The HGTP12N60A4, HGTG12N60A4 and
HGT1S12N60A4S9A are MOS gated high voltage switching
devices combining the best features of MOSFETs and
bipolar transistors. These devices have the high input
impedance of a MOSFET and the low on-state conduction
loss of a bipolar transis tor. The much lower on-state voltage
drop varies only moderately between 25
o
C and 150oC.
This IGBT is ideal for many high voltage switching
applications operating at high frequencies where low
conduction losses are essential. This device has been
optimized for high frequency switch mode power supplies.
CAUTION: Stresses above those listed in “A bsolute Maximu m Rating s” may cause per manent d amage to t he device. This is a str ess on ly rating and operation o f the
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
L
PKG
54A
23A
96A
±20V
±30V
167W
-55 to 150
300
260
o
C
o
C
o
C
NOTE:
1. Pulse width limited by maximum junction temperature.
Electrical SpecificationsT
= 25oC, Unless Otherwise Specified
J
PARAMETERSYMBOLTEST CONDITIONSMINTYPMAXUNITS
Collector to Emitter Breakdown VoltageBV
Emitter to Collector Breakdown VoltageBV
Collector to Emitter Leakage CurrentI
Collector to Emitter Saturation VoltageV
Gate to Emitter Threshold VoltageV
Gate to Emitter Leakage CurrentI
CES
ECS
CES
CE(SAT)IC
GE(TH)
GES
Switching SOASSOAT
Gate to Emitter Plateau VoltageV
On-State Gate ChargeQ
Current Turn-On Delay Timet
Current Rise Timet
Current Turn-Off Delay Timet
Current Fall Timet
Turn-On Energy (Note 3)E
Turn-On Energy (Note 3)E
Turn-Off Energy (Note 2)E
Current Fall Timet
Turn-On Energy (Note 3)E
Turn-On Energy (Note 3)E
Turn-Off Energy (Note 2)E
Thermal Resistance Junction To CaseR
rI
fI
ON1
ON2
OFF
θJC
IGBT and Diode at TJ = 125oC
I
= 12A
CE
= 390V
V
CE
= 15V
V
GE
R
= 10Ω
G
L = 500µH
Test Circuit (Figure 20)
NOTES:
2. Turn-Off Energy Loss (E
at the point where the collector current equals zero (I
) is defined as the integral of the instantaneous power loss starting at the trailing edge of the input pulse and ending
OFF
= 0A). All devices were tested per JEDEC Standard No. 24-1 Method for Measurement
CE
of Power Device Turn-Off Switching Loss. This test method produces the true total Turn-Off Energy Loss.
3. Values for two Turn-On loss conditions are shown for the convenience of the circuit designer. E
is the turn-on loss when a typical diode is used in the test circuit and the diode is at the same T
Figure 20.