Follett HCD1410NBT, HCD1010NBS, HCD1010NBT, HCF1010RHT, HCD1010NHS User Manual

...
HCD1010R/N, HCD1410R/N, HMF1010R/N, HMF1410R/N
Horizon Elite™ Ice Machines (Remote Condensing)
Order parts online www.follettice.com
Following installation, please forward this manual
to the appropriate operations person.
801 Church Lane • Easton, PA 18040, USA
HCD1010R/N, HMF1010R/N, HCD1410R/N, HMF1410R/N 1
Toll free (877) 612-5086 • +1 (610) 252-7301 www.follettice.com
01096122R07
2 HCD1010R/N, HMF1010R/N, HCD1410R/N, HMF1410R/N
Contents
Welcome to Follett. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Before you begin ...............................................................................4
Specications .................................................................................5
Electrical ................................................................................... 5
Evaporator unit ..............................................................................5
Condensing unit ............................................................................. 5
Evaporator plumbing ..........................................................................5
Ambient .................................................................................... 5
Refrigeration ................................................................................5
Weight ..................................................................................... 5
Ice production ...............................................................................6
Dimensions and clearances ....................................................................7
Operation .....................................................................................9
Cleaning/sanitizing and preventive maintenance (all models) .......................................... 9
Service ...................................................................................... 13
Ice machine operation (all models) ............................................................. 13
“Bin full” detection system ..................................................................... 15
Electrical system ............................................................................ 16
Mechanical System ............................................................................ 21
Evaporator disassembly ...................................................................... 21
Evaporator reassembly ....................................................................... 24
Refrigeration system ......................................................................... 29
Troubleshooting ..............................................................................32
Replacement parts ............................................................................34
Evaporator assembly ........................................................................34
Low-side assembly .......................................................................... 36
Electrical box .............................................................................. 38
Integration kit – top-mount and RIDE remote ice delivery ........................................... 40
Skins assembly ............................................................................. 42
1010 Single-phase condensing unit .............................................................44
1410 Single-phase condensing unit ............................................................. 45
1010 3-phase condensing unit .................................................................46
1410 3-phase condensing unit ................................................................. 47
HCD1010R/N, HMF1010R/N, HCD1410R/N, HMF1410R/N 3
Welcome to Follett
Follett equipment enjoys a well-deserved reputation for excellent performance, long-term reliability and outstanding after-the-sale support. To ensure that this equipment delivers the same degree of service, we ask that you review the installation manual (provided as a separate document) before beginning to install the unit. Our instructions are designed to help you achieve a trouble-free installation. Should you have any questions or require technical help at any time, please call our technical service group at (877) 612-5086 or +1 (610) 252-7301.
Before you begin
After uncrating and removing all packing material, inspect the equipment for concealed shipping damage. If damage is found, notify the shipper immediately and contact Follett LLC so that we can help in the ling of a claim, if necessary.
Check your paperwork to determine which model you have. Follett model numbers are designed to provide information about the type and capacity of Follett equipment. Following is an explanation of the different model numbers in the series.
Chewblet® Ice Machine Model Number Configurations
HC 1810D SVA
ConfigurationApplication
S RIDE™
(RIDE remote ice delivery equipment)
T Top-mount
MC Maestro™
Chewblet (425 Series)
HC Horizon
Chewblet (710, 1010, 1410, 1810, 2110 Series)
HM Horizon
Micro Chewblet
C 208-230/60/1 (icemaking head)
®
Self-contained only.
D 115/60/1 (icemaking head)
Self-contained and remote. If remote unit, high side is 208-230/60/1.
E 230/50/1 (icemaking head)
Self-contained only.
F 115/60/1 (icemaking head)
Remote only. High side is 208-230/60/3.
425 up to
425 lbs (193 kg)
710 up to
675 lbs (306 kg)
1010 up to
1061 lbs (482 kg)
1410 up to
1466 lbs (665 kg)
1810 up to
1790 lbs (812 kg)
2110 up to
2039 lbs (925 kg)
CondenserSeriesVoltageIcemaker
A Air-cooled, self-contained W Water-cooled, self-contained R Air-cooled, remote condensing unit N Air-cooled, no condensing unit for
connection to parallel rack system
V Vision™ H Harmony™ B Ice storage bin J Drop-in M Ice Manager
diverter valve system
P Cornelius Profile
PR150
CAUTION
• Warranty does not cover exterior or outside installations.
• Moving parts. Do not operate with front cover removed.
• Hot parts. Do not operate with cover removed.
• To reduce risk of shock, disconnect power before servicing.
• Drain line must not be vented.
• Water supply must have particle ltration.
• Most ice machine cleaners contain citric or phosphoric acid, which can cause skin irritation. Read caution label on product and follow instructions carefully.
• Ice is slippery. Maintain counters and oors around dispenser in a clean and ice-free condition.
• Ice is food. Follow recommended cleaning instructions to maintain cleanliness of delivered ice.
4 HCD1010R/N, HMF1010R/N, HCD1410R/N, HMF1410R/N
Specications
3/4" barb x 3/4" FPT
1" Stand pipe/Drain
2 ft. x 1" OD
silicone tubing
Minimum 8"
radius
3/4" MPT x 1" slip
1" PVC Drain
2 ft. x 1" OD
silicone tubing
3/4" MPT x 1" slip
3/4" barb x 3/4" FPT
1'
1/4" per foot
(6,4 mm per 0,3 m)
Electrical
Separate circuit and equipment ground required.
Evaporator unit
Standard electrical: 115/60/1 Maximum fuse: 15A Amperage: 5A
Condensing unit
1010 Single-Phase 1010 3-Phase 1410 Single-Phase 1410 3-Phase
Electrical 208-230V, 60Hz 208-230V, 60Hz 208-230V, 60Hz 208-230V, 60Hz
Max Circuit HVACR breaker size 15A 15A 30A 25A
Min Circuit Ampacity 10.7A 9.9A 19.3A 14.2A
Evaporator plumbing
§ 3/8" OD push-in water inlet (connection inside machine) - 3/8" OD tubing required.
§ Water shut-off recommended within 10 feet (3 m).
§ Follett recommends installation of Follett water lter system (part# 00130286) in ice machine inlet water line.
Flush drain plumbing
§ 3/4" MPT ush drain connection at the rear of the machine.
§ Drain must slope 1/4" inch per foot (6 mm per 30.4 cm).
§ Drain line should not be shared with any other piece of equipment.
§ Drain line cannot be reduced to a size smaller than 1 inch.
§ Drain should be piped without a vent.
Ambient
Evaporator unit
Air temperature 100 F/38 C max. 50 F/10 C min. Water temperature 90 F/32 C max. 45 F/7 C min.
HCD1010R/N, HMF1010R/N, HCD1410R/N, HMF1410R/N 5
Water pressure 70 psi max. (483 kPa) 10 psi min. (69 kPa)
Condenser unit
Air temperature 120 F/49 C max. –20F/–29C min.
Refrigeration
§ 3/8" liquid line
§ 5/8" suction line
Note: Rack system installations require a capacity of 10,000 BTU/hr for 1010 machines and 13,000 BTU/hr for
1410 machines at 0 F (–18 C) evaporator temperature. Evaporator pressure regulator (not supplied) is required.
Weight
Evaporator unit: 125 lbs (57 kg) Condensing unit: 225 lbs (102 kg)
Ice production
1010 ice machine capacity/24 hrs.
Ambient Air Temperature F/C
F 60 70 80 90 10 0
C 16 21 27 32 38
50 1051 978 906 834 763 lbs
10 477 444 4 11 379 346 kg
60 994 925 855 796 737 lbs
16 451 420 388 361 335 kg
70 937 871 805 758 7 11 lbs
21 425 395 365 344 323 kg
80 904 839 774 727 680 lbs
27 410 381 351 330 309 kg
90 872 807 743 696 648 lbs
Evap Potable Water Temperature F/C
32 396 366 337 316 294 kg
1410 ice machine capacity/24 hrs.
Ambient Air Temperature F/C
F 60 70 80 90 10 0
C 16 21 27 32 38
50 14 74 1372 1269 1212 1154 lbs
10 669 623 576 550 524 kg
60 1385 1292 119 8 1148 1097 lbs
16 628 586 544 521 498 kg
70 1296 1212 1127 1083 1039 lbs
21 588 550 511 492 472 kg
80 1239 1155 1072 1030 988 lbs
27 562 524 487 468 449 kg
90 90 11 81 1099 1017 976 lbs
Evap Potable Water Temperature F/C
32 32 536 499 462 425 kg
6 HCD1010R/N, HMF1010R/N, HCD1410R/N, HMF1410R/N
Dimensions and clearances
§ Entire front of ice machine must be clear of obstructions/connections to allow removal.
§ 1" (26mm) clearance above ice machine for service.
§ 1" (26mm) minimum clearance on sides.
§ The intake and exhaust air grilles must provide at least 250 sq in (1615 sq cm) of open area.
§ Air-cooled ice machines – 18" (458 mm) minimum clearance between discharge and air intake-grilles.
1410 ONLY
1410 ONLY
NEMA 5-15 RIGHT ANGLE
A
C (1410 ONLY)
B
K
D (1410 ONLY)
A 21.26" (54.0 cm) B 21.11" (53.6 cm) C 23.77" (60.4 cm)
E
D 2.66" (6.8 cm) E 19.59" (49.8 cm)
F
F 16.00" (40.6 cm) G 2.73" (6.9 cm) H 2.28" (15.3 cm) I 6.04" (5.8 cm)
G
H
I
J
J 22.00" (55.9 cm) K 22.69" (57.6 cm)
HCD1010R/N, HMF1010R/N, HCD1410R/N, HMF1410R/N 7
Condensing unit
26.08"
(662 mm)
36.25"
(921 mm)
25.5"
(648 mm)
8 HCD1010R/N, HMF1010R/N, HCD1410R/N, HMF1410R/N
Operation
Cleaning/sanitizing and preventive maintenance (all models)
Note: Do not use bleach to sanitize or clean the icemaker.
Preventive maintenance
Periodic cleaning of Follett’s icemaker system is required to ensure peak performance and delivery of clean, sanitary ice. The recommended cleaning procedures that follow should be performed at least as frequently as recommended, and more often if environmental conditions dictate.
Cleaning of the condenser can usually be performed by facility personnel. Cleaning of the icemaker system, in most cases, should be performed by your facility’s maintenance staff or a Follett authorized service agent. Regardless of who performs the cleaning, it is the operator’s responsibility to see that this cleaning is performed according to the schedule below. Service problems resulting from lack of preventive maintenance will not be covered under the Follett warranty.
Weekly exterior care
The exterior may be cleaned with a stainless cleaner such as 3M Stainless Steel Cleaner & Polish or equivalent.
Monthly condenser cleaning (air-cooled icemaker only)
1. Use a vacuum cleaner or stiff brush to carefully clean condenser coils of air-cooled icemakers to ensure
optimal performance.
2. When reinstalling counter panels in front of remote icemakers, be sure that ventilation louvers line up with condenser air duct.
Semi-annual evaporator cleaning (every 6 months)
WARNING
• Wear rubber gloves and safety goggles (and/or face shield) when handling ice machine cleaner or sanitizer.
CAUTION
• Use only Follett approved SafeCLEAN Plus™ cleaning solution.
• DO NOT USE BLEACH.
• It is a violation of Federal law to use these solutions in a manner inconsistent with their labeling.
• Read and understand all labels printed on packaging before use.
Note: Complete procedure for cleaning an sanitizing MUST be followed. Ice must be collected for 10minutes
before putting ice machine back into service.
Fig. 1
1. Press the CLEAN button. The machine will drain. The
auger will run for a short time and then stop. Wait for the LOW WATER light to come on.
LO WATER
HCD1010R/N, HMF1010R/N, HCD1410R/N, HMF1410R/N 9
2. Follow the directions on the SafeCLEAN Plus packaging to mix 1 gal. (3.8 L) of Follett SafeCLEAN Plus solution. Use 100 F (38 C) water.
3. Using a 1 quart (1L) container, slowly ll cleaning cup until CLEANER FULL light comes on. Do not overll.
4. Place one Sani-Sponge™ in remaining sanitizing and cleaning solution and retain for Step 9.
Note: Do not use bleach to sanitize or clean the icemaker.
5. Replace cover on cleaner cup. Machine will clean,
then ush 3 times in approximately 15 minutes. Wait until machine restarts.
Fig. 2
CLEANER FULL
Fig. 3
6. To clean/sanitize ice transport tube – Press power
switch OFF
15
Fig. 4
10 HCD1010R/N, HMF1010R/N, HCD1410R/N, HMF1410R/N
7. Disconnect coupling as shown.
8. Using disposable food service grade gloves, insert
dry Sani-Sponge.
9. Insert Sani-Sponge soaked in SafeClean Plus (from Step 4).
10. Push both Sani-Sponges down ice transport tube with supplied pusher tube.
Fig. 5
Fig. 6
1
16"
(407 mm)
11. Remove and discard 16 inch (407 mm) pusher tube.
2
3
Fig. 7
HCD1010R/N, HMF1010R/N, HCD1410R/N, HMF1410R/N 11
12. Reconnect coupling. Press power switch ON. Ice pushes Sani-Sponges through ice transport tube.
13. Place a sanitary (2 gal. or larger) container in bin or dispenser to collect Sani-Sponges and ice for 10 minutes.
14. Collect 5.5 lbs (3 kg) of ice from unit. Discard ice and Sani-Sponges.
Fig. 8
Fig. 9
12 HCD1010R/N, HMF1010R/N, HCD1410R/N, HMF1410R/N
Service
Ice machine operation (all models)
Follett’s ice machine consists of ve distinct functional systems covered in detail as follows:
§ Water system
§ Electrical control system
§ Mechanical assembly
§ Refrigeration system
§ Bin full
The Horizon ice machine overview
The Follett Horizon ice machine uses a horizontal, cylindrical evaporator to freeze water on its inner surface. The refrigeration cycle is continuous; there is no batch cycle. The evaporator is ooded with water and the level is controlled by sensors in a reservoir. A rotating auger (17 RPM) continuously scrapes ice from the inner wall of the evaporator. The auger moves harvested ice through the evaporator into an ice extrusion canal. The ice is forced through a restrictive nozzle that squeezes out the water and creates the Chewblet. The continuous extrusion process pushes the Chewblets through a transport tube into a dispenser or bin.
A solid state PC board controls and monitors the functionality of the ice machine. In addition to sequencing electrical components, the board monitors various operational parameters. A full complement of indicator lights allows visual status of the machine's operation. Additionally, the PC board controls the self-ushing feature of the ice machine. The evaporator water is periodically drained and replenished to remove minerals and sediment.
A unique “bin full” detection system is incorporated in the Horizon ice machine. A switch located at the ice discharge port of the machine detects the position of the transport tube. When the bin lls up with ice, the transport tube moves out of the normal running position, and the switch turns the ice maker off. A domed housing at the end of the transport tube contains the ice extrusion loads during shut down.
Harvest system diagram
Ice Transport Tube
Water Inlet
Compression Nozzle
Auger
HCD1010R/N, HMF1010R/N, HCD1410R/N, HMF1410R/N 13
Water system
The water level in the evaporator is controlled by a feed solenoid and level detecting sensors. Referencing the diagram below, water sensing probes extend down into the reservoir at the end of the evaporator assembly. The system works via electrical conductivity as follows:
The probe labeled B is the common. When water is between any of the other probes and the common, the PC board will sense the activation. During normal operation, the water level rises and falls between the Normal High and Normal Low probes. As water is consumed to make ice, the level will fall until the Normal Low probe is exposed, triggering the water feed solenoid on. Water will ll until the Normal High sensor is activated.
Note: The potable water total dissolved solids (TDS) content must be greater than 10 ppm for the water control
system to function properly. If using reverse osmosis water ltration system, ensure TDS level is greater than 10 ppm.
Water system diagram
Water level diagram
Common
Normal Hi
Normal Lo
Normal
Operating
Range
14 HCD1010R/N, HMF1010R/N, HCD1410R/N, HMF1410R/N
“Bin full” detection system
The Follett Horizon ice machine incorporates a unique “bin full” detection system that consists of the shuttle and actuator. The shuttle incorporates a ag and switch. Referencing the gure below, the normal running position of the ag is down, and the switch is closed. When the bin lls to the top and ice can no longer move through the tube, the machine will force the shuttle ag up, opening the switch and shutting the machine off. The shuttle actuator, located above the ice bin allows the ice to curl up within it when the bin is full. In this way, there are no loads generated that would tend to lift off the lid of the bin.
Shuttle ag and sensor
Shuttle actuator
Running
Running Off
Off
HCD1010R/N, HMF1010R/N, HCD1410R/N, HMF1410R/N 15
Electrical system
FLASHINGON or OFF
Legend:
OFFON
ATTENTION!
To prevent circuit breaker/Hi-amp overload, wait 5 minutes before restarting this unit. This allows the compressor to equalize and the evaporator to thaw.
Normal control board operation
The PC board indicator lights provide all the information necessary to determine the machine's status. Green indicator lights generally represent “go” or normal operation; Yellow indicators represent normal off conditions; Red indicators generally represent alarm conditions, some of which will lock the machine off.
A ashing green light labeled POWER indicates power to the machine. All other normal operation status indicators are covered as follows:
Ice machine disposition Operating conditions
1. Ice machine is making ice.
.
2. Ice machine is not making ice.
DIP Switch Settings
1. Normal running.
2. Normal time delay. When the bin lls with ice, the LOW BIN light goes out momentarily and the refrigeration and auger drive systems immediately shut down. (Note: The fan motor will continue to run for 10 minutes to cool condenser) The TIME DELAY light comes on, initiating the time delay period. When the time delay expires, the machine will restart provided that the LOW BIN light is on.
16 HCD1010R/N, HMF1010R/N, HCD1410R/N, HMF1410R/N
Error faults:
The Horizon PC board monitors various operating parameters including high pressure, auger gearmotor amperage limits, clogged drain, and low water alarm conditions. There are three types of errors namely “soft” (time delay) "hard" (reset), and “run”.
§ Soft errors will automatically reset after the 1 hour time delay or can be reset by cycling power.
§ Hard errors must be reset on the control board.
§ Run errors will give an indication of a problem, but will allow continuous normal operation.
Soft errors:
HI AMPS: The PC board monitors the amperage of the auger motor. Should the gear motor experience current draw above the allowable limit, the machine will shut down and the TIME DELAY and HI AMP will be illuminated. After the time delay the machine will restart and the TIME DELAY and HI AMP will clear.
LO WATER: During operation, the water level cycles between the normal low and normal high sensors. Should the water be shut off to a running machine, a soft error will occur. The error sequence is as follows: During operation, the water level falls to the normal low sensor, and when it does the water feed solenoid is energized. If water is not detected at the normal low sensor within 10 seconds, a soft error will occur. The machine will shut down, but the water feed solenoid will remain energized. Should water return, it will ll to the normal low sensor and the machine will resume normal operation. The error will clear automatically.
HI PRESSURE: Should the refrigeration pressure rise above 425 psi, the machine will shut down and the TIME DELAY and HIGH PRESSURE will be illuminated. After the time delay, and if the pressure has fallen back below the reset point of 295 psi, the machine will restart and the TIME DELAY and HIGH PRESSURE will clear.
Hard error:
DRAIN CLOG: The drain clog sensor, located in the chassis will detect the presence of water just below the top edge of the chassis. After the sensors are dried off, the machine must be reset on the control board to resume operation.
Run errors:
DRAIN CLOG: When the machine shuts down on a full bin and there has been 30 minutes of cumulative compressor run time, the machine will purge before starting. During this purge, if water does not get below the low probe in the reservoir within 20 seconds, the Drain Clog LED will light. The machine will continue to run but this is an indication of a poorly draining machine and must be addressed.
Relay output indication: Each relay on the board has an indicator light associated with its output. For example, when the relay for the water feed solenoid is energized, the adjacent indicator light glows green.
Evaporator ushing sequence:
During operation, the purge solenoid will open in order to drain water. There are two drain settings to choose from: High TDS or Low TDS. (There is a rocker switch behind the front cover of the machine.) The intent is to drain the Total Dissolved Solids from the machine while it makes ice.
While ice is being made, the TDS of the water in the evaporator increases in TDS concentration. Without periodic draining, the TDS levels will climb to very detrimental levels, levels that will cause scale to form and cause poor machine operation. The Low TDS setting will allow the machine to operate for one hour before going through the ushing sequence; the High TDS setting will allow the machine to run for 10 minutes before going through the ushing sequence.
The ushing sequence toggles the purge and ll solenoids three times. That is, the purge solenoid will energize until the water level drops below the low probe. The ll solenoid then energizes until water reaches the high probe, and so on for 3 cycles.
Typically, High TDS might be considered levels above 200 PPM, but local experience and varying water chemistry may compel a High TDS setting for best performance in even lower TDS levels.
Off cycle: At the completion of off-cycle time delay, the machine checks for a cumulative 30 minutes of ice making time since the last off-cycle ush. If the cumulative ice making time exceeds 30 minutes, the machine will open the drain valve for 60 seconds to drain the evaporator in its entirety. It will then rell with water and begin making ice. If the ice making time is less than 30 minutes, the machine will start and begin making ice without draining the evaporator.
HCD1010R/N, HMF1010R/N, HCD1410R/N, HMF1410R/N 17
Loading...
+ 37 hidden pages