FUJITSU MB39A104 User Manual

FUJITSU MICROELECTRONICS
DATA SHEET
DS04-27231-5Ea
ASSP For Power Management Applications (General Purpose DC/DC Converter)
2-ch DC/DC Converter IC
MB39A104

DESCRIPTION

The MB39A104 is a 2-channel DC/DC converter IC using pulse width modulation (PWM), incorporating an overcurrent protection circuit (requiring no current sense resistor). This IC is ideal for down conversion.
Operating at high frequency reduces the value of coil.
This is ideal for built-in power supply such as LCD monitors and ADSL.
This product is covered by US Patent Number 6,147,477.

FEATURES

• Built-in timer-latch overcurrent protection circuit (requiring no current sense resistor)
• Power supply voltage range : 7 V to 19 V
• Reference voltage : 5.0 V ± 1 %
• Error amplifier threshold voltage : 1.24 V ± 1 %
• High-frequency operation capability : 1.5 MHz (Max)
• Built-in standby function: 0 µA (Typ)
• Built-in soft-start circuit independent of loads
• Built-in totem-pole type output for P-ch MOS FET
• One type of package (SSOP-24 pin : 1 type)

APPLICATION

• LCD monitor/panel
• IP phone
• Printer
• Video capture etc.
Copyright©2002-2008 FUJITSU MICROELECTRONICS LIMITED All rights reserved
2006.8
MB39A104

PIN ASSIGNMENTS

(TOP VIEW)
VCCO :
VH :
OUT1 :
VS1 :
ILIM1 :
DTC1 :
VCC :
CSCP :
FB1 :
INE1 :
CS1 :
RT :
10
11
12
1
2
3
4
5
6
7
8
9
24
23
22
21
20
19
18
17
16
15
14
13
: CTL
: GNDO
: OUT2
: VS2
: ILIM2
: DTC2
: GND
: VREF
: FB2
: −INE2
: CS2
: CT
(FPT-24P-M03)
2
MB39A104

PIN DESCRIPTION

Pin No. Symbol I/O Descriptions
1 VCCO Output circuit power supply terminal (Connect to same potential as VCC pin) 2 VH O Power supply terminal for FET drive circuit (VH = V
3 OUT1 O External P-ch MOS FET gate drive terminal
4 VS1 I Overcurrent protection circuit input terminal
Overcurrent protection circuit detection resistor connection terminal. Set
5ILIM1I
6DTC1I
7VCC
8CSCP Timer-latch short-circuit protection capacitor connection terminal
9 FB1 O Error amplifier (Error Amp 1) output terminal
10 INE1 I Error amplifier (Error Amp 1) inverted input terminal 11 CS1 Soft-start capacitor connection terminal 12 RT Triangular wave oscillation frequency setting resistor connection terminal 13 CT Triangular wave oscillation frequency setting capacitor connection terminal 14 CS2 Soft-start capacitor connection terminal 15 INE2 I Error amplifier (Error Amp 2) inverted input terminal
16 FB2 O Error amplifier (Error Amp 2) output terminal
overcurrent detection reference voltage depending on external resistor and internal current resource (110 µA at R
PWM comparator block (PWM) input terminal. Compares the lowest voltage among FB1 and DTC1 terminals with triangular wave and controls output.
Power supply terminal for reference power supply and control circuit (Connect to same potential as the VCCO terminal)
T = 24 k)
CC 5 V)
17 VREF O Reference voltage output terminal
18 GND
19 DTC2 I
20 ILIM2 I
21 VS2 I Overcurrent protection circuit input terminal
22 OUT2 O External P-ch MOS FET gate drive terminal 23 GNDO Output circuit ground terminal (Connect to same potential as GND terminal)
24 CTL I
Output circuit ground terminal (Connect to same potential as GNDO terminal.)
PWM comparator block (PWM) input terminal. Compares the lowest voltage among FB2 and DTC2 terminals with triangular wave and controls output.
Overcurrent protection circuit detection resistor connection terminal. Set overcurrent detection reference voltage depending on external resistor and internal current resource (110 µA at R
Power supply control terminal. Setting the CTL terminal at “L” level places IC in the standby mode.
T = 24 k)
3
MB39A104

BLOCK DIAGRAM

INE1
10
10 µA
11
CS1
9
FB1
6
DTC1
VREF
1.24 V
Error Amp1
+ +
L priority
L priority
PWM Comp.1
+ +
P-ch
IO = 200 mA at VCCO = 12 V
Current
Protection
Logic
CH1
Drive1
1
VCCO
OUT1
3
VS1
4
+
5
ILIM1
INE2
CS2
FB2
DTC2
CSCP
15
14
16
19
8
VREF
10 µA
1.24 V
H: at SCP
+ +
L priority
H priority
SCP Comp.
Error Amp2
+ +
(3.1 V)
SCP
Logic
UVLO
H:UVLO
release
OSC
12 13 1817
RT CT GNDVREF
L priority
PWM Comp.2
+ +
2.5 V
1.5 V
Accuracy
±1%
5.0 V
bias
CH2
Drive2
P-ch
I
O = 200 mA
at VCCO = 12 V
Current
Protection
Logic
H: at OCP
VH
Bias
Voltage
Error Amp Power Supply
Error Amp Referennce
1.24 V
VREF
VR1
+
V
CC 5 V
Powe r
ON/OFF
CTL
22
21
20
2
23
7
24
OUT2
VS2
ILIM2
VH
GNDO
VCC
CTL
4

ABSOLUTE MAXIMUM RATINGS

MB39A104
Parameter Symbol Condition
Unit
Min Max
Rating
Power supply voltage V
Output current I
Output peak current I
Power dissipation P
Storage temperature T
CC VCC, VCCO terminal 20 V O OUT1, OUT2 terminal 60 mA
OP Duty 5% (t = 1/fOSC×Duty) 700 mA
D Ta ≤ +25 °C 740* mW
STG ⎯−55 +125 °C
* : The packages are mounted on the epoxy board (10 cm × 10 cm).
WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current,
temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

RECOMMENDED OPERATING CONDITIONS

Parameter Symbol Condition
Power supply voltage V
Reference voltage output current I
VH output current I
Input voltage
V
Control input voltage V
Output current I
Output Peak current I
Oscillation frequency f
CC VCC, VCCO terminal 7 12 19 V
REF VREF terminal −1 0mA
VH VH terminal 0⎯30 mA
V
INE −INE1, −INE2 terminal 0 VCC 0.9 V DTC DTC1, DTC2 terminal 0 VCC 0.9 V CTL CTL terminal 0 19 V
O OUT1, OUT2 terminal −45 ⎯+45 mA
Duty 5% (t = 1/fOSC×Duty)
OP
Overcurrent detection
OSC
by ON resistance of FET
Min Typ Max
450 ⎯+450 mA
100 500 1000 kHz
* 100 500 1500 kHz
Timing capacitor C
Timing resistor R
VH terminal capacitor C
Soft-start capacitor C
Short-circuit detection capacitor C
Reference voltage output capacitor
T 39 100 560 pF T 11 24 130 kΩ
VH VH terminal 0.1 1.0 µF
S CS1, CS2 terminal 0.1 1.0 µF
SCP CSCP terminal 0.1 1.0 µF
C
REF VREF terminal 0.1 1.0 µF
Operating ambient temperature Ta ⎯−30 +25 +85 °C
Val ue
Unit
* : Refer to“ SETTING THE TRIANGULAR OSCILLATION FREQUENCY”.
WARNING: The recommended operating conditions are required in order to ensure the normal operation of the
semiconductor device. All of the device’s electrical characteristics are warranted when the device is operated within these ranges.
Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.
No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their representatives beforehand.
5
MB39A104

ELECTRICAL CHARACTERISTICS

Parameter
Output voltage VREF 17 Ta = +25 °C 4.95 5.00 5.05 V
Output voltage temperature variation
Input stability Line 17 VCC = 7 V to 19 V 310mV
voltage
Load stability Load 17 VREF = 0 mA to 1 mA 110mV
block [REF]
1.Reference Short-circuit
output current
Threshold voltage
2.Under
voltage lockout
Hysteresis
block [UVLO]
width
protection circuit
Threshold voltage
Input source current
[SCP Logic]
3.Short-circuit
Reset voltage V
detection block
Symbol
V
REF/
V
REF
I
OS 17 VREF = 1 V 50 25 12 mA
V
TLH 17 VREF = 2.6 2.8 3.0 V
V
THL 17 VREF = 2.4 2.6 2.8 V
H 17 ⎯⎯0.2* V
V
V
TH 8 0.68 0.73 0.78 V
I
CSCP 8 ⎯−1.4 1.0 0.6 µA
RST 17 VREF = 2.4 2.6 2.8 V
Pin No Conditions
(VCC = VCCO = 12 V, VREF = 0 mA, Ta = +25 °C)
Val ue
Unit
Min Typ Max
17 Ta = 0 °C to +85 °C 0.5* ⎯%
Threshold voltage
[SCP Comp.]
4.Short-circuit
detection block
Oscillation frequency
[OSC]
Frequency temperature
block
6.Soft-
5.Triangular
start
variation
wave oscillator
Charge current ICS 11, 14 CS1 = CS2 = 0 V −14 10 −6 µA
block
[CS1, CS2]
Threshold voltage
Input bias
block
7.Error amplifier
current
[Error Amp1,
Error Amp2]
Voltage gain A
V
TH 8 2.8 3.1 3.4 V
f
OSC 13 CT = 100 pF, RT = 24 k 450 500 550 kHz
f
OSC/
f
OSC
V
TH 9, 16 FB1 = FB2 = 2 V 1.227 1.240 1.253 V
I
B 10, 15 −INE1 = −INE2 = 0 V −120 −30 nA
V 9, 16 DC 100* dB
13 Ta = 0 °C to +85 °C 1* ⎯%
(Continued)
6
(Continued)
[Error Amp1,
Error Amp2]
7.Error amplifier block
block
(VCC = VCCO = 12 V, VREF = 0 mA, Ta = +25 °C)
Parameter Symbol Pin No. Conditions
Frequency bandwidth
BW 9, 16 A
V
OH 9, 16 4.7 4.9 V
V = 0 dB 1.6* MHz
Output voltage
V
OL 9, 16 ⎯⎯40 200 mV
Output source current
Output sink current I
I
SOURCE 9, 16 FB1 = FB2 = 2 V ⎯−2 1mA
SINK 9, 16 FB1 = FB2 = 2 V 150 200 ⎯µA
V
T0 6, 19 Duty cycle = 0 % 1.4 1.5 V
Threshold voltage
T100 6, 19 Duty cycle = Dtr 2.5 2.6 V
V
MB39A104
Val ue
Unit
Min Typ Max
PWM Comp.2]
[PWM Comp.1,
8.PWM comparator
block
9.Overcurrent
10.Bias
[OCP1, OCP2]
protection circuit
[VH]
block
voltage
[Drive1, Drive2]
11.Output block
[CTL]
12.Control block
Input current I
ILIM terminal input current
Offset voltage V
Output voltage VH 2
Output source current
DTC 6, 19 DTC1 = DTC2 = 0.4 V 2.0 0.6 ⎯µA
I
LIM 5, 20 RT = 24 k, CT = 100 pF 99 110 121 µA
IO 5, 20 ⎯⎯1* mV
VCC = VCCO = 7 V to 19 V VH = 0 mA to 30 mA
VCC
5.5
VCC
5.0
VCC
4.5
OUT1 to OUT4 = 7 V,
ISOURCE 3, 22
Duty 5 % (t = 1/f
OSC×Duty)
⎯−300 mA
V
OUT1 to OUT4 = 12 V,
Output sink current I
Output ON resistor
SINK 3, 22
OH 3, 22 OUT1 = OUT2 = −45 mA 8.0 12.0
R
R
OL 3, 22 OUT1 = OUT2 = 45 mA 6.5 9.7
IH 24 IC Active mode 2 19 V
V
Duty 5 % (t = 1/f
OSC×Duty)
350 mA
CTL input voltage
V
IL 24 IC Standby mode 0 0.8 V
I
CTLH 24 CTL = 5 V 50 100 µA
Input current
I
CTLL 24 CTL = 0 V ⎯⎯ 1 µA
Standby current ICCS 1, 17 CTL = 0 V 010µA
Power supply current
13.General
*: Standard design value.
I
CC 1, 17 CTL = 5 V 4.0 6.0 mA
7
MB39A104

TYPICAL CHARACTERISTICS

Power Supply Current vs. Power Supply Voltage
10
8
6
4
2
Power supply current ICC (mA)
0
0 5 10 15 20
Power supply voltage VCC (V) Power supply voltage VCC (V)
Ta = +25 °C CTL = 5 V
Reference Voltage vs. Load current
10
8
6
4
Ta = +25 °C VCC = 12 V CTL = 5 V
Reference Voltage vs. Power Supply Voltage
10
8
REF (V)
6
4
2
Reference voltage V
0
0 5 10 15 20
= +25 °C
Ta CTL = 5 V VREF = 0 mA
Reference Voltage vs. Ambient Temperature
2.0
1.5
1.0
0.5
0.0
0.5
VCC
= 12 V CTL = 5 V VREF = 0 mA
2
Reference voltage VREF (V)
0
0 5 10 15 20 25 30 35
Load current IREF (mA)
CTL terminal Current vs. CTL terminal Voltage
500
400
300
200
100
CTL terminal current ICTL (µA)
0
0 5 10 15 20
VREF
ICTL
Ta = +25 °C VCC = 12 V VREF = 0 mA
CTL terminal voltage VCTL (V)
10
9
8
7
6
5
4
3
2
1
0
Reference voltage VREF (V)
1.0
1.5
Reference voltage VREF (%)
2.0
40 20 0 +20 +40 +60 +80 +100
Ambient temperature Ta (°C)
(Continued)
8
MB39A104
0
Triangular Wave Oscillation Frequency
vs. Timing Resistor
10000
OSC (kHz)
frequency f
Triangular wave oscillation
1000
100
10
CT = 560 pF
1 10 100 1000
CT = 220 pF
Timing resistor RT (kΩ)
Ta = +25 °C VCC = 12 V CTL = 5 V
CT = 39 pF
CT = 100 pF
Triangular Wave Upper and Lower Limit Voltage
vs. Triangular Wave Oscillation Frequency
3.2
3.0
2.8
CT (V)
2.6
2.4
2.2
2.0
1.8
1.6
1.4
lower limit voltage V
Triangular wave upper and
1.2
Triangular wave oscillation frequency fOSC (kHz)
= +25 °C
Ta VCC = 12 V CTL = 5 V R
T = 47 k
0 200 400 600 800 1000 1200
Upper
Lower
16001400
Triangular Wave Oscillation Frequency
vs. Timing Capacitor
Triangular wave oscillation
10000
OSC (kHz)
frequency f
1000
100
RT = 130 k
10
10 100 1000 1000
RT = 68 k
Timing capacitor CT (pF)
Ta = +25 °C VCC = 12 V CTL = 5 V
RT = 11 k
RT = 24 k
Triangular Wave Upper and Lower Limit Voltage
vs. Ambient Temperature
3.2
VCC = 12 V
3.0
CTL = 5 V R
T = 24 k
2.8
CT = 100 pF
CT (V)
2.6
2.4
2.2
2.0
1.8
1.6
1.4
lower limit voltage V
Triangular wave upper and
1.2
40 20 0 +20 +40 +60 +80 +100
Ambient temperature Ta ( °C)
Upper
Lower
Triangular Wave Oscillation Frequency
vs. Ambient Temperature
560
540
520
OSC (kHz)
500
480
frequency f
460
Triangular wave oscillation
440
40 20 0 +20 +40 +60 +80 +100
Ambient temperature Ta ( °C)
VCC = 12 V CTL = 5 V R
T = 24 k
CT = 100 pF
Triangular Wave Oscillation Frequency
vs. Power supply voltage
560
540
520
OSC (kHz)
500
480
frequency f
460
Triangular wave oscillation
440
0 5 10 15 20
Power supply voltage VCC (V)
Ta = +25 °C CTL = 5 V R
T = 24 k
CT = 100 pF
(Continued)
9
MB39A104
(Continued)
Error Amplifier, Gain, Phase vs. Frequency
Ta = +25 °C VCC = 12 V
A
V
Gain AV (dB)
40
30
20
10
0
10
20
30
40
100 1 k 10 k 100 k 1 M 10 M
ϕ
Frequency f (Hz)
Power Dissipation vs. Ambient Temperature
1000
800 740
180
90
0
90
180
240 k
10 k
1 µF
+
IN
2.4 k
10 k
Phase φ (deg)
(15)
10
11
(14)
+ +
1.24 V
9
(16)
Error Amp1
(Error Amp2)
OUT
600
400
200
Power dissipation PD (mW)
0
40 20 0 +20 +40 +60 +80 +100
Ambient temperature Ta ( °C)
10
MB39A104

FUNCTIONS

1. DC/DC Converter Functions
(1) Reference voltage block (REF)
The reference voltage circuit generates a temperature-compensated reference voltage (5.0 V Typ) from the voltage supplied from the VCC terminal (pin 7). The voltage is used as the reference voltage for the IC’s internal circuitry. The reference voltage can supply a load current of up to 1 mA to an external device through the VREF terminal (pin 17).
(2) Triangular-wave oscillator block (OSC)
The triangular wave oscillator incorporates a timing capacitor and a timing resistor connected respectively to the CT terminal (pin 13) and RT terminal (pin 12) to generate triangular oscillation waveform amplitude of 1.5 V to 2.5 V. The triangular waveforms are input to the PWM comparator in the IC.
(3) Error amplifier block (Error Amp1, Error Amp2)
The error amplifier detects the DC/DC converter output voltage and outputs PWM control signals. In addition, an arbitrary loop gain can be set by connecting a feedback resistor and capacitor from the output terminal to inverted input terminal of the error amplifier, enabling stable phase compensation to the system. Also, it is possible to prevent rush current at power supply start-up by connecting a soft-start capacitor with the CS1 terminal (pin 11) and CS2 terminal (pin 14) which are the non-inverted input terminal for Error Amp. The use of Error Amp for soft-start detection makes it possible for a system to operate on a fixed soft-start time that is independent of the output load on the DC/DC converter.
(4) PWM comparator block (PWM Comp.1, PWM Comp.2)
The PWM comparator is a voltage-to-pulse width modulator that controls the output duty depending on the input/ output voltage. The comparator keeps output transistor on while the error amplifier output voltage remain higher than the triangular wave voltage.
(5) Output block (Drive1, Drive2)
The output block is in the totem pole configuration, capable of driving an external P-channel MOS FET.
(6) Bias voltage block (VH)
This bias voltage circuit outputs V circuit outputs the potential equal to V
CC 5 V(Typ) as minimum potential of the output circuit. In standby mode, this
CC.
11
MB39A104
2. Control Function
When CTL terminal (pin 24) is “L” level, IC becomes the standby mode. The power supply current is 10 µA (Max) at the standby mode.
On/Off Setting Conditions
CTL Power
L OFF (Standby)
H ON (Operating)
3. Protective Functions
(1) Timer-latch overcurrent protection circuit block (OCP)
The timer-latch overcurrent protection circuit is actuated upon completion of the soft-start period. When an overcurrent flows, the circuit detects the increase in the voltage between the FET’s drain and source using the external FET ON resistor, actuates the timer circuit, and starts charging the capacitor C CSCP terminal (pin 8). If the overcurrent remains flowing beyond the predetermined period of time, latch is set and OUT terminals (pin 3,22) of each channel are fixed at “H” level. And the circuit sets the latch to turn off the external FET. The detection current value can be set by resistor R the ILIM1 terminal (pin 5) and resistor R
LIM2 connected between the drain and the ILIM2 terminal (pin 20).
LIM1 connected between the FET’s drain and
Changing connection enables to detect overcurrent at current sense resistor.
To reset the actuated protection circuit, either the power supply turn off and on again or set the CTL terminal (pin 6) to the “L” level to lower the VREF terminal (pin 17) voltage to 2.4 V (Min) or less. (Refer to “1. Setting Timer-Latch Overcurrent Protection Detection Current” in “ABOUT TIMER-LATCH PROTECTION CIRCUIT”.)
SCP connected to the
(2) Timer-latch short-circuit protection circuit (SCP Logic, SCP Comp.)
The short-circuit detection comparator (SCP Comp.) detects the output voltage level of Error Amp, and if the error amp output voltage of any channel falls below the short-circuit detection voltage (3.1 V Typ), the timer circuits are actuated to start charging the external capacitor C
SCP connected to the CSCP terminal (pin 8).
When the capacitor voltage reaches about 0.73 V, the circuit is turned off the output transistor and sets the dead time to 100 %. To reset the actuated protection circuit, either the power supply turn off and on again or set the CTL terminal (pin 24) to the “L” level to lower the VREF terminal (pin 17) voltage to 2.4 V (Min) or less. (Refer to “2. Setting Time Constant for Timer-Latch Short-Circuit Protection Circuit” in “ABOUT TIMER-LATCH PROTECTION CIRCUIT”.)
(3) Under voltage lockout protection circuit (UVLO)
The transient state or a momentary decrease in supply voltage, which occurs when the power supply is turned on, may cause the IC to malfunction, resulting in breakdown or degradation of the system. To prevent such malfunctions, under voltage lockout protection circuit detects a decrease in internal reference voltage with respect to the power supply voltage, turns off the output transistor, and sets the dead time to 100% while holding the CSCP terminal (pin 8) at the “L” level. The circuit restores the output transistor to normal when the supply voltage reaches the threshold voltage of the undervoltage lockout protection circuit.
(4) Protection circuit operating function table
This table refers to output condition when protection circuit is operating.
Operating circuit CS1 CS2 OUT1 OUT2
Overcurrent protection circuit L L H H
Short-circuit protection circuit L L H H
Under-voltage lockout L L H H
12
Loading...
+ 28 hidden pages