, a potential difference between VCC and VCC3 must fall within 3.6 V.
CC
in voltage. Apply V3 after turning on VCC3.
CC
3 before applying the analog power supply AVCC or an analog signal.
CC
21
MB91230 Series
Notes on the PS register
As the PS register is processed by some instructions in advance, exception handling below may cause the interrupt handling routine to break when the debugger is used or the display contents of flags in the PS register to be updated.
As the microcontroller is designed to carry out reprocessing correctly upon returning from such an EIT event, it performs operations before and after the EIT as specified in either case.
• The following operations may be performed when the instruction immediately followed by a DIVOU/DIVOS
instruction is (a) acceptance of a user interrupt, (b) single-stepped, or (c) breaks in response to a data event or emulator menu :
1) The D0 and D1 flags are updated in advance.
2) An EIT handling routine (user interrupt or emulator) is executed.
3) Upon returning from the EIT , the DIVOU/DIV OS instruction is e xecuted, and the D0 and D1 flags are updated to the same values as in 1).
• The following operations are performed when the ORCCR/STILM/MOVRi and PS instructions are executed to allow the interrupt.
1) The PS register is updated in advance.
2) An EIT handling routine (user interrupt) is executed.
3) Upon returning from the EIT, the above instructions are executed, and the PS register is updated to the same value as in 1).
Watchdog Timer
The watchdog timer built in this model monitors a program that it defers a reset within a certain period of time. The watchdog timer resets the CPU if the program runs out of controls, preventing the reset defer function from being executed. Once the function of the watchdog timer is enabled, therefore, the watchdog timer keeps on operating programs until it resets the CPU.
As an exception, the watchdog timer defers a reset automatically under the condition in which the CPU stops program execution.
For those conditions to which this exception applies, see the function description of watchdog timer.
Step execution of RETI instruction
If an interrupt occurs frequently during step execution, the corresponding interrupt handling routine is ex ecuted repeatedly after step execution. This will prevent the main routine and low-interrupt-level programs from being executed.
Do not execute step of RETI instruction for escape. Disable the corresponding interrupt and execute debugger when the corresponding interrupt routine no longer
needs debugging.
Operand Break
Do not apply a data event break to access to the area containing the address of a system stack pointer.
22

BLOCK DIAGRAM

MB91230 Series
FR60Lite
CPU Core
3232
Bit Search
X0, X1
MD0 to MD2
INIT
X0A, X1A
CC
3B
V
INT0 to INT15
SIN0 to SIN3 SOT0 to SOT3 SCK0 to SCK3
ROM 256 Kbytes
FLASH 256 Kbytes
RAM 16 Kbytes
Clock Control
(Clock, Standby,
Reset, Watchdog,
TBT ,
Main-Clock-
Stabilization-
Timer)
Watch Timer
Real Time Clock
Interruption
Controller
External interrupt
0 to 15
UART 0 to 3
U-TIMER
0 to 3
32 16
Adapter
16
Bus Converter
32
Clock Monitor
External Memory
I/F
(MB91230 series
is not supported)
PORT I/F
LCDC, Driver/
Internal Reference
Voltage
Up/Down Counter
0, 1
Reload Timer
0 to 3
PPG
0 to 5
V
CC
PORTs CKOT
COM0 to COM3 SEG0 to SEG31
V0 to V3
AIN0, AIN1 BIN0, BIN1
ZIN0, ZIN1
TO0 to TO3
PPG0 to PPG5
AN0 to AN3
ADTG0
AVRH
AN4 to AN7
ADTG1
AV
DA0, DA1
CC
4-channel Input A/D converter 0
4-channel Input A/D converter 1
2-channel Output
D/A converter 0, 1
Input Capture 0, 1
Free Run Timer 0
Output Compare 0, 1
Free Run Timer 1
Output Compare 2, 3
8-bit PWC 0, 1
IC0, IC1 CKI0
OP0, OP1
CKI1
OP2, OP3
PWI0, PWI1
: Trriger signal
23
MB91230 Series
0
0
0
0
0
0
0
F
L

MEMORY SPACE

1. Memory space
FR family has 4 Gbytes of logical address space (232 addresses) available to the CPU by linear access.
• Direct Addressing Areas The following address space areas are used as I/O areas. These areas are called direct addressing areas, in which the address of an operand can be specified directly
during an instruction. The size of directly addressable areas depends on the length of the data being accessed as shown below.
byte data access : 000
half word data access : 000
word data access : 000
to 0FF
H
to 1FF
H
to 3FF
H
H
H
H
2. Memory Map
MB91V230 MB91F233A/L, MB91233
000 0000
000 0400
001 0000
H
H
H
I/O
I/O
Access
disallowed
003 A000
H
Built-in RAM
24 Kbytes
004 0000
H
Access
disallowed
008 0000
H
Emulation
SRAM area
512 Kbytes
010 0000
H
Access
disallowed
FFF FFFF
H
Direct Addressing Areas
“Refer to “I/O MAP”.
0001 0000
0003 C000
0004 0000
000C 0000
0010 0000
FFFF FFFF
I/O
I/O
H
Access
disallowed
H
Built-in RAM
16 Kbytes
H
Access
disallowed
H
Built-in
FLASH ROM
256 Kbytes
H
Access
disallowed
H
Note : The external bus mode cannot be used in the MB91230 series.
24
MB91230 Series
b
0
0

MODE SETTINGS

The FR family uses mode pins (MD2 to MD0) and a mode data to set the operation mode.
• Mode Pins The MD2 to MD0 pins specify how the mode vector fetch and reset vector fetch is performed. Setting is prohibited other than that shown in the following table.
Mode Pins
Mode name
MD2 MD1 MD0
Reset vector
access area
Remarks
0 0 0 Internal ROM mode vector Internal
0 0 1 External ROM mode vector External Not supported by this model.
• Mode data Data written to the internal mode register (MODR) by a mode vector fetch is called mode data. After an operation mode has been set in the mode register, the device operates in the operation mode. The mode data is set by all reset source. User programs cannot set data to the mode register.
Details of mode data description
31
it 30 29 28 27 26 25 24
00000111
Operation mode setting bits
Bit31 to bit24 are all reserved bits. Be sure to set this bit to “00000111”.
Operation is not guaranteed when any value other than “00000111” is set.
Note : Mode data set in the mode vector must be placed as byte data at 0x000FFFF8
.
H
Use the highest byte from bit31 to bit24 for placement as the FR family uses the big endian for byte endian.
31bit 24 23 16 15 8 7
Incorrect
0x000FFFF8H
Correct
x000FFFFCH
XXXXXXXX0x000FFFF8H
Mode Data
XXXXXXXX XXXXXXXX Mode Data
XXXXXXXX XXXXXXXX XXXXXXXX
Reset Vector
25
MB91230 Series

I/O MAP

[How to read the table]
Address
000000
Note : Initial values of register bits are represented as follows :
Access is barred with an undefined data access attribute.
H
“ 1 ” : Initial Value “ 1 ” “ 0 ” : Initial Value “ 0 ” “ X ” : Initial Value “ undefined” “ - ” : No physical register at this location
+ 0 + 1 + 2 + 3
PDR0 [R/W] B
XXXXXXXX
PDR1 [R/W] B
XXXXXXXX
Read/write attribute Access unit (B : byte, H : half word, W : word)
Initial value of register after reset Register name (column 1 of the register is at address 4n, column 2 is
at address 4n + 1...) Leftmost register address (For word-length access, column 1 of the
register becomes the MSB of the data.)
Register
PDR2 [R/W] B
XXXXXXXX
PDR3 [R/W] B
XXXXXXXX
Block
T-unit
Port data register
26
MB91230 Series
Address
000000
000004
000008
00000C 000010
to
00003C
000040
000044
000048
00004C
PDR0 [R/W] B
H
XXXXXXXX
PDR4 [R/W] B
H
XXXXXXXX
PDR8 [R/W] B
H
XXXXXXXX
PDRC [R/W] B
H
XXXXXXXX
H
H
EIRR0 [R/W]
H
DICR [R/W]
H
H
H
Register
+ 0 + 1 + 2 + 3
PDR1 [R/W] B
XXXXXXXX
PDR5 [R/W] B
XXXXXXXX
PDR9 [R/W] B
XXXXXXXX
PDRD [R/W] B
------XX
PDR2 [R/W] B
XXXXXXXX
PDR6 [R/W] B
XXXX----
PDRA [R/W] B
XXXXXXXX
PDR3 [R/W] B
XXXXXXXX
PDR7 [R/W] B
----XXXX
PDRB [R/W] B
----XXXX
PDRF [R/W]
---XX---
⎯⎯⎯⎯Unused
B, H, W
00000000
B, H, W
ENIR0 [R/W]
B, H, W
00000000
⎯⎯Delay interrupt
ELVR0 [R/W] B, H, W
00000000 00000000
-------0 TMRLR0 [W] H
XXXXXXXX XXXXXXXX
TMR0 [R] H
XXXXXXXX XXXXXXXX
TMCSR0 [R/W] H
----0000 00000000
Block
Port data register
External interrupt (INT0 to INT7)
Reload timer 0
000050
000054
000058
00005C
000060
000064
000068
00006C
H
H
H
H
H
H
H
H
TMRLR1 [W] H
XXXXXXXX XXXXXXXX
TMRLR2 [W] H
XXXXXXXX XXXXXXXX
SSR0 [R/W]
B, H, W
00001000
SIDR0 [R] B, H, W
SODR0 [W] B, H,
W
XXXXXXXX
UTIM0 [R] H (UTIMR0 [W] H)
00000000 00000000
SSR1 [R/W]
B, H, W
00001000
SIDR1 [R] B, H, W
SODR1 [W] B, H,
W
XXXXXXXX
UTIM1 [R] H (UTIMR1 [W] H)
00000000 00000000
TMR1 [W] H
XXXXXXXX XXXXXXXX
TMCSR1 [R/W] H
----0000 00000000 TMR2 [W] H
XXXXXXXX XXXXXXXX
TMCSR2 [R/W] H
----0000 00000000
SCR0 [R/W]
SMR0 [R/W]
B, H, W
00000100
SCR1 [R/W]
UTIMC0 [R/W] B
SMR1 [R/W]
B, H, W
00000100
UTIMC1 [R/W] B
B, H, W 00--0-0-
0--00001
B, H, W 00--0-0-
0--00001
Reload timer 1
Reload timer 2
UART0
U-TIMER0
UART1
U-TIMER1
(Continued)
27
MB91230 Series
Address
000070
000074
000078
00007C
000080
000084
000088
00008C
000090
000094
000098
00009C
0000A0
0000A4
0000A8
0000AC
+ 0 + 1 + 2 + 3
SSR2 [R/W]
H
B, H, W
00001000
H
H
H
H
H
H
H
H
H
UTIM2 [R] H (UTIMR1 [W] H)
00000000 00000000
ADCS0 [R/W] H, W
XXXXXXXX XXXXXXXX
ADT00 (ADTH00/ADTL00) [R] B, H, W
000000XX XXXXXXXX
ADT02 (ADTH02/ADTL02) [R] B, H, W
000000XX XXXXXXXX
ADCS1 [R/W] H, W
XXXXXXXX XXXXXXXX
ADT10 (ADTH10/ADTL10) [R] B, H, W
000000XX XXXXXXXX
ADT12 (ADTH12/ADTL12) [R] B, H, W
000000XX XXXXXXXX
⎯⎯
⎯⎯
SIDR2 [R] B, H, W
SODR2 [W] B, H,
W
XXXXXXXX
LCDCMR [R/W]
H
B, H, W
----0000
VRAM0 [R/W]
H
B, H, W
XXXXXXXX
VRAM4 [R/W]
H
B, H, W
XXXXXXXX
VRAM8 [R/W]
H
B, H, W
XXXXXXXX
VRAM12 [R/W]
H
B, H, W
XXXXXXXX
VRAM1 [R/W]
B, H, W
XXXXXXXX
VRAM5 [R/W]
B, H, W
XXXXXXXX
VRAM9 [R/W]
B, H, W
XXXXXXXX
VRAM13 [R/W]
B, H, W
XXXXXXXX
CKR [R/W]
H
B, H, W
⎯⎯⎯Clock monitor
----0000
Register
SCR2 [R/W]
B, H, W
00000100
SMR2 [R/W]
B, H, W
00--0-0-
UTIMC2 [R/W] B
0--00001
ADCT0 [R/W] H, W
000-0000 -000--00
ADT01 (ADTH01/ADTL01) [R] B, H, W
000000XX XXXXXXXX
ADT03 (ADTH03/ADTL03) [R] B, H, W
000000XX XXXXXXXX
ADCT1 [R/W] H, W
000-0000 --000--00
ADT11 (ADTH11/ADTL11) [R] B, H, W
000000XX XXXXXXXX
ADT13 (ADTH13/ADTL13) [R] B, H, W
000000XX XXXXXXXX
DACR1 [R/W]
B, H, W
-------0
DADR1 [R/W]
B, H, W
XXXXXXXX LCR0 [R/W]
B, H, W
00010000
VRAM2 [R/W]
B, H, W
XXXXXXXX
VRAM6 [R/W]
B, H, W
XXXXXXXX
VRAM10 [R/W]
B, H, W
XXXXXXXX
VRAM14 [R/W]
B, H, W
XXXXXXXX
DACR0 [R/W]
B, H, W
-------0
DADR0 [R/W]
B, H, W
XXXXXXXX LCR1 [R/W]
B, H, W
00000000
VRAM3 [R/W]
B, H, W
XXXXXXXX
VRAM7 [R/W]
B, H, W
XXXXXXXX
VRAM11 [R/W]
B, H, W
XXXXXXXX
VRAM15 [R/W]
B, H, W
XXXXXXXX
Block
UART2
U-TIMER2
A/D converter 0 (series-parallel type)
A/D converter 1 (series-parallel type)
D/A converter
LCD controller/ driver
(Continued)
28
MB91230 Series
Address
0000B0
0000B8
0000BC
0000C0
0000C4
0000C8
0000CC
RCR1 [W]
H
00000000
CCRH0 [R/W]
H
00000000
CCRH1 [R/W]
H
00000000
H
SSR3 [R/W]
H
00001000
H
H
H
Register
+ 0 + 1 + 2 + 3
B, H, W
B, H, W
B, H, W
RCR0 [W]
B, H, W
00000000
CCRL0 [R/W]
B, H, W
00001000
CCRL1 [R/W]
B, H, W
00001000
UDCR1 [R]
B, H, W
00000000
UDCR0 [R]
B, H, W
00000000
CSR0 [R/W]
B, H, W
00000000
CSR1 [R/W]
B, H, W
00000000
⎯⎯⎯⎯unused
SIDR3 [R] B, H, W
B, H, W
SODR3 [W] B, H, W
XXXXXXXX
UTIM3 [R] H (UTIMR [W] H)
00000000 00000000
TMRLR3 [W] H
XXXXXXXX XXXXXXXX
SCR3 [R/W]
SMR3 [R/W]
B, H, W
00000100
UTIMC3 [R/W] B
TMR3 [W] H
XXXXXXXX XXXXXXXX
TMCSR3 [R/W] H
---00000 00000000
B, H, W 00--0-0-
0--00001
Block
Up/down counter0, 10000B4
UART3
U-TIMER3
Reload timer 3
0000D0
0000D4
0000D8
0000DC
0000E0
0000E4
0000E8
0000EC
EIRR1 [R/W]
H
H
H
H
H
H
H
H
ENIR1 [R/W]
B, H, W
00000000
TCDT0 [R/W] H, W
00000000 00000000
TCDT1 [R/W] H, W
00000000 00000000
IPCP1 [R] H, W
XXXXXXXX XXXXXXXX
B, H, W
00000000
ELVR1 [R/W] B, H, W
00000000 00000000
IPCP0 [R] H, W
XXXXXXXX XXXXXXXX
⎯⎯⎯
OCCP1 [R/W] H, W
XXXXXXXX XXXXXXXX
OCCP3 [R/W] H, W
XXXXXXXX XXXXXXXX
OCS23 [R/W] B, H, W
---0--00 0000--00
OCCP0 [R/W] H, W
XXXXXXXX XXXXXXXX
OCCP2 [R/W] H, W
XXXXXXXX XXXXXXXX
OCS01 [R/W] B, H, W
---0-00 0000--00
TCCS0 [R/W]
B, H, W
00000000
TCCS1 [R/W]
B, H, W
00000000
ICS01 [R/W]
B, H, W
00000000
External interrupt (INT8 to INT15)
Free-run timer 0
Free-run timer 1
Input capture 0, 1
Output compare 0 to 3
(Continued)
29
MB91230 Series
Address
0000F0
0000F4
0000F8
0000FC
000100
to
000114 000118
00011C
000120
000124
PWCC0 [R/W]
H
H
H
WTHR [R/W]
H
---XXXXX
H
H
H
H
H
H
Register
+ 0 + 1 + 2 + 3
B, H, W 0---00-0
B, H
PWCD0 [R]
B, H, W
XXXXXXXX
WTDBL [R/W] B
-------0
WTBR0 [R/W] B
---XXXXX
WTMR [R/W]
B, H
--XXXXXX
PWCC1 [R/W]
B, H, W 0---00-0
WTCR [R/W] B, H
00000000 000-00-X
WTBR1 [R/W] B
XXXXXXXX
WTSR [R/W] B
--XXXXXX
PWCD1 [R]
B, H, W
XXXXXXXX
WTBR2 [R/W] B
XXXXXXXX
PWC0, 1
Real-time clock
⎯⎯⎯⎯Unused
GCN10 [R/W] H
00110010 00010000
GCN20 [R/W] B
00000000
PPG
⎯⎯Unused
PTMR0 [R] H
11111111 11111111
PDUT0 [W] H
XXXXXXXX XXXXXXXX
PCNH0 [R/W]
00000000
PCSR0 [W] H
XXXXXXXX XXXXXXXX
PCNL0 [R/W]
B, H
B, H
00000000
PPG0
Block
000128
00012C
000130
000134
000138
00013C
000140
000144
H
H
H
H
H
H
H
H
PTMR1 [R] H
11111111 11111111
PDUT1 [W] H
XXXXXXXX XXXXXXXX
PTMR2 [R] H
11111111 11111111
PDUT2 [W] H
XXXXXXXX XXXXXXXX
PTMR3 [R] H
11111111 11111111
PDUT3 [W] H
XXXXXXXX XXXXXXXX
PTMR4 [R] H
11111111 11111111
PDUT4 [W] H
XXXXXXXX XXXXXXXX
PCNH1 [R/W]
00000000
PCNH2 [R/W]
00000000
PCNH3 [R/W]
00000000
PCNH4 [R/W]
00000000
PCSR1 [W] H
XXXXXXXX XXXXXXXX
PCNL1 [R/W]
B, H
B, H
00000000
PCSR2 [W] H
XXXXXXXX XXXXXXXX
PCNL2 [R/W]
B, H
B, H
00000000
PCSR3 [W] H
XXXXXXXX XXXXXXXX
PCNL3 [R/W]
B, H
B, H
00000000
PCSR4 [W] H
XXXXXXXX XXXXXXXX
PCNL4 [R/W]
B, H
B, H
00000000
PPG1
PPG2
PPG3
PPG4
(Continued)
30
MB91230 Series
Address
000148
00014C
000150
to
0001FC
000200
to
0003EC
0003F0
0003F4
0003F8
0003FC
Register
Block
+ 0 + 1 + 2 + 3
H
H
H
PTMR5 [R] H
11111111 11111111
PDUT5 [W] H
XXXXXXXX XXXXXXXX
PCNH5 [R/W]
00000000
PCSR5 [W] H
XXXXXXXX XXXXXXXX
PCNL5 [R/W]
B, H
B, H
00000000
PPG5
⎯⎯⎯⎯Unused
H
H
⎯⎯⎯⎯Unused
H
H
H
XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX
XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX
BSD0 [W] W
BSD1 [R/W] W
Bit search
H
H
XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX
XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX
BSDC [W] W
BSRR [R] W
000400
000404
000408
00040C
000410
to
00041C
000420
000424
000428
00042C
000430
to
00043C
DDR0 [R/W] B
H
H
H
H
H
H
H
H
H
H
H
H
00000000
DDR4 [R/W] B
00000000
DDR8 [R/W] B
00000000
DDRC [R/W] B
00000000
PFR0 [R/W] B
PFR4 [R/W] B
00000000
PFR8 [R/W] B
00000000
PFRC [R/W] B
DDR1 [R/W] B
00000000
DDR5 [R/W] B
00000000
DDR9 [R/W] B
00000000
DDRD [R/W] B
------00
DDR2 [R/W] B
00000000
DDR6 [R/W] B
0000----
DDRA [R/W] B
00000000
DDR3 [R/W]
B00000000
DDR7 [R/W] B
----0000
DDRB [R/W] B
----0000
DDRF [R/W] B
---00---
Data direction register
⎯⎯⎯⎯Unused
--00-00-
PFR1 [R/W] B
--------
PFR5 [R/W] B
---00---
PFR2 [R/W] B
-00-0000
PFR6 [R/W] B
0000----
PFR3 [R/W] B
------00
PFR7 [R/W] B
----0000 Port function register
--------
PFR9 [R/W] B
00000000
PFRD [R/W] B
------00
PFRA [R/W] B
00000000
PFRB [R/W] B
----0000
PFRF [R/W] B
----0---
⎯⎯⎯⎯Unused
(Continued)
31
MB91230 Series
Address
000440
000444
000448
00044C
000450
000454
000458
H
H
H
H
H
H
H
Register
+ 0 + 1 + 2 + 3
ICR00 [R/W]
B, H, W
---11111
ICR04 [R/W]
B, H, W
---11111
ICR08 [R/W]
B, H, W
---11111
ICR12 [R/W]
B, H, W
---11111
ICR16 [R/W]
B, H, W
---11111
ICR20 [R/W]
B, H, W
---11111
ICR24 [R/W]
B, H, W
---11111
ICR01 [R/W]
B, H, W
---11111
ICR05 [R/W]
B, H, W
---11111
ICR09 [R/W]
B, H, W
---11111
ICR13 [R/W]
B, H, W
---11111
ICR17 [R/W]
B, H, W
---11111
ICR21 [R/W]
B, H, W
---11111
ICR25 [R/W]
B, H, W
---11111
ICR02 [R/W]
B, H, W
---11111
ICR06 [R/W]
B, H, W
---11111
ICR10 [R/W]
B, H, W
---11111
ICR14 [R/W]
B, H, W
---11111
ICR18 [R/W]
B, H, W
---11111
ICR22 [R/W]
B, H, W
---11111
ICR26 [R/W]
B, H, W
---11111
Block
ICR03 [R/W]
B, H, W
---11111
ICR07 [R/W]
B, H, W
---11111
ICR11 [R/W]
B, H, W
---11111
ICR15 [R/W]
B, H, W
---11111
ICR19 [R/W]
B, H, W
---11111
ICR23 [R/W]
B, H, W
---11111 Interrupt controller
ICR27 [R/W]
B, H, W
---11111
00045C
000460
000464
000468
00046C
000470
to
00047C
H
H
H
H
H
H
H
ICR28 [R/W]
B, H, W
---11111
ICR32 [R/W]
B, H, W
---11111
ICR36 [R/W]
B, H, W
---11111
ICR40 [R/W]
B, H, W
---11111
ICR44 [R/W]
B, H, W
---11111
ICR29 [R/W]
B, H, W
---11111
ICR33 [R/W]
B, H, W
---11111
ICR37 [R/W]
B, H, W
---11111
ICR41 [R/W]
B, H, W
---11111
ICR45 [R/W]
B, H, W
---11111
ICR30 [R/W]
B, H, W
---11111
ICR34 [R/W]
B, H, W
---11111
ICR38 [R/W]
B, H, W
---11111
ICR42 [R/W]
B, H, W
---11111
ICR46 [R/W]
B, H, W
---11111
ICR31 [R/W]
B, H, W
---11111
ICR35 [R/W]
B, H, W
---11111
ICR39 [R/W]
B, H, W
---11111
ICR43 [R/W]
B, H, W
---11111
ICR47 [R/W]
B, H, W
---11111
⎯⎯⎯⎯Unused
(Continued)
32
(Continued)
Address
MB91230 Series
Register
Block
+ 0 + 1 + 2 + 3
000480
000484
000488
00048C
000490 000494
to
0004FC
000500 000504
to
00051C
000520
to
0007F8
RSRR [R/W]
H
10000000
CLKR [R/W]
H
00000000
H
WPCR [R/W] B
H
OSCR [R/W] B
H
H
H
H
H
H
H
H
STCR [R/W]
B, H
B, H
00110011
WPR [R/W]
B
B
XXXXXXXX
⎯⎯
00---000
00---000
⎯⎯⎯Watch timer
⎯⎯⎯
TBCR [R/W]
B
00XXXX00
DIVR0 [R/W]
B, H
00000011
OSCCR [R/W] B
XXXXXXX0
CTBR [W]
B
XXXXXXXX
DIVR1 [R/W]
B, H
00000000
⎯⎯⎯⎯Unused
PCR1 [R/W] B
00000000
PCR3 [R/W] B
00000000
⎯⎯⎯⎯Unused
⎯⎯⎯⎯Unused
Clock control
Main clock oscillation stabilization wait timer
Pull-up control register
0007FC
000800
to
000AFC
000B00
to
000FFC
001000
to
006FFC
007000
007004 007008
to
00FFFC
H
H
H
H
H
H
H
FLCR [R/W] B
H
FLWC [R/W] B
H
H
H
⎯⎯⎯⎯Unused
⎯⎯⎯⎯Unused
⎯⎯⎯⎯Unused
01101000
00000011
⎯⎯⎯⎯Unused
MODR*
XXXXXXXX
⎯⎯Operation mode
⎯⎯⎯
⎯⎯⎯
* : This register is set when the mode vector is fetched. Not user-accessible.
FLASH
33
MB91230 Series

INTERRUPT VECTOR

Interrupt source
Interrupt level Offset
10 16
Reset 0 00 3FC Mode vector 1 01 3F8 System reserved 2 02 3F4 System reserved 3 03 3F0 System reserved 4 04 3EC System reserved 5 05 3E8 System reserved 6 06 3E4 Coprocessor absent trap 7 07 3E0 Coprocessor error trap 8 08 3DC INTE instruction 9 09 3D8 Instruction break exception 10 0A 3D4 Operand break trap 11 0B 3C0 Step trace trap 12 0C 3CC NMI request (tool) 13 0D 3C8 Undefined instruction exception 14 0E 3C4
Interrupt number
NMI request (This model has no NMI request)
15 0F 15 (F
) fixed 3C0
H
TBR default
address
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
000FFFFC
000FFFF8 000FFFF4
000FFFF0 000FFFEC 000FFFE8 000FFFE4 000FFFE0 000FFFDC 000FFFD8 000FFFD4 000FFFD0 000FFFCC 000FFFC8 000FFFC4
000FFFC0
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
External interrupt 0 16 10 ICR00 3BC External interrupt 1 17 11 ICR01 3B8 External interrupt 2 18 12 ICR02 3B4 External interrupt 3 19 13 ICR03 3B0 External interrupt 4 20 14 ICR04 3AC External interrupt 5 21 15 ICR05 3A8 External interrupt 6 22 16 ICR06 3A4 External interrupt 7 23 17 ICR07 3A0 Reload timer 0 24 18 ICR08 39C Reload timer 1 25 19 ICR09 398 Reload timer 2 26 1A ICR10 394 UART0(Reception completed) 27 1B ICR11 390 UART0 (Transmission completed) 28 1C ICR12 38C UART1 (Reception completed) 29 1D ICR13 388 UART1 (Transmission completed) 30 1E ICR14 384 UART2 (Reception completed) 31 1F ICR15 380 UART2 (Transmission completed) 32 20 ICR16 37C
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
000FFFBC 000FFFB8 000FFFB4 000FFFB0 000FFFAC 000FFFA8 000FFFA4 000FFFA0 000FFF9C
000FFF98
000FFF94
000FFF90 000FFF8C
000FFF88
000FFF84
000FFF80 000FFF7C
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
34
(Continued)
MB91230 Series
Interrupt source
Interrupt level Offset
10 16
UART3 (Reception completed) 33 21 ICR17 378 UART3 (Transmission completed) 34 22 ICR18 374 A/D ch0 35 23 ICR19 370 A/D ch1 36 24 ICR20 36C External interrupt8 37 25 ICR21 368 External interrupt9 38 26 ICR22 364 External interrupt 10 39 27 ICR23 360 External interrupt 11 40 28 ICR24 35C External interrupt 12 41 29 ICR25 358 External interrupt 13 42 2A ICR26 354 External interrupt 14 43 2B ICR27 350 External interrupt 15 44 2C ICR28 34C Real-time clock 45 2D ICR29 348
Interrupt number
Main clock oscillation stabilization wait timer
46 2E ICR30 344
Timebase timer 47 2F ICR31 340
TBR default
address
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
000FFF78 000FFF74 000FFF70
000FFF6C
000FFF68 000FFF64 000FFF60
000FFF5C
000FFF58 000FFF54 000FFF50
000FFF4C
000FFF48 000FFF44 000FFF40
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
Reload timer 3 48 30 ICR32 33C Watch timer 49 31 ICR33 338 UD Counter 0 50 32 ICR34 334 UD Counter 1 51 33 ICR35 330 PPG 0/1 52 34 ICR36 32C PPG 2/3 53 35 ICR37 328 PPG 4/5 54 36 ICR38 324 Free-run timer 0 55 37 ICR39 320 Free-run timer 1 56 38 ICR40 31C ICU 0 (capture) 57 39 ICR41 318 ICU 1 (capture) 58 3A ICR42 314 OCU 0 (match) 59 3B ICR43 310 OCU 1 (match) 60 3C ICR44 30C OCU 2 (match) 61 3D ICR45 308 OCU 3 (match) 62 3E ICR46 304 Delay interrupt source bit 63 3F ICR47 300 System reserved (Used by REALOS) 64 40 2FC System reserved (Used by REALOS) 65 41 2F8
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
000FFF3C
000FFF38 000FFF34 000FFF30
000FFF2C
000FFF28 000FFF24 000FFF20
000FFF1C
000FFF18 000FFF14 000FFF10
000FFF0C
000FFF08 000FFF04
000FFF00 000FFEFC 000FFEF8
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
System reserved 66 42 2F4
H
000FFEF4
H
(Continued)
35
MB91230 Series
(Continued)
Interrupt source
Interrupt number
10 16
Interrupt level Offset
TBR default
address
System reserved 67 43 2F0 System reserved 68 44 2EC System reserved 69 45 2E8 System reserved 70 46 2E4 System reserved 71 47 2E0 System reserved 72 48 2DC System reserved 73 49 2D8 System reserved 74 4A 2D4 System reserved 75 4B 2D0 System reserved 76 4C 2CC System reserved 77 4D 2C8 System reserved 78 4E 2C4 System reserved 79 4F 2C0
Used by INT instruction
80 to
255
50 to
FF
2BC
to
000
H
H
H
H
H
H
H
H
H
H
H
H
H
H
000FFEF0
000FFEEC
000FFEE8 000FFEE4
000FFEE0 000FFEDC 000FFED8 000FFED4 000FFED0 000FFECC 000FFEC8 000FFEC4 000FFEC0 000FFEBC
H
H
H
H
H
H
H
H
H
H
H
H
H
H
to
H
000FFC00
H
36
MB91230 Series

PIN STATUS IN EACH CPU STATE

Terms used as the status of pins mean as follows.
• Input enabled Indicates that the input function can be used.
• Input 0 fixed Indicates that the input level has been internally fix ed to be “0” to pre vent leakage when the input is released.
• Output Hi-Z Means the placing of a pin in a high impedance state by prev enting the transistor for driving the pin from driving.
• Output is maintained Indicates the output in the output state existing immediately before this mode is established. If the device enters this mode with an internal output peripheral operating or while serving as an output port, the output is performed by the internal peripheral or the port output is maintained, respectively.
• State existing immediately before is maintained When the device serves for output or input immediately before entering this mode, the device maintains the output or is ready for the input, respectively.
37
MB91230 Series
Pin Status List
Specified function
Pin
no.
1
2
3
4
5
Pin
name
P26/ SCK2
P27/ SIN3
P30/ SOT3
P31/ SCK3
P32/ AIN0
Port
name
P26 ⎯⎯SCK2 P26
P27 SIN3 ⎯⎯P27
P30 SOT3 P30
P31 ⎯⎯SCK3 P31
P32 AIN0 ⎯⎯P32
name
Input Output
Input/
Output
At initializing
Function
name
initializa-
Reset
tion
At sleep
mode
At Stop mode
Remarks
HIZ = 0 HIZ = 1
Pull-up options can be selected
Pull-up options can be selected
Pull-up options can be selected
10
11
6
7
8
9
P33/ BIN0
P34/ ZIN0
P35/ AIN1
P36/ BIN1
P37/ ZIN1
P40/ PPG0
P33 BIN0 ⎯⎯P33
P34 ZIN0 ⎯⎯P34
P35 AIN1 ⎯⎯P35
P36 BIN1 ⎯⎯P36
P37 ZIN1 ⎯⎯P37
P40
PPG 0
P40
Output Hi-Z/ Input enabled
Retention of the immediately prior state
Retention of the immediately prior state
Output Hi-Z/ Input 0 fixed
Pull-up options can be selected
Pull-up options can be selected
Pull-up options can be selected
Pull-up options can be selected
Pull-up options can be selected
38
12
P41/ PPG1
P41
PPG 1
P41
(Continued)
MB91230 Series
Pin no.
Pin
name
Port
name
Specified function
name
Input Output
Input/
Output
At initializing
Function
name
initialization
Reset
At sleep
mode
At Stop mode
HIZ = 0 HIZ = 1
13 X0A ⎯⎯⎯⎯ ⎯ 14 X1A ⎯⎯⎯⎯ ⎯ 15 V 16 V 17 V
18
19
20
21
22
23
3B ⎯⎯⎯⎯ ⎯
CC
SS
3 ⎯⎯⎯⎯ ⎯ ⎯ ⎯
CC
P42/ PPG2
P43/ PPG3
P44/ TOT0
P45/ TOT1
P46/ TOT2
P47/ CKOT
⎯⎯⎯⎯ ⎯ ⎯ ⎯
P42 PPG2 P42
P43 PPG3 P43
P44 TOT0 P44
P45 TOT1 P45
Retention of the immediately prior state
Output Hi-Z/ Input 0 fixed
P46 TOT2 P46
P47 CKOT P47
Remarks
P50/
24
25
26
INT8 P51/
INT9 P52/
INT10
P50 INT8 ⎯⎯P50
P51 INT9 ⎯⎯P51
P52 INT10 ⎯⎯P52
P53/
27
INT11/
P53 INT11 PPG4 P53
PPG4 P54/
28
INT12/
P54 INT12 PPG5 P54
PPG5
29
30
P55/ INT13/ TIN2
P56/ INT14/ TIN1
P55
P56
INT13 TIN2
INT14 TIN1
⎯⎯P55
⎯⎯P56
Note : P : Port selected, F : Specified function selected
Output Hi-Z/ Input enabled
Retention of the immediately prior state
P :
Retention of the immediately prior state
F :
Input enabled
P :
Output Hi-Z
F :
Input enabled
(Continued)
39
MB91230 Series
Pin no.
31
32
33
34
35
Pin
name
P57/ INT15/ TIN0/ ADTG0
PF3/ TOT3
PF4/ TIN3/ ADTG1
PD0/ DA0
PD1/ DA1
Specified function
Port
name
name
Input Output
Input/
Output
Function
name
INT15
P57
TIN0
⎯⎯P57
ADTG0
PF3 TOT3 PF3
PF4
TIN3 ADTG1
⎯⎯PF4
PD0 DA0 PD0
PD1 DA1 PD1
At initializing
Reset
initialization
Output Hi-Z/ Input enabled
At sleep
mode
Retention of the immediately prior state
At Stop mode
HIZ = 0 HIZ = 1
P :
Retention of the immediately prior state
F :
Input enabled
Retention of the immediately prior state
Re-
marks
P : Output Hi-Z
F : Input 0 enabled
Output Hi-Z/ Input 0 fixed
36 AV
CC
⎯⎯⎯⎯⎯ ⎯
37 AVRH ⎯⎯⎯⎯⎯ ⎯ 38 AV
PC0/
39
AN0 PC1/
40
AN1 PC2/
41
AN2 PC3/
42
AN3 PC4/
43
AN4 PC5/
44
AN5 PC6/
45
AN6 PC7/
46
AN7
SS
⎯⎯⎯⎯⎯ ⎯
PC0 AN0 ⎯⎯PC0
PC1 AN1 ⎯⎯PC1
Output Hi-Z/ Input enabled
Retention of the immediately prior state
Retention of the immediately prior state
Output Hi-Z/ Input 0 fixed
PC2 AN2 ⎯⎯PC2
PC3 AN3 ⎯⎯PC3
PC4 AN4 ⎯⎯PC4
PC5 AN5 ⎯⎯PC5
Output Hi-Z/ Input enabled
Retention of the immediately prior state
Retention of the immediately prior state
Output Hi-Z/ Input 0 fixed
PC6 AN6 ⎯⎯PC6
PC7 AN7 ⎯⎯PC7
Note : P : Port selected, F : Specified function selected
(Continued)
40
MB91230 Series
Pin no.
47 V 48 V
49
50
51
52
53
54
55
56
57
58
Specified function
Pin
name
SS
CC
P80/ SEG0
P81/ SEG1
P82/ SEG2
P83/ SEG3
P84/ SEG4
P85/ SEG5
P86/ SEG6
P87/ SEG7
P90/ SEG8
P91/ SEG9
Port
name
Input Output
⎯⎯⎯ ⎯ ⎯
3IO ⎯⎯⎯ ⎯ ⎯
P80 SEG0 P80
P81 SEG1 P81
P82 SEG2 P82
P83 SEG3 P83
P84 SEG4 P84
P85 SEG5 P85
P86 SEG6 P86
P87 SEG7 P87
P90 SEG8 P90
P91 SEG9 P91
name
Input/
Output
At initializing
Function
name
initialization
Output Hi-Z/ Input enabled
Reset
At sleep
mode
Retention of the immediately prior state
At Stop mode
HIZ = 0HIZ = 1
P :
Output Hi-Z/
Retention of the immediately prior state
Input 0 fixed
F :
Retention of the immediately prior state
Re-
marks
P92/
59
60
61
62
63
SEG10 P93/
SEG11 P94/
SEG12 P95/
SEG13 P96/
SEG14
P92 SEG10 P92
P93 SEG11 P93
P94 SEG12 P94
P95 SEG13 P95
P96 SEG14 P96
Note : P : Port selected, F : Specified function selected
(Continued)
41
MB91230 Series
Pin no.
64
65
66
67
68
69
70
71
72
Pin
name
P97/ SEG15
PA0/ SEG16
PA1/ SEG17
PA2/ SEG18
PA3/ SEG19
PA4/ SEG20
PA5/ SEG21
PA6/ SEG22
PA7/ SEG23
Specified function
Port
name
Input Output
name
Input/
Output
Function
name
P97 SEG15 P97
PA0 SEG16 PA0
PA1 SEG17 PA1
PA2 SEG18 PA2
PA3 SEG19 PA3
PA4 SEG20 PA4
PA5 SEG21 PA5
PA6 SEG22 PA6
PA7 SEG23 PA7
At initializing
Reset
initialization
Output Hi-Z/ Input enabled
At sleep
mode
Retention of the immediately prior state
At Stop mode
HIZ = 0HIZ = 1
P :
Output Hi-Z/
Retention
Input 0 fixed of the immediately prior state
F :
Retention
of the
immediately
prior state
Re-
marks
PB0/
73
74 75 V
76 V 77
78
SEG24 PB1/
SEG25
CC
SS
PB2/ SEG26
PB3/ SEG27
PB0 SEG24 PB0
PB1 SEG25
PB1
⎯⎯ ⎯ ⎯ ⎯ ⎯ ⎯⎯ ⎯ ⎯ ⎯
PB2 SEG26 PB2
PB3 SEG27 PB3
Output Hi-Z/ Input enabled
79
P64/ SEG28
P64 SEG28 P64
Note : P : Port selected, F : Specified function selected
Retention of the immediately prior state
Retention of the immediately prior state
P :
Output Hi-Z/ Input 0 fixed
F :
Retention of the immediately prior state
open­drain pin,
=
I
OL
20 mA
(Continued)
42
MB91230 Series
Pin no.
80
81
82
83
84
Pin
name
P65/ SEG29
P66/ SEG30
P67/ SEG31
P70/ COM0
P71/ COM1
Specified function
Port
name
Input Output
name
Input/
Output
Function
name
P65 SEG29 P65
P66 SEG30 P66
P67 SEG31 P67
P70 COM0 P70
P71 COM1 P71
At initializing
Reset
initialization
Output Hi-Z/ Input enabled
At sleep
mode
Retention of the immediately prior state
At Stop mode
HIZ = 0 HIZ = 1
P :
Output
Hi-Z/
Retention
Input 0 fixed
of the immediately prior state
F :
Retention
of the
immediately
prior state
Re-
marks
open­drain pin, I
=
OL
20 mA open-
drain pin, I
=
OL
20 mA open-
drain pin, I
=
OL
20 mA
P72/
85
86
COM2 P73/
COM3
P72 COM2 P72
P73 COM3 P73
87 MD2 ⎯⎯⎯ ⎯ ⎯ 88 MD1 ⎯⎯⎯ ⎯ ⎯ 89 MD0 ⎯⎯⎯ ⎯ ⎯ 90 INIT
⎯⎯⎯ ⎯ ⎯
91 V0 ⎯⎯ ⎯ ⎯ ⎯ 92 V1 ⎯⎯ ⎯ ⎯ ⎯ 93 V2 ⎯⎯ ⎯ ⎯ ⎯ 94 V3 ⎯⎯ ⎯ ⎯ ⎯
Note : P : Port selected, F : Specified function selected
(Continued)
43
MB91230 Series
Pin no.
95
96
97
98
99
100
101
102
103
104
105 V
Pin
name
P00/ SIN0
P01/ SOT0
P02/ SCK0
P03/ SIN1
P04/ SOT1
P05/ SCK1
P06/ IC0
P07/ IC1
P10/ INT0
P11/ INT1
CC
Port
name
Specified function
name
Input Output
Input/
Output
At initializing
Function
name
initialization
Reset
At sleep
mode
At Stop mode
HIZ = 0 HIZ = 1
P00 SIN0 ⎯⎯P00
P01 SOT0 P01
P02 ⎯⎯SCK0 P02
P03 SIN1 ⎯⎯P03
P04 SOT1 P04
P05 ⎯⎯SCK1 P05
P06 IC0 ⎯⎯P06
Output Hi-Z/ Input enabled
Retention of the immediately prior state
Retention of the immediately prior state
Output Hi-Z/ Input 0 fixed
P07 IC1 ⎯⎯P07
P :
P10 INT0 ⎯⎯P10
P11 INT1 ⎯⎯P11
Retention of the immediately prior state
F : Input
P : Output
Hi-Z
F : Input
enabled
enabled
⎯⎯⎯⎯ ⎯ ⎯ ⎯
Remarks
Pull-up options can be selected
Pull-up options can be selected
106 V
SS
⎯⎯⎯⎯ ⎯ ⎯ ⎯
107 X1 ⎯⎯⎯⎯ ⎯ ⎯ ⎯ 108 X0 ⎯⎯⎯⎯ ⎯ ⎯ ⎯
Note : P : Port selected, F : Specified function selected
44
(Continued)
(Continued)
Pin
Pin
no.
name
P12/
109
INT2
P13/
110
INT3
P14/
111
INT4
P15/
112
INT5
P16/
113
INT6
P17/
114
INT7
P20/
115
CKI0/ OP0
Specified function
Port
name
name
Input Output
Input/
Output
Function
name
P12 INT2 ⎯⎯P12
P13 INT3 ⎯⎯P13
P14 INT4 ⎯⎯P14
P15 INT5 ⎯⎯P15
P16 INT6 ⎯⎯P16
P17 INT7 ⎯⎯P17
P20 CKI0 OP0 P20
At initializing
Reset
initialization
Output Hi-Z/ Input enabled
At sleep
mode
Retention of the immediately prior state
MB91230 Series
At Stop mode
Remarks
HIZ = 0 HIZ = 1
Pull-up options can be selected
Pull-up options can be selected
P :
Retention of the immediately prior state
F :
Input enabled
P :
Output Hi-Z
F :
Input enabled
Pull-up options can be selected
Pull-up options can be selected
Pull-up options can be selected
Pull-up options can be selected
P21/
116
CKI1/
P21 CKI1 OP1 P21
OP1 P22/
117
PWI0/
P22 PWI0 OP2 P22
OP2 P23/
118
PWI1/
P23 PWI1 OP3 P23
OP3 P24/
119
120
SIN2 P25/
SOT2
P24 SIN2 ⎯⎯P24
P25 SOT2 P25
Note : P : Port selected, F : Specified function selected
Retention of the immediately prior state
Output Hi-Z/ Input 0 fixed
45
MB91230 Series

ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings
MB91V230, MB91F233A
Parameter Symbol
Rating
Unit Remarks
Min Max
V
Power supply voltage*
V
V
CC
Analog power supply voltage* AV Input voltage* V Input voltage* (open-drain) V Analog pin input voltage* V Output voltage* V
CC
3V
CC
3IO V
CC
I
IND
IA
O
V
0.5 V
SS
0.5 V
SS
0.5 V
SS
V
0.5 V
SS
V
0.5 V
SS
V
0.5 V
SS
V
0.5 AV
SS
V
0.5 V
SS
+ 6.0 V
SS
+ 4.0 V
SS
+ 4.0 V
SS
+ 4.0 V
SS
+ 0.5 V
CC
+ 0.5 V
CC
+ 0.5 V
CC
+ 0.5 V
CC
Operating ambient temperature Ta −40 + 85 °C Storage temperature Tstg −55 + 125 °C
= AVSS = 0.0 V.
* : This parameter is based on V
SS
MB91F233L, MB91233L
Rating
Parameter Symbol
Unit Remarks
Min Max
V
Power supply voltage*
V
V
CC
Analog power supply voltage* AV
CC
3V
CC
3IO V
CC
V
0.5 V
SS
0.5 V
SS
0.5 V
SS
V
0.5 V
SS
+ 4.0 V
SS
+ 4.0 V
SS
+ 4.0 V
SS
+ 4.0 V
SS
Input voltage* V Input voltage* (open-drain) V Analog pin input voltage* V Output voltage* V
I
IND
IA
O
V
0.5 V
SS
V
0.5 V
SS
V
0.5 AV
SS
V
0.5 V
SS
+ 0.5 V
CC
+ 0.5 V
CC
+ 0.5 V
CC
+ 0.5 V
CC
Operating ambient temperature Ta −40 + 85 °C Storage temperature Tstg −55 + 125 °C
= AVSS = 0.0 V.
* : This parameter is based on V
SS
WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current,
temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.
46
MB91230 Series
2. Recommended Operating Conditions
MB91V230, MB91F233A
Parameter Symbol
Min Max
Operating ambient temperature Ta −40 + 85 °C
Value
Unit Remarks
(V
= AVSS = 0.0 V)
SS
Power supply voltage
V
CC
3 3.00 3.60 V *4
V
CC
3B
CC
V
4.00 5.25 V *1
3.00 3.60 V
2.20 3.60 V *2
3IO 3.00 3.60 V
CC
V
Analog power supply voltage AV
CC
3.00 3.60 V
LCD reference voltage V3 5.25 V *3
MB91F233L, MB91233L
(V
= AVSS = 0.0 V)
SS
Value
Parameter Symbol
Unit Remarks
Min Max
Operating ambient temperature Ta −40 + 85 °C
Power supply voltage
V
CC
V
33.00 3.60V*4
CC
3B
CC
V
3.00 3.60 V *1
3.00 3.60 V
2.20 3.60 V *2
V
3IO 3.00 3.60 V
CC
Analog power supply voltage AV
CC
3.00 3.60 V
LCD reference voltage V3 3.60 V *3
*1 : The standard power-supply voltage varies with the model of product. *2 : Only for backup. Set V *3 : V3 must not exceed V *4 : For the relationships between V
3 = AVCC = VCC3IO.
CC
.
CC
3 and operating frequencies, see section “4. A C Characteristics (3) Operation
CC
Assurance Range”. For the MB91V230, please inquire separately.
Note : For normal use, set V
3 = VCC3B = AVCC = VCC3IO.
CC
WARNING: The recommended operating conditions are required in order to ensure the normal operation of the
semiconductor device. All of the device’s electrical characteristics are warranted when the device is operated within these ranges.
Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.
No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representatives beforehand.
47
MB91230 Series
3. DC Characteristics
MB91V230, MB91F233A
(V
= 4.0 V to 5.25 V, VCC3 = VCC3B = VCC3IO = AVCC = 3.0 V to 3.6 V, VSS = AVSS = 0.0 V, Ta = −40 °C to +85 °C)
CC
Parameter Symbol Pin name Conditions
FLASH model normal operation, Ta = +25 °C, F
= 33 MHz,
CP
F
= 16.5 MHz
I
CC
CPP
FLASH model normal operation, Ta = +25 °C, F
= 33 MHz,
CP
F
= 33 MHz
CPP
Power supply current
I
CCT
VCC3
RTC mode, Ta = +25 °C, F
= 32 kHz
CP
Value
Unit Remarks
Min Typ Max
65 75 mA
73 83 mA
20 50 µA
Watch timer, RTC, LCDC
3 = VCC3B =
V
CC
2.4 V
"H" level input voltage
“L” level input voltage
"H" level output voltage
"L" level output voltage
I
I
V
V
CCH
CCS
V
V
IH
IL
OH
OL
STOP mode, Ta = +25 °C, F
= 0 kHz
CP
SLEEP mode F
= 33 MHz,
CP
F
= 16.5 MHz
CPP
SLEEP mode F
= 33 MHz,
CP
F
= 33 MHz
CPP
⎯⎯
X0A V
3B = 2.2 V to 3.6 V
CC
⎯⎯V
X0A V
I I
P64 to P67 I
3B = 2.2 V to 3.6 V V
CC
= 4 mA
OH
= 4 mA
OL
= 20 mA
OL
55A
21 25 mA
30 35 mA
×
V
CC
0.8
V
CC
B ×
3
V
V
CC
3B V
CC
0.8 V
SS
SS
V
CC
0.5
SS
V
V
0.4 V
CC
× 0.2
V
SS
+ 0.4
CC
V
When external clock is used
V
When external
V
clock is used
V
Input leakage current
Open-drain output leakage current
48
I
IL
⎯⎯5 5 µA
Ileak ⎯⎯10 10 µA
(Continued)
MB91230 Series
(Continued)
(V
= 4.0 V to 5.25 V, VCC3 = VCC3B = VCC3IO = AVCC = 3.0 V to 3.6 V, VSS = AVSS = 0.0 V, Ta = −40 °C to +85 °C)
CC
Parameter Symbol Pin name Conditions
Min Typ Max
Value
Unit Remarks
LCD internal division resistance
COM0 to COM3 output impedance
SEG00 to SEG31 output impedance
LCDC leakage current
R
R
R
I
LCD
VCOM
VSEG
LCDC
V0 - V1, V1 - V2,
V2 - V3
COM0 to
COM3
SEG00 to
SEG31
V0 to V3,
COM0 to
COM3,
SEG00 to
SEG31
50 100 200 k
⎯⎯2.5 kΩ
V1 to V3 = 5.0 V
⎯⎯15 k
⎯−5 5 µA
49
MB91230 Series
MB91F233L, MB91233L
(V
= VCC3 = VCC3B = VCC3IO = AVCC = 3.0 V to 3.6 V, VSS = AVSS = 0.0 V, Ta = −40 °C to +85 °C)
CC
Parameter Symbol
Power supply current
"H" level input voltage
"L" level input voltage
"H" level output voltage
I
I
I
I
I
V
V
V
CC
CC
CCT
CCH
CCS
IH
IL
OH
Pin
name
Vcc3
X0A V
X0A V
Conditions
Min Typ Max
FLASH model normal operation, Ta = +25 °C, F
= 33 MHz,
CP
F
= 16.5 MHz
CPP
FLASH model normal operation, Ta = +25 °C,
= 33 MHz,
CP
F F
= 33 MHz
CPP
ROM model normal operation, Ta = +25 °C, F
= 33 MHz,
CP
F
= 16.5 MHz
CPP
ROM model normal operation, Ta = +25 °C,
= 33 MHz,
CP
F F
= 33 MHz
CPP
RTC mode, Ta = +25 °C, F
= 32 kHz
CP
STOP mode, Ta = +25 °C, F
= 0 MHz
CP
SLEEP mode F
= 33 MHz,
CP
F
= 16.5 MHz
CPP
SLEEP mode
= 33 MHz,
CP
F F
= 33 MHz
CPP
⎯⎯
3B = 2.2 V to 3.6 V
CC
V
× 0.8
V
× 0.8
⎯⎯V
3B = 2.2 V to 3.6 V V
CC
= 3.3 V,
V
CC
I
= 2 mA
OH
V
0.5
Value
Unit Remarks
65 75 mA
73 83 mA
45 55 mA
55 65 mA
20 50 µA
55A
21 25 mA
30 35 mA
CC
CC
3B
SS
SS
CC
V
V
× 0.15
+ 0.4
V
CC
3B V
CC
V
CC
V
SS
CC
Watch timer, RTC, LCDC
3 = VCC3B =
V
CC
2.4 V
V
When external clock is used
V
When external
V
clock is used
V
50
(Continued)
(Continued)
(V
Parameter Symbol
"L" level output voltage
Input leakage current
Open-drain output leakage current
LCD internal division resistance
COM0 to COM3 output impedance
SEG00 to SEG31 output impedance
LCDC leakage current
MB91230 Series
= VCC3 = VCC3B = VCC3IO = AVCC = 3.0 V to 3.6 V, VSS = AVSS = 0.0 V, Ta = −40 °C to +85 °C)
CC
Pin
name
OL
V
IL
I
I
P64 to 67 I
⎯⎯−5 5 µA
Conditions
= 2 mA
OL
= 10 mA
OL
Min Typ Max
V
Ileak ⎯⎯−10 10 µA
V0 - V1,
R
LCD
V1 - V2,
50 100 200 k
V2 - V3
R
R
VCOM
VSEG
COM0 to
COM3
SEG00 to
SEG31
V1 to V3 = 5.0 V
V0 to V3,
COM0 to
I
LCDC
COM3,
⎯−5 ⎯−5 µA
SEG00 to
SEG31
Value
SS
0.4 V
Unit Remarks
⎯⎯2.5 kΩ
⎯⎯15 k
51
MB91230 Series
X
3
4. AC Characteristics
(1) Main clock input standard
(MB91V230, MB91F233A : V
(MB91F233L, MB91233L : V
Parameter
= 4.0 V to 5.25 V, VCC3 = VCC3B = VCC3IO = AVCC = 3.0 V to 3.6 V, VSS = AVSS = 0.0 V,
CC
Sym-
bol
Pin
name
Ta = −40 °C to +85 °C)
= VCC3 = VCC3B = VCC3IO = AVCC = 3.0 V to 3.6 V, VSS = AVSS = 0.0 V,
CC
Ta = −40 °C to +85 °C)
Condi-
tions
Min Typ Max
Value
Unit Remarks
Input frequency F Input clock cycle t
CYL
Input clock pulse width Input clock rise time
and fall time Internal operating
clock frequency Internal operating
clock cycle time Peripheral clock
frequency Peripheral clock cycle
time
0
F
F
t
CYCP
0.8 × V
t t
t
C
3.6 4 4.2 MHz ⎯⎯250 ns
P
WH/tCYL
PWL/t
CYL
40 60 %
⎯⎯⎯5 ns At external clock
CR CF
CP
CP
CPP
X0
⎯⎯ ⎯⎯33.6 MHz
⎯⎯29.7 ⎯⎯ns
⎯⎯ ⎯⎯33.6 MHz
⎯⎯29.7 ⎯⎯ns
tCYL
CC3 0.8 × VCC3
SS + 0.4 VSS + 0.4
V
0.8 × V
Peripheral clock is derived from internal operat­ing clock divided by 1/1 to 1/16.
CC
PWH PWL
tCF tCR
52
(2) Subclock input standard
X
B
(MB91V230, MB91F233A : V
(MB91F233L, MB91233L : V
Parameter
Input frequency F
Sym-
bol
CL
MB91230 Series
= 4.0 V to 5.25 V, VCC3 = VCC3B = VCC3IO = AVCC = 3.0 V to 3.6 V, VSS = AVSS = 0.0 V,
CC
Ta = −40 °C to +85 °C)
= VCC3 = VCC3B = VCC3IO = AVCC = 3.0 V to 3.6 V, VSS = AVSS = 0.0 V,
CC
Ta = −40 °C to +85 °C)
Pin
name
Condi-
tions
Min Typ Max
32.768
28.571 32.768 35.714
Value
Unit Remarks
kHz
At external
clock
Input clock cycle t
LCYL
Input clock pulse width Input clock rise time
and fall time
0A
CC3B 0.8 × VCC3B
0.8 × V
X0A
28.0 35.0 µs
P
WLH/tLCYL
P
WLL/tLCYL
t
CR/tLCYL
tCF/t
LCYL
tLCYL
PWLH PWLL
tCF tCR
45 55 %
⎯⎯ 5 %
0.8 × V
SS + 0.4 VSS + 0.4
V
At external
clock
CC3
53
MB91230 Series
4
3
3
3
3
3
2
2
2
2
2
1
(3) Operation Assurance Range
.0
.8
.6
F
CP = 33.6 MHz,VCC3 = 3.6 V
3 [V]
CC
.4
.2
.0
.8
.6
.4
.2
Internal power supply voltage V
.0
.8
F
CP = 8 MHz
FCP = 32 MHz, V
PLL OFF
32 kHz5 10152025303540
PLL ON
F
CP = 28 MHz,VCC3 = 2.7 V
CC3 = 3.0 V
CP = 33.6 MHz,VCC3 = 3.3 V
F
CP = 33.6 MHz,VCC3 = 3.0 V
F
MB91F233A MB91F233L
MB91233L
Internal operation frequency FCP [MHz]
54
(4) PLL oscillation stabilization time (LOCK UP time)
I
(MB91V230, MB91F233A : V
(MB91F233L, MB91233L : V
= 4.0 V to 5.25 V, VCC3 = VCC3B = VCC3IO = AVCC = 3.0 V to 3.6 V, VSS = AVSS = 0.0 V,
CC
= VCC3 = VCC3B = VCC3IO = AVCC = 3.0 V to 3.6 V, VSS = AVSS = 0.0 V,
CC
Value
Parameter Symbol
Min Max
MB91230 Series
Ta = −40 °C to + 85 °C) Ta = −40 °C to + 85 °C)
Unit Remarks
PLL oscillation stabilization (LOCK UP time)
t
LOCK
(5) Reset input standards
(MB91V230, MB91F233A : V
= 4.0 V to 5.25 V, VCC3 = VCC3B = VCC3IO = AVCC = 3.0 V to 3.6 V, VSS = AVSS = 0.0 V,
CC
(MB91F233L, MB91233L : V
Parameter Symbol
INIT
input time
(at power-on)
INITX
INIT
input time
t
(other than at power-on)
*1 : When turning the power on, keep INIT *2 : t
indicates cycle time of CPU operating clock.
CP
Time from when the PLL
500 ⎯µs
starts operating to when its oscillation becomes stable
Ta = −40 °C to + 85 °C)
= VCC3 = VCC3B = VCC3IO = AVCC = 3.0 V to 3.6 V, VSS = AVSS = 0.0 V,
CC
Ta = −40 °C to + 85 °C)
Pin
name
Condi-
tions
Value
Unit Remarks
Min Max
⎯⎯ns *1
INIT
t
× 10 ns *2
CP
input until the oscillation circuit provides stable oscillation.
t
INITX
NIT
V
IL
V
IL
55
MB91230 Series
(6)UART timing
(MB91V230, MB91F233A : V
(MB91F233L, MB91233L : V
Parameter Symbol Pin name Conditions
Serial clock cycle time t
= 4.0 V to 5.25 V, VCC3 = VCC3B = VCC3IO = AVCC = 3.0 V to 3.6 V, VSS = AVSS = 0.0 V,
CC
SCYC
Ta = −40 °C to +85 °C)
= VCC3 = VCC3B = VCC3IO = AVCC = 3.0 V to 3.6 V, VSS = AVSS = 0.0 V,
CC
Ta = −40 °C to +85 °C)
Value
Unit Remarks
Min Max
SCK0 to SCK3
t
* × 8 ns
CYCP
SCK ↓ → SOT delay time t
SLOV
SCK0 to SCK3,
SOT0 to SOT3
Internal shift clock
Valid SIN SCK t
SCK ↑ → Valid SIN hold time t Serial clock “H” pulse width t
Serial clock “L” pulse width t SCK ↓ → SOT delay time t
Valid SIN SCK t
SCK ↑ → Valid SIN hold time t
* : t
represents the cycle time of peripheral operating clock.
CYCP
IVSH
SHIX
SHSL
SLSH
SLOV
IVSH
SHIX
SCK0 to SCK3,
SIN0 to SIN3
SCK0 to SCK3,
SIN0 to SIN3 SCK0 to SCK3 SCK0 to SCK3 t
SCK0 to SCK3,
SOT0 to SOT3
SCK0 to SCK3,
SIN0 to SIN3
SCK0 to SCK3,
SIN0 to SIN3
operation
External shift clock operation
Note : The above specification applies to clock synchronous mode operation.
80 80 ns
100 ns
60 ns
t
* × 4 ns
CYCP
* × 4 ns
CYCP
150 ns
60 ns
60 ns
56
Internal shift clock mode
S
S
S
S
CK0 to SCK3
OT0 to SOT3
SIN0 to SIN3
External shift clock mode
MB91230 Series
t
SCYC
V
OH
V
OL
t
SLOV
V
OH
V
OL
t
IVSH
V
OH
V
OL
t
SHIX
V
OL
V
OH
V
OL
CK0 to SCK3
OT0 to SOT3
SIN0 to SIN3
VOL
tSLSH tSHSL
VOL
tSLOV
VOH VOL
tIVSH tSHIX
VOH VOL
VOH VOH
VOH VOL
57
MB91230 Series
(7) Free-run timer clock, Reload timer event input, Up/down counter input, Input capture input,
Interrupt input timing
(MB91V230, MB91F233A : V
(MB91F233L, MB91233L : V
Parameter Symbol Pin name
Input pulse width
= 4.0 V to 5.25 V, VCC3 = VCC3B = VCC3IO = AVCC = 3.0 V to 3.6 V, VSS = AVSS = 0.0 V,
CC
Ta = −40 °C to + 85 °C)
= VCC3 = VCC3B = VCC3IO = AVCC = 3.0 V to 3.6 V, VSS = AVSS = 0.0 V,
CC
Ta = −40 °C to + 85 °C)
Condi-
tions
Value
Unit
Min Max
CKI0, CKI1
TIN0 to TIN3
t
TIWH
t
TIWL
IC0, IC1 AIN0, AIN1 BIN0, BIN1
t
× 2 ns *
CYCP
ZIN0, ZIN1
Re-
marks
INT0 to INT15 t
* : t
indicates peripheral clock cycle time.
CYCP
VIL VIL
(8) A/D trigger, PWI (PWC) input timing
(MB91V230, MB91F233A : V
(MB91F233L, MB91233L : V
Parameter Symbol Pin name
A/D trigger input (falling) t PWI (PWC) input (rising) t
* : t
indicates peripheral clock cycle time.
CYCP
TADTG
PWI
PWI0, PWI1 t
× 3 ns *
CYCP
tTIWH tTIWL
VIH VIH
= 4.0 V to 5.25 V, VCC3 = VCC3B = VCC3IO = AVCC = 3.0 V to 3.6 V,
CC
V
= AVSS = 0.0 V, Ta = 40 °C to + 85 °C)
SS
= VCC3 = VCC3B = VCC3IO = AVCC = 3.0 V to 3.6 V,
CC
V
= AVSS = 0.0 V, Ta = 40 °C to + 85 °C)
SS
Value
Unit Remarks
Min Max
× 2 ns * × 2 ns *
ADTG0 ADTG1
Condi-
tions
t
CYCP
CYCP
58
tTADTG tPWI
VIH VIH
VIL VIL
MB91230 Series
5. Electrical Characteristics for the A/D Converter
(VCC3IO = AVCC = 3.0 V to 3.6 V, VSS = AVSS = 0.0 V, AVRH = 3.0 V to 3.6 V, Ta = 0 °C to +85 °C)
Parameter
Min Typ Max
Resolution ⎯⎯10 bit Total error* Nonlinear error* Differential linear error* Zero transition voltage* Full transition voltage* Conversion time 1.69*
Power supply voltage (analog+digital)
Reference power supply current
1
1
1
1
1
5.0 ⎯+5.0 LSB
3.5 ⎯+3.5 LSB
2.5 ⎯+2.5 LSB
2.0 +1.0 +6.0 LSB
AVRH5.5 AVRH1.0 AVRH+3.0 LSB
2
3.6 mA ⎯⎯ 5 µA
470 ⎯µA
(between AVRH and AVRL)
⎯⎯10 µA At power-down* Analog input capacitance 40 pF Inter-channel disparity ⎯⎯ 4LSB
Value
Unit Remarks
AV At AVRH = 3.3 V At CPU sleep mode
⎯⎯µs
AVRH = 3.0 V, At AVRL = 0.0 V*
= 3.3 V,
CC
3
4
*1 : Measured in the CPU sleep state *2 : It depends on the clock cycle supplied to peripheral resources. *3 : AVRL pin is only for FLGA package product. AVRL pin is connected to AV
inside the IC on LQFP package
SS
product.
*4 : The current when the CPU is in stop mode and the A/D converter is not operating.
59
MB91230 Series
1
5
2 1 1 1 1 1
8
About the external impedance of the analog input and its sampling time
A/D converter with sample and hold circuit. If the external impedance is too high to keep sufficient sampling time, the analog voltage charged to the internal sampling and hold capacitor is insufficient, adversely affecting A/D conversion precision.
Analog input circuit model
Analog input
R
C
Comparator
During sampling : ON
RC MB91233L MB91F233A MB91F233L
0.18 k (Max) 63.0 pF (Max)
0.18 k (Max) 39.0 pF (Max)
0.18 k (Max) 39.0 pF (Max)
Note : The values are reference values.
To satisfy the A/D conversion precision standard, consider the relationship between the external impedance and minimum sampling time and either adjust the resistor value and operating frequency or decrease the external impedance so that the sampling time is longer than the minimum value.
The relationship between the external impedance and minimum sampling time
(External impedance = 0 k to 100 k)
MB91F233A
00 90 80 70 60 50 40 30 20 10
External impedance (kΩ)
0
0 5 10 15 20 25 30 3
MB91F233L
MB91233L
Minimum sampling time (µs)
(External impedance = 0 k to 20 k)
MB91F233A
0 8 6 4 2 0 8 6 4 2
External impedance (kΩ)
0
0123456
MB91F233L
MB91233L
Minimum sampling time (µs)
7
If the sampling time cannot be sufficient, connect a capacitor of about 0.1 µF to the analog input pin.
About errors
As |AVRH AV
| becomes smaller, values of relative errors grow larger.
SS
60
MB91230 Series
6. Electrical Characteristics for the D/A Converter
(VCC3IO = AVCC = 3.0 V to 3.6 V, VSS = AVSS = 0.0 V, Ta = 0 °C to +85 °C)
Parameter
Min Typ Max
Resolution ⎯⎯ 8bit Nonlinear error −2.0 ⎯+2.0 LSB When the output is unloaded Differential linear error −1.0 ⎯+1.0 LSB When the output is unloaded
Value
Unit Remarks
0.6 ⎯µs
When load capacitance
) = 20 pF
L
(C
Conversion speed
3.0 ⎯µs
When load capacitance (C
) = 100 pF
L
Output impedance 2.0 2.9 3.8 k
10 µs conversion, when the output is unloaded
When the input digital code is fixed at 7A
or 85
H
H
Analog current
40 ⎯µA
⎯⎯460* µA 0.1 ⎯µA At power-down
* : The current consumption by D/A converter varies with input digital code.
The standard value indicates the current consumed when the digital code that maximizes the current consumption is input.
7. Flash Memory Write/Erase Characteristics
Parameter Conditions
Sector erase time
Ta = + 25 °C, Vcc = 5.0 V
Min Typ Max
Value
Unit Remarks
115s
Excludes 00 prior erasure
programming
H
Chip erase time
Byte write time
Chip write time
Ta = + 25 °C, Vcc = 5.0 V
Ta = + 25 °C, Vcc = 5.0 V
Ta = + 25 °C, Vcc = 5.0 V
10 s
8 3,600 µs
2.1 s
Excludes 00
programming
H
prior erasure Not including system-level
overhead time. Not including system-level
overhead time. Erase/write cycle 10,000 ⎯⎯cycle Flash data retention time Average Ta = + 85 °C20 ⎯⎯year *
* : This value comes from the technology qualification (using Arrhenius equation to translate high temperature
measurements into normalized value at + 85 °C).
61
MB91230 Series

ORDERING INFORMATION

Part number Package Remarks
MB91V230CR-ES
401-pin ceramic PGA
(PGA-401C-A02)
MB91F233APFF-GE1
MB91F233LPFF-GE1
MB91F233LLGA-GE1
MB91233LPFF-G-xxx-BNDE1
MB91233LLGA-G-xxx-BNDE1
120-pin plastic LQFP
(FPT-120P-M05)
120-pin plastic LQFP
(FPT-120P-M05)
128-pin plastic FLGA
(LGA-128P-M01)
120-pin plastic LQFP
(FPT-120P-M05)
128-pin plastic FLGA
(LGA-128P-M01)
62

PACKAGE DIMENSIONS

401-pin Ceramic PGA
(PGA-401C-A02)
MB91230 Series
48.26 ± 0.55
(1.900 ± .022)
INDEX AREA
C
1994 FUJITSU LIMITED R401002SC-2-2
SQ
1.20 ± 0.25
(.047 ± .010)
5.27 (.207) MAX
2.54 (.100) TYP 0.40 ± 0.10 (.016 ± .004)
45.72 (1.800) REF
3.40 ± 0.40
(.134 ± .016)
Dimensions in mm (inches) . Note : The values in parentheses are reference values.
DIA
1.02 (.040) C TYP (4 PLCS)
1.00 (.039) DIA TYP (4 PLCS)
EXTRA INDEX PIN
(Continued)
63
MB91230 Series
120-pin Plastic LQFP
(FPT-120P-M05)
120
LEAD No.
0.40(.016)
Note 1) * : These dimensions do not include resin protrusion. Note 2) Pins width and pins thickness include plating thickness. Note 3) Pins width do not include tie bar cutting remainder.
16.00±0.20(.630±.008)SQ
*
14.00±0.10(.551±.004)SQ
6190
6091
0.08(.003)
INDEX
31
130
0.16±0.03
(.006±.001)
0.07(.003)
M
"A"
0.145±0.055 (.006±.002)
Details of "A" part
+0.20 –0.10
1.50
+.008 –.004
.059
0~8
˚
0.50±0.20
(.020±.008)
0.60±0.15
(.024±.006)
(Mounting height)
0.10±0.10
(.004±.004)
(Stand off)
0.25(.010)
C
2003 FUJITSU LIMITED F120006S-c-4-5
Dimensions in mm (inches) . Note : The values in parentheses are reference values.
(Continued)
64
(Continued)
128-pin plastic FLGA
(LGA-128P-M01)
9.00±0.10(.354±.004)SQ
8.30(.327) REF
7.15(.282) REF
0.65(.026) TYP
MB91230 Series
8.30(.327) REF
7.15(.282) REF
0.65(.026) TYP
12 11 10 9 8 7 6 5 4
(0.50)
3
((.020))
2 1
INDEX AREA
0.08(.003)
C
2004 FUJITSU LIMITED L128001S-c-1-1
1.00(.040)MAX (Seated Height)
A
BCDEFGHJKLM
3-ø0.50
(3-ø.020)
ø0.35±0.05
128-
(128-ø.014±.002)
(0.50)
((.020))
ø0.08(ø.003)
Index
M
Dimensions in mm (inches) . Note : The values in parentheses are reference values.
65
MB91230 Series
The information for microcontroller supports is shown in the following homepage.
http://www.fujitsu.com/global/services/microelectronics/product/micom/support/index.html
FUJITSU LIMITED
All Rights Reserved.
The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering. The information, such as descriptions of function and application circuit examples, in this document are presented solely for the purpose of reference to show examples of operations and uses of Fujitsu semiconductor device; Fujitsu does not warrant proper operation of the device with respect to use based on such information. When you develop equipment incorporating the device based on such information, you must assume any responsibility arising out of such use of the information. Fujitsu assumes no liability for any damages whatsoever arising out of the use of the information. Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license of the use or exercise of any intellectual property right, such as patent right or copyright, or any other right of Fujitsu or any third party or does Fujitsu warrant non-infringement of any third-party’s intellectual property right or other right by using such information. Fujitsu assumes no liability for any infringement of the intellectual property rights or other rights of third parties which would result from the use of information contained herein. The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite). Please note that Fujitsu will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products. Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions. If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the prior authorization by Japanese government will be required for export of those products from Japan.
F0510
© 2005 FUJITSU LIMITED Printed in Japan
Loading...