Fairchild NDP7060, NDB7060 service manual

NDP7060 / NDB7060 N-Channel Enhancement Mode Field Effect Transistor
General Description Features
May 1996
These N-Channel enhancement mode power field effect transistors are produced using Fairchild's proprietary, high cell density, DMOS technology. This very high density process is especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulses in the avalanche and commutation modes. These devices are particularly suited for low voltage applications such as automotive, DC/DC converters, PWM motor controls, and other battery powered circuits where fast switching, low in-line power loss, and resistance to transients are needed.
75A, 60V. R
= 0.013 @ VGS=10V.
DS(ON)
Critical DC electrical parameters specified at elevated temperature.
Rugged internal source-drain diode can eliminate the need for an external Zener diode transient suppressor.
175°C maximum junction temperature rating. High density cell design for extremely low R
DS(ON)
.
TO-220 and TO-263 (D2PAK) package for both through hole and surface mount applications.
________________________________________________________________________________
D
G
S
Absolute Maximum Ratings T
C
Symbol Parameter NDP7060 NDB7060 Units
V
DSS
V
DGR
V
GSS
Drain-Source Voltage 60 V Drain-Gate Voltage (RGS < 1 M)
60 V
Gate-Source Voltage - Continuous ± 20 V
- Nonrepetitive (tP < 50 µs) ± 40
I
D
Drain Current - Continuous 75 A
- Pulsed 225
P
D
Maximum Power Dissipation @ TC = 25°C
150 W
Derate above 25°C 1 W/°C TJ,T T
L
Operating and Storage Temperature Range -65 to 175 °C
STG
Maximum lead temperature for soldering purposes,
275 °C
1/8" from case for 5 seconds
© 1997 Fairchild Semiconductor Corporation
NDP7060.SAM
Electrical Characteristics (T
= 25°C unless otherwise noted)
C
Symbol Parameter Conditions Min Typ Max Units DRAIN-SOURCE AVALANCHE RATINGS (Note 1)
W
I
AR
Single Pulse Drain-Source Avalanche
DSS
Energy
VDD = 25 V, ID = 75 A 550 mJ
Maximum Drain-Source Avalanche Current 75 A
OFF CHARACTERISTICS
BV I
DSS
I
GSSF
I
GSSR
Drain-Source Breakdown Voltage
DSS
Zero Gate Voltage Drain Current
VGS = 0 V, ID = 250 µA VDS = 60 V, V
GS
= 0 V
TJ = 125°C
Gate - Body Leakage, Forward
VGS = 20 V, VDS = 0 V
Gate - Body Leakage, Reverse VGS = -20 V, VDS = 0 V -100 nA
60 V
250 µA
1 mA
100 nA
ON CHARACTERISTICS (Note 1)
V
R
I g
GS(th)
DS(ON)
D(on)
FS
Gate Threshold Voltage
VDS = VGS, ID = 250 µA
TJ = 125°C
Static Drain-Source On-Resistance VGS = 10 V, ID = 40 A 0.01 0.013
TJ = 125°C
On-State Drain Current
VGS = 10 V, VDS = 10 V
Forward Transconductance VDS = 10 V, ID = 37.5 A 15 39 S
2 2.8 4 V
1.4 2.1 3.6
0.015 0.024
75 A
DYNAMIC CHARACTERISTICS
C
iss
C
oss
C
rss
Input Capacitance Output Capacitance 1130 1600 pF Reverse Transfer Capacitance 380 800 pF
VDS = 25 V, VGS = 0 V, f = 1.0 MHz
2960 3600 pF
SWITCHING CHARACTERISTICS (Note 1)
t t
t t
Q Q Q
D(on)
r
D(off)
f
g
gs
gd
Turn - On Delay Time VDD = 30 V, ID = 75 A, Turn - On Rise Time 128 400 nS
VGS = 10 V, R
GEN
= 5
17 30 nS
Turn - Off Delay Time 54 80 nS Turn - Off Fall Time 90 200 nS
Total Gate Charge Gate-Source Charge 14.5 nC
VDS = 48 V, ID = 75 A, VGS = 10 V
100 115 nC
Gate-Drain Charge 51 nC
NDP7060.SAM
Electrical Characteristics (T
= 25°C unless otherwise noted)
C
Symbol Parameter Conditions Min Typ Max Units DRAIN-SOURCE DIODE CHARACTERISTICS
I ISM V
t I
S
SD
rr
rr
Maximum Continuos Drain-Source Diode Forward Current 75 A Maximum Pulsed Drain-Source Diode Forward Current 225 A Drain-Source Diode Forward Voltage VGS = 0 V, IS = 37.5 A (Note 1) 0.9 1.3 V
TJ = 125°C
0.84 1.2 Reverse Recovery Time VGS = 0 V, IF = 75 A, dIF/dt = 100 A/µs 40 76 150 ns Reverse Recovery Current 2 4.7 10 A
THERMAL CHARACTERISTICS
R
θ
R
θ
Note:
1. Pulse Test: Pulse Width < 300 µs, Duty Cycle < 2.0%.
Thermal Resistance, Junction-to-Case 1 °C/W
JC
Thermal Resistance, Junction-to-Ambient 62.5 °C/W
JA
NDP7060.SAM
Loading...
+ 4 hidden pages