KA2803B
Earth Leakage Detector
www.fairchildsemi.com
Features
• Low Power Consumption PD =5mW, 100V/200V
• Built-in Voltage Regulator
• High Gain Differential Amplifier
• 0.4mA Output Current Pulse to Trigger SCR' S
• Low External Part Count
• DIP Package (8-DIP), High Packing Density
• High Noise Immunity, Large Su rge Margin
• Super Temperature Characteristic of Input Sensitivity
• Wide Operating Temperature Range (T
+80°C)
• Operation from 12 to 20V Input
= -25°C ~
A
Functions
• Differential Amplifier
• Level Comparator
• Latch Circuit
Block Diagram
V
CC
8
7
O
S(Output)
Description
The KA2803B is designed for use in earth leakage circuit
interrupters, for stable operation of the AC line in breakers.
The input of the differential amplifier is connected to the
secondary coil of ZCT(Zero Current Transformer). The
amplified output of differential amplifier is integrated at
external capacitor to gain adequate time delay that is
specified in KSC4613. The level comparator generates high
level when earth leakage current is greater than the fixed
level.
8-DIP
1
8-SOP
1
N
R
6
S
C
5
Bias V ol ta ge
Bias
Internal
Latch
Reference
Voltage
Generator
Reference
Zener Internal
Zener
Protect
1
V
R
©2002 Fairchild Semiconductor Corporation
2
V
I
+
-
3
GND
Latch
Circuit
4
O
D
Rev. 1.0.4
KA2803B
Absolute Maximum Ratings (TA = 25°°°°C)
Parameter Symbol Value Unit
Supply Voltage V
Supply Current I
Power Dissipation P
Lead Temperature (Soldering 10sec) T
Operating Temperature T
Storage Temperature T
CC
CC
D
LEAD
OPR
STG
20 V
8mA
300 mW
260 °C
- 25 ~ +80 °C
- 65 ~ +150 °C
Electrical Characteristics
(TA = -25°C to 80°C)
Parameter Symbol Conditions Circuit Min. Typ. Max. Unit
Supply Current 1 I
Trip Voltage V
Differential Amplifier Output
Current 1
Differential Amplifier Output
Current 2
I
O(D)
I
O(D)
Output Current I
Latch on Voltage V
Latch Input Current I
Output Low Current I
SCON
SCON
OSL
Diff. Input Clamp Voltage V
Maximum Current Voltage V
Supply Current 2 I
Latch Off Supply Voltage V
SOFF
Response Time(Note1) T
CC
T
O
IDC
SM
S2
ON
V
= 12V
CC
V
= Open
R
V
= 2V
I
VCC = 16V
V
= 2V ~ 2.02V VI = 2V
R
(-25°C)
1
(80°C) - - 480
2141618mV
(Note1) 12.5 14.2 17 mVrms
VCC = 16V
(V
=30mV , VOD =1.2V)
R-VI
VCC =16V, VOD =0.8V
V
, VI =V
R
P (Note2)
3 -12 20 -30 µA
4172737
VSC = 1.4V (-25°C)
= 0.8V (25°C) 200 400 800
OS
= 16V (25°C) 100 300 600
V
CC
5
VCC = 16V 6 0.7 1.0 1.4 V
V
= 16V 7 -13 -7 -1 µA
CC
VCC = 12V, V
V
= 16V, I
CC
I
= 7mA 10 20 24 28 V
SM
VCC = 12V, V
= 0.2V 8 200 800 1400 µA
OSL
= 100mA 9 0.4 1.2 2 V
IDC
= 0.6V 11 200 400 900 µA
OSL
VOS = 12V
= 1.8V
SC
I
=100mA
IDC
VCC = 16V
V
= 0.3V , 1V < VX < 5V
R-VI
12 7.0 8.0 9.0 VV
13 2 3 4 mS
- - 580
(rms)
200 400 800
µA(25°C) 300 400 530
µA
µAV
Note:
1. This Parameter, although guaranteed, is not tested in Production.
2. V
P=Vpin1
-0.03V at V
pin2
=2.0V , V
pin4
=1.5V
2
Test Circuit
Supply Current1 Trip Voltage
1
Open
2V
Differential Amplifier Output
3
Current1
Open
V
p
A
1.5V
1
2
3
4
1
2
3
4
I
O(D)=?
KA2803B
V
for VP Measurement
PIN1
473
Pin1 Voltage
Pin1 Voltage
Vpin1
2V
DVM
Output Current
5
1.5V
1
8
7
2
6
3
4
5
* V
p
16V
Open
Open
=Vpin1-0.03V
473
2
8
7
12V
Open
Vr=2V~2.02V
2V Open
6
5
473
Differential Ampl ifie r Outp ut
4
DVM
1
8
7
2
6
3
4
5
16V
Open
Current2
Open
Open
16V
Open
Open
Open
1
8
7
2
6
3
4
5
1.4V
16V
Iout
0.8V
A
473
Open
16V
V
p
8
7
6
5
Open
1
8
2
7
6
3
5
4
I
O(D)=?
A
0.8V
6
Latch on Voltage
Open
Open
9
Diff. Input Clamp Voltage
100mA V
Open
DVM
IDC
1
2
3
4
0.6V
8
7
6
5
1.5V
1
2
3
4
Open
Latch Off Supply Voltage
12
100mA
Open
1
2
3
4
Open
?
8
7
6
5
0.8V
Latch Input Current Output Low Current
7
> 6V
Open
Open
473
16V
DVM
V
1
8
7
2
6
3
4
5
?
16V
DVM
473
A
Open
1.5V
0.6V
Maximum Curr ent Voltage Su p p l y Current2
10
I=7mA
473
Open
Open
Open
Response Time
13
0.3V
p-p
1V<Vx<5
100
8
7
6
5
473
473
A
Open
DVM
>
10V
473
1
8
2
7
3
6
5
4
1
2
3
4
8
7
16V
Open
6
5
Open
12V
DVM
473
> 6V
VSM=?
16V
8
11
Open
Open
Open
Open
Open
A
473
I
cc
A
0.6V
?
=?
473
12V
0.2V
12V
1
8
7
2
6
3
5
4
1
8
7
2
6
3
5
4
3
KA2803B
Typical Characteristics
Figure 1. Supply Curre nt
Figure 3. Diffe rential Amp. Output Current
VR, VI=VP, VOD=0.8V
Figure 2. Differential Am p. Output Curre nt
VR-VI=30mV, VOD=1.2V
Figure 4. Output Current
Figure 5. Output Low Current
Figure 6. Vcc Voltage Vs. Supply Current 1
4