BECAUSE THIS PRODUCTIS RoHS LEAD-FREE COMPLIANT, USE THE DESIG-
NATED AFTER-SELES PARTS AND THE DESIGNATED LEAD-FREE SOLDER WHEN
PERFORMING REPAIRS. (Refer to page 3 to page 5)
WARNING
THE COMPONENTS IDENTIFIED WITH THE MARK “ ” ON THE SCHEMATIC
DIAGRAM AND IN THE PARTS LIST ARE CRITICAL FOR SAFETY.
PLEASE REPLACE ONLY WITH THE COMPONENTS SPECIFIED ON THE SCHEMATIC
DIAGRAM AND IN THE PARTS LIST.
IF YOU USE PARTS NOT SPECIFIED, IT MAY RESULT IN A FIRE AND AN
ELECTRICAL SHOCK.
FUJI PHOTO FILM CO., LTD.
Ref.No.:ZM00623-400
Printed in Japan 2006.02
Page 2
FinePix A400/A500 TROUBLESHOOTING GUIDE
SAFETY CHECK-OUT
After correcting the original problem, perform the following
safety check before return the product to the customer.
1. Check the area of your repair for unsoldered or poorly
soldered connections. Check the entire board surface
for solder splasher and bridges.
2. Check the interboard wiring to ensure that no wires are
“pinched” or contact high-wattage resistors.
3. Look for unauthorized replacement parts, particularly
transistors, that were installed during a previous repair.
Point them out to the customer and recommend their
replacement.
4. Look for parts which, though functioning, show obvious
signs of deterioration. Point them out to the customer
and recommend their replacement.
5. Check the B + voltage to see it is at the values
specified.
6. Make leakage - current measurements to determine
that exposed parts are acceptably insulated from the
supply circuit before returning the product to the
customer.
7.CAUTION: FOR CONTINUED
PROTECTION AGAINST FIRE
HAZARD, REPLACE ONLY WITH
SAME TYPE 2.5 AMPERES 125V
FUSE.
2.5A 125V
2.5A 125V
8.WARNING:
RISK OF FIREREPLACE FUSE
AS MARKED
ATTENTION: AFIN D'ASSURER
UNE PROTECTION
PERMANENTE CONTRE LES
RISQUES D'INCENDIE,
REMPLACER UNIQUEMENT
PAR UN FUSIBLE DE MEME,
TYPE 2.5 AMPERES, 125 VOLTS.
TO REDUCE THE ELECTRIC
SHOCK, BE CAREFUL TO
TOUCH THE PARTS.
WARNING!
HIGH VOLTAGE
2
Page 3
FinePix A400/A500 TROUBLESHOOTING GUIDE
RoHS lead-free compliance
Because this product is RoHS lead-free compliant, use the designated after-sales parts and the designated lead-free solder
when performing repairs.
<Background & Overview>
With the exception of parts and materials expressly excluded from the RoHS directive (*1), all the internal connections and
component parts and materials used in this product are lead-free compliant (*2) under the European RoHS directive.
*1: Excluded items (list of the main lead-related items)
• Lead included in glass used in fluorescent tubes, electronic components and cathode-ray tubes
• Lead in high-melting-point solder (i.e. tin-lead solder alloys that contain 85% lead or more)
• Lead in ceramic electronic parts (piezo-electronic devices)
• Mercury contained in fluorescent tubes is also excluded.
*2: Definition of lead-free
A lead content ratio of 0.1 wt% or less in the applicable locations (solder, terminals, electronic components, etc.)
<Reference>
RoHS:The name of a directive issued by the European Parliament aimed at restricting the use of
certain designated hazardous substances included in electrical and electronic equipment.
When carrying out repairs, use a designated lead-free solder, bearing in mind the differing work practices for conventional
solder (eutectic) and lead-free solder.
Differences in the soldering work for lead-free and eutectic solder
When the soldering work practices for eutectic solder and lead-free solder are compared, the main differences are as shown
below. In particular, when lead-free solder is used, the solder tends to be less workable than when eutectic solder is used.
Accordingly, the soldering techniques used must take that into account.
Difference
The solder starts melting later.
1
Poor wetting
2
Solder feed rate is difficult to control.
3
Wetting the insides of through holes is especially
4
difficult.
5
During repairs (or modifications) removing solder
from inside through holes is difficult.
6
There is serious carbonization of the soldering iron.
The surface is not glossy.
7
The initial melting point of lead-free solder is high, so you
have to get used to it.
Move the tip of the soldering iron around to heat the entire
connection to the melting temperature and assist wetting.
Use the solder (wire) diameter and soldering iron that are
best suited to connection being soldered.
First apply solder to the area immediately around the
through hold and then feed the solder into the hole.
Use a suitable wicking wire (with a suitable method and
heating) and a suction tool.
Either put solder onto the soldering iron tip after completing
the work, or turn the iron off frequently.
Learn to recognize the appearance of the surface.
Countermeasure
3
Page 4
FinePix A400/A500 TROUBLESHOOTING GUIDE
Setting temperature during lead-free soldering
• Lead-free solder melting temperature
The melting point of eutectic (Sn-Pb) solder is 183°C, while the melting point of lead-free solder (Sn-Ag-Cu) is 30°C higher
at 220°C.
• Soldering iron tip temperature
The temperature setting for the soldering iron used should be such that the tip of the soldering iron is at the correct
bonding temperature for the connection. This temperature is normally set at around 100°C higher than the melting point of
the solder.
However, the actual temperature should take into account the shape and size of the soldering iron tip, the heat tolerance
of the connection and the workability of that temperature.
• Correct bonding temperature
The correct bonding temperature refers not to the temperature of the heat source, but to the bonding temperature that will
give the best bond strength.
Precautions when soldering with lead-free solder
• Soldering iron maintenance
Because of the high soldering iron temperature in lead-free soldering, there is rapid carbonization of the flux adhering to
the tip of the soldering iron.
(1) Always cover the tip of the soldering iron with solder when it is not being used.
(2) If the tip is black from carbonization, wipe it gently with a paper towel soaked in alcohol until the solder will wet.
• Uniform heating of the board and components
To ensure that the lead-free solder wets the entire surface of the pattern and the lands despite its poor wetting
characteristics, you must move the tip of the soldering iron over a wide area to raise the temperature of the entire
connection.
Soldering iron
A soldering iron with a temperature control is best.
4
Page 5
FinePix A400/A500 TROUBLESHOOTING GUIDE
Solder wire (thread)
Use the lead-free solders specified below.
Solder type: Sn96.5Ag3Cu0.5 (Displayed symbol: SnAgCu)
Wire diameter: 0.6, 0.8 or 1.0 mm
3. Mounted Parts Diagrams (MAIN PWB ASSY) .......................................................... 10
4. Mounted Parts Diagrams (SUB PWB ASSY) ............................................................ 11
5. Information on problems identified in production during final inspection ..................13
6. Information on problems arising during adjustment ..................................................14
7
Page 8
FinePix A400/A500 TROUBLESHOOTING GUIDE
1.Names of internal Components
REAR CASE
FRAME
LCD
FLASH CASE ASSY
LEAD E.CAP
BATTERY HOLDER ASSY
SUB PWB ASSY
BUZZER
MAIN PWB ASSY
LENS CONST
F CASE ASSY
8
Page 9
FinePix A400/A500 TROUBLESHOOTING GUIDE
2.Overall connection Diagram
9
Page 10
3.Mounted Parts Diagrams (MAIN PWB ASSY)
A
B
FinePix A400/A500 TROUBLESHOOTING GUIDE
C
D
E
10
F
1
2345678
Page 11
FinePix A400/A500 TROUBLESHOOTING GUIDE
4.Mounted Parts Diagrams (SUB PWB ASSY)
A
B
C
D
E
F
1
234
11
Page 12
MEMO
FinePix A400/A500 TROUBLESHOOTING GUIDE
12
Page 13
FinePix A400/A500 TROUBLESHOOTING GUIDE
5.Information on problems identified in production
during final inspection
Main category
Sounds/Beeps
Image quality
Functions
Operation
Power supply
Lens
Problem details
W BEEP does not sound.
W BEEP does not sound.
Image quality fault.
E-E image not shown
(screen completely white or
completely black).
No AV output.
Bright points on the LCD.
LCD blank.
Flash does not fire.
xD-Picture Card will not go
into the slot.
Zoom button does not work
in the down direction.
The Left button does not
work.
The MENU/OK button does
not work.
The shutter release button
does not work.
Battery end not stable.
Power fails in Playback
mode.
Optical viewfinder
unfocused during zooming.
Cause
MAIN PWB R805 part
defective.
Buzzer wire harness shortcircuit.
LCD FPC inserted
incompletely or at an angle.
LCD FPC inserted
incompletely or at an angle.
AV jack GND terminal
loose.
Part defective.
LCD_FPC inserted at an
angle.
Loose trigger coil.
Damage during installation.
Assembly error.
Assembly error.
Part defective.
SUB PWB CN951 not
locked.
Battery adjustment error.
Solder bridging in MAIN
PWB Q311.
Viewfinder drive spindle
dislodged (disengaged).
Repair location ref. no
M236: Replace MAIN PWB
R805.
M227: Replace BUZZER.
M236: Re-insert MAIN PWB
CN501.
M236: Re-insert MAIN PWB
CN501.
M236: Repair the solder on
MAIN PWB J401.
M310: Replace LCD.
M236: Re-insert MAIN PWB
CN501.
M215: Repair the solder on
SUB PWB T952.
M236: Replace MAIN PWB
CN601.
Re-assemble.
M304: Replace OPERATION
BUTTON.
M201: Replace the F CASE.
M215: Re-lock SUB PWB
CN951.
Reset the battery adjustment.
M236: Repair the solder on
MAIN PWB Q311.
M229: Replace LENS CONST.
PWB
diagram
A-6
---
A-7
A-7
F-6
---
A-7
D-3
A-1
---
---
---
C-1
---
C-4
---
13
Page 14
FinePix A400/A500 TROUBLESHOOTING GUIDE
6.Information on problems arising during adjustment
Adjustment
CAM Adj.
CCD Defect
Adj.
Flash Adj.
Video Adj.
Software
startup
Problem details
Step 3632
(color shading ∆CNG).
Step 1104
(No. of scratches NG).
Step 1104
(No. of scratches NG).
Step 1104
(No. of scratches NG).
Step 1104
(No. of scratches NG).
Step 4040
(S/N inspection NG)
Step 4042 (Jig photography
mode completion).
Step 4042 (Jig photography
mode completion).
Step 1107
(No. of NV1 defects NG).
Step 308 (MV_ON).
Step 776 (flash does not
charge).
Step 1241 (first flash firing).