Epson S1D13700 User's & Technical Manual

Page 1
MF1542-01
LCD Controller ICs
S1D13700
Technical Manual
Page 2
No part of this material may be reproduced or duplicated in any form or by any means without the written permission of Seiko Epson. Seiko Epson reserves the right to make changes to this material without notice. Seiko Epson does not assume any liability of any kind arising out of any inaccuracies contained in this material or due to its application or use in any product or circuit and, further, there is no representation that this material is applicable to products requiring high level reliability, such as, medical products. Moreover, no license to any intellectual property rights is granted by implication or otherwise, and there is no represen­tation or warranty that anything made in accordance with this material will be free from any patent or copyright infringement of a third party. This material or portions thereof may contain technology or the subject relating to strategic products under the control of the Foreign Exchange and Foreign Trade Law of Japan and may require an export license from the Ministry of International Trade and Industry or other approval from another government agency.
In this manual, Zilog's Z80-CPU or its equivalent shall be called Z80, Intel's 8085A or its equivalent shall
be called 8085 and Motorola's MC6809 and MC6802 or their equivalents shall be called 6809 and 6802, respectively. ® stands for registered trade mark. All other product names mentioned herein are trademarks and/or registered trademarks of their respec­tive owners.
© Seiko Epson Corporation 2003 All rights reserved.
Page 3
Configuration of product number
Devices
S1 D 13706 F 00A0 00
Evaluation Board
S5U 13705 P00C0 00
Packing specification Specification Package (B: CSP, F: QFP) Corresponding model number Model name (D: driver, digital products) Product classification (S1: semiconductor)
Packing specification Specification Corresponding model number (13705: for S1D13705) Product classification (S5U: development tool for semiconductor)
Page 4
CONTENTS

Table of Contents

1 Overview...............................................................................................................................1
1.1 Features.......................................................................................................................................1
1.2 System Overview.........................................................................................................................2
1.3 List of Abbreviations.....................................................................................................................4
2 Pins .......................................................................................................................................5
2.1 Pin Connection.............................................................................................................................5
2.1.1 Pin Assignments.............................................................................................................5
2.1.2 Pin Description...............................................................................................................6
2.1.3 Package Dimensions......................................................................................................8
2.2 Pin Functions...............................................................................................................................9
2.2.1 Power Supply Pins .........................................................................................................9
2.2.2 Oscillator and Clock Input Pins ......................................................................................9
2.2.3 System Bus Connecting Pins.......................................................................................10
2.2.4 LCD Driver Control Pins...............................................................................................13
2.2.5 TEST Control Pins........................................................................................................13
3 Commands and Command Registers..............................................................................14
3.1 Types of Commands (when Indirectly Interfaced)......................................................................14
3.2 Command Register Map (when Directly Interfaced)..................................................................15
3.3 Command Description ...............................................................................................................17
3.3.1 Operation Control Commands......................................................................................17
3.3.2 Display Control Commands..........................................................................................25
3.3.3 Drawing Control Commands........................................................................................43
3.3.4 Memory Control Commands ........................................................................................44
4 Function Description.........................................................................................................45
4.1 Display Functions.......................................................................................................................45
4.1.1 Screen Management....................................................................................................45
4.1.2 Character Generator (CG)............................................................................................47
4.1.3 Screen Configuration....................................................................................................50
4.1.4 Cursor...........................................................................................................................61
4.1.5 Relationship between Display Memory and Screens...................................................62
4.1.6 Determining Various Parameters..................................................................................64
4.1.7 Scrolling........................................................................................................................65
4.1.8 Attribute Display using the Layered Function...............................................................68
4.2 Oscillator Circuit.........................................................................................................................70
4.3 Example of Initial Settings..........................................................................................................71
4.4 Character Codes and Character Fonts......................................................................................81
4.4.1 Character Fonts (Internal CG)......................................................................................81
4.4.2 Character Codes..........................................................................................................82
5 Specifications.....................................................................................................................83
5.1 Absolute Maximum Ratings.......................................................................................................83
5.2 Recommended Operating Conditions........................................................................................83
5.3 Electrical Characteristics ...........................................................................................................84
5.4 Timing Characteristics ...............................................................................................................86
5.4.1 System Bus (Generic Bus/80-series MPU)..................................................................86
5.4.2 System Bus Read/write characteristics II (MC68K-series MPU)..................................89
5.4.3 External Clock Input Characteristics ............................................................................92
5.4.4 LCD Control Signal Timing Characteristics..................................................................93
6 MPU Interface.....................................................................................................................95
6.1 Connection to the System Bus...................................................................................................95
6.1.1 80-series MPU..............................................................................................................95
6.1.2 68-series MPU..............................................................................................................95
6.2 Interfaces with the MPU (Reference).........................................................................................96
S1D13700 Technical Manual
EPSON
i
Page 5
CONTENTS
Table of Figures
Figure 1-1 Block diagram of the S1D13700 ............................................................................................ 2
Figure 3-1 Combination of IV and HDOT SCR...................................................................................... 20
Figure 3-2 Typical relationship between FX/FY and display addresses................................................ 21
Figure 3-3 Example of screen compositions ......................................................................................... 37
Figure 3-4 Prioritized overlay ................................................................................................................ 38
Figure 4-1 Character display ([FX] ≤ 8 dots) ......................................................................................... 45
Figure 4-2 Example of character generator definition ........................................................................... 45
Figure 4-3 Example of character configuration consisting of two or more memory addresses
(when [FX] = 9) ................................................................................................................... 46
Figure 4-4 Relationship between virtual and physical screens ............................................................. 50
Figure 4-5 Basic read cycle of display memory..................................................................................... 60
Figure 4-6 Relationship between TC/R and C/R................................................................................... 60
Figure 4-7 Relationship between display memory and screens............................................................ 62
Figure 4-8 Window and display memory settings.................................................................................. 63
Figure 4-9 Example of display memory mapping.................................................................................. 63
Figure 4-10 Example of using HDOT SCR ([FX] = 8).............................................................................. 67
List of Tables
Table 3-1 W/S Related Registers ......................................................................................................... 20
Table 4-1 Row Select Addresses ......................................................................................................... 48
Table 4-2 Example of Parameters for the LCD Unit ............................................................................. 64
Table 4-3 Character Codes .................................................................................................................. 82
ii
EPSON
S1D13700 Technical Manual
Page 6

1: OVERVIEW

1O
VERVIEW
The S1D13700 Controller displays text and graphics on a midsize, dot-matrix liquid crystal display (LCD). A very flexible, low-power display system can be configured using the S1D13700 in combination with various LCD modules. The character code or bitmap display data from the microprocessor is temporarily stored in frame buffer memory, then periodically read out and converted into LCD module signals for output to the LCD. Its abundant command functions make it possible to overlay the text and graphic screens, scroll the screen in any direction (except in grayscale mode), and split the screen for multi-window display, as well as display pictures in grayscale mode. Moreover , the embedded-type 32-KB SRAM display buffer , built-in LCD module control circuit, and high-speed character generator allow you to build an LCD control block with only a few external circuits.

1.1 Features

Number of display dots:...........................Text display mode
Three display modes: ..............................Text display mode, graphic display mode, and text/
Grayscale display function: ....................1 bpp, 2 bpp, or 4 bpp selectable
Flexible scroll function: ..........................The text/graphics display screen can be easily moved
Frame buffer: ..........................................Up to 32 KB of SRAM, virtual screen configuration
Internal character generator: ...................160 characters (Internal mask ROM dots 5 x 7 dots) +
Drive duty cycle: .....................................Can be set without any required increments from 1/2
MPU interface .........................................Generic, 6800 series or M68K series
Power supply voltage ..............................5 V/3.3 V (dual power supplies) with MPU interface
Package: ..................................................64-pin QFP13 (Pd-free)
80 columns x 30 rows (monochrome, 1 bpp) 40 columns x 30 rows (4 gray shades, 2 bpp) 30 columns x 20 rows (16 gray shades, 4 bpp) + graphic screen overlay
Graphic display mode 640 dots x 240 dots (monochrome, 1 bpp) 320 dots x 240 dots (4 gray shades, 2 bpp) 240 dots x 160 dots (16 gray shades, 4 bpp) x three­screen overlay
graphic overlay mode (Layered display functions)
and smoothly scrolled horizontally.
64 characters (internal CGRAM 8 dots x 16 dots) or 256 characters (internal CGRAM 8 dots x 16 dots)
up to 1/256 duty cycles.
Direct access or indirect access selectable
and LCD interface pins independently selectable or
3.3 V (single power supply)
S1D13700 Technical Manual
EPSON
1
Page 7
1: OVERVIEW

1.2 System Overview

Positioned midway between the MPU and LCD panel, the S1D13700 enables the sending and receiving of control commands and data, and access of registers by the MPU for display, thus making it possible to control up to 32 Kbytes of internal display memory (VRAM).
Moreover, because the S1D13700 has a built-in a control circuit for LCD units, it is possible to take full advantage of the features of midsize, dot-matrix liquid crystal display units without using any external circuit.
EPDAT# to FFDAT0
FESHIFT
LCD
XECL
YSCL
FPLINE
EPFLAME
MOD
YDIS
Video RAM
Video RAM
Arbitrate
Display Address
Character
Generator RAM
Generator
Generator ROM
Cursor Address
Controller
Microprocessor Interface
Figure 1-1 Block diagram of the S1D13700
Character
Layered
Controller
LCD Controller
Layered
GrayScale
FRM Controller
AB0 to AB15
DB0 to DB7
CS#
RD#
WR#
AS#
WAIT#
Dot Clock Generator
Dot Counter
RESET#
CNF0 to CFN4
TSTEN
Internal Clock
Oscillator
CLK1
XCO1
XCD1
The S1D13700 divides the display memory space into the four areas shown below. When this configuration is combined with the layered (overlaid) display and flexible scroll functions of the S1D13700, it is possible to greatly reduce the MPU load when inverting or underlining text, displaying graphs with text, or creating simple animation.
The S1D13700 uses the display memory space by dividing it into the four areas shown below to realize the layered display functions using only a single controller.
2
EPSON
S1D13700 Technical Manual
Page 8
Example of display memory mapping by the S1D13700
(1)Character code table
• A memory area to store character code when displaying text
• 1 character = 8 bits
• Variable table mapping (by altering the scroll start address)
(2)Graphic data table
• A memory area to store bitmap data
• 1 word = 8 bits
• Variable table mapping
(3)CG RAM table (for external characters)
• A character generator whose character patterns can be altered by the MPU as desired
• Maximum 8 x 16 bits (16 bytes per character)
• Maximum 64 discrete characters, or 256 characters when not using CGROM
• Internal CG RAM used
• Variable table mapping
(4)CG ROM table
• Maximum 5 x 7 bits
• Maximum 160 characters
• Mapped to addresses 8030h–85AFh. Data cannot be read out by the MPU.
1: OVERVIEW
To make the most of the above-mentioned functions of the S1D13700, a high-speed interfacing method is used to enable pipelined command processing between the MPU and S1D13700. Most commands of the S1D13700 are processed so that the controller completes the processing of any input command before the next command is issued from the MPU. Therefore, the MPU does not need to frequently check the status of the S1D13700, and is not kept waiting by the S1D13700. Thus, the high-speed interfacing method adopted for the S1D13700 helps minimize possible reduction in the MPU’s processing capability.
Moreover, the MPU can access the above display space at any time irrespective of display mode (except in sleep mode).
S1D13700 Technical Manual
EPSON
3
Page 9
1: OVERVIEW

1.3 List of Abbreviations

Abbreviation Meaning
............................ Address
•AB
•AP
............................ Address pitch
.............................. Text display mode (Denotes a command in command code descriptions.)
•C
............................ Cursor movement direction
•CD
•CG
............................ Character generator
• CGRAM ADR
........................... Cursor shape
•CM
• C/R
........................... Number of characters per line
......................... Cursor size in the X direction
• CRX
.......................... Cursor size in the Y direction
•CRY
• CSRDIR
• CSRFORM
• CSRR
• CSRW
•DM
•FC
•f
•f
•FP
•FY
•G
• GLC
• HDOT SCR
•IV
•L
• L/F
• MREAD
•MX
• MWRITE
•OV
• OVRAY
•P
•R
• RAM
•ROM
• SAD
•SL
• TC/R
• VRAM
• MOD(WF)
• W/S
• XDr
• YDr
........................ Cursor address read
........................... Display mode
............................ Flashing cursor
............................ Frame frequency
FR
.......................... Oscillation frequency
OSC
............................. Layer flashing
............................ Character field in the Y direction
.............................. Graphic display mode
.......................... Graphic liquid crystal unit controller
............................. Inverse
............................... Layer
............................ Number of lines per screen
........................... Screen composition method
............................ Screen overlay
............................... Parameter
.............................. Row
......................... Random access memory
......................... Read-only memory
.......................... Display start address
............................. Number of scanning lines
......................... Total number of characters per line
.......................... Double common/single common
.......................... X direction driver
.......................... Y direction driver
........... Character generator memory offset address
.................... Direction of cursor movement
................ Cursor shape
....................... Cursor address write
............... Smooth scrolling in horizontal direction
.................... Display memory readout
.................. Display memory write
..................... Screen overlay
...................... Display memory
................. AC drive waveform
4
EPSON
S1D13700 Technical Manual
Page 10

2: PINS

2P
INS

2.1 Pin Connection

2.1.1 Pin Assignments

WAI T#
HIOV
CNF0 CNF1 CNF2 CNF3 CNF4
AB15 AB14 AB13
DB3 DB2 DB1 DB0
SS
V
DD1
AS#
49
64
HIOVDD
DB4
48
DB5
DB6
DB7
CS#
WR#
S1D13700F00A
Index
RD#
COREVDD
CLKI
TESTEN
SCANEN
RESET#
XCG1
XCD1
33
16 1
SS
V
32
17
NIOVDD YDIS FPFRAME YSCL V
SS
MOD FPLI NE COREV XECL FPSHI FT NIOV FPDAT0 FPDAT1 FPDAT2 FPDAT3 V
DD
DD
SS
S1D13700 Technical Manual
VSS
AB12
AB11
AB9
AB10
AB8
HIOVDD
EPSON
AB7
AB6
AB5
AB4
AB3
AB2
AB1
COREVDD
AB0
5
Page 11
2: PINS

2.1.2 Pin Description

Key :
I = O = IO = P = HIBC = HIBH = HIBCD1 = HOB2T = HBC2T = HTB2T =
Input Output Input/output Power supply CMOS input CMOS Schmitt input CMOS input with pulldown resistor (60 ohms typ. at 5.0 V) Normal buffer (8 mA/-8 mA at 5 V) LVTTL I/O buffer (6 mA/-6 mA at 3.3 V) Tri-state output (6 mA/-6 mA at 3.3 V)
HLIN = Transparent input HLOT = Transparent output ITST1 =
Pin Name Pin No.
HIOVDD(VDD) NIOVDD(V
COREVDD(V
XCG1(XG) 35 I HIOVDD HLOT Gate input for oscillator XCD1(XD) 34 O HIOVDD HLIN Drain output for oscillator
CNF0 – CNF4
(SEL0 – SEL4)
DB0 – DB7
(D0 – D7)
AB0 – AB15
(A0 – A15)
FPDAT0 –
FPDAT3(XD0 – XD3)
FPSHIFT(XSCL) 23 O NIOVDD HOB2T X Shift clock for X driver
FPLINE(LP) 26 O NIOVDD HOB2T X Latch pulse
MOD(WF) 27 O NIOVDD HOB2T X Frame signal
FPFRAME (YD) 30 O NIOVDD HOB2T X Scan start pulse
DD
DD
V
SS
CLKI 39 I HIOVDD HIBH Externally sourced system clock
RD# 41 I HIOVDD HIBH 1 Read strobe for MPU interface
WR# 42 I HIOVDD HIBH 1 Write strobe for MPU interface
CS# 43 I HIOVDD HIBH 1 Chip select for MPU interface
WAIT# 54 O HIOVDD HOB2T Hi-Z Wait output for MPU interface
AS# 61 I HIOVDD HIBC 1
XECL 24 O NIOVDD HOB2T X X driver enable chain clock
YSCL 29 O NIOVDD HOB2T X Scan shift clock
Test mode control input with pulldown resistor (50 ohms typ. at 3.3 V)
I/O
I/O Voltage I/O Cell
Type
7 • 48 • 55 P HIOVDD Power supply for host interface
)
22 • 32 P NIOVDD Power supply for LCD interface
)
12 • 25 • 40 P COREVDD Power supply for core logic 1 • 17 • 28 • 33 • 53 P
56-60 I HIOVDD HIBH 0 Input pin for S1D13700 settings
44-47 • 49-52 IO HIOVDD HBC2T Hi-Z Data bus for MPU interface
2-6 • 8-11 • 13-16 I HIOVDD HIBC 0 Address bus for MPU interface
18-21 O NIOVDD HOB2T X Data bus for X driver
V
SS
RESET#
State
Ground
Address strobe for MPU interface
Description
6
EPSON
S1D13700 Technical Manual
Page 12
2: PINS
Pin Name Pin No.
YDIS 31 O NIOVDD HOB2T L LCD power-down output
RESET# (RES) 36 I HIOVDD HIBH 0 Reset input
TESTEN 38 I HIOVDD ITST1 0 Test mode setup input
SCANEN 37 I HIOVDD HIBCD1 0 Test mode setup input
I/O
I/O Voltage I/O Cell
Type
RESET#
State
Description
Note: The corresponding pin names of the earlier LCD controller (i.e., S1D13305) are enclosed in
parentheses.
S1D13700
Technical Manual EPSON 7
Page 13
2: PINS

2.1.3 Package Dimensions

HD
D
49 PIN
64 PIN
48 PIN
1 PIN
33 PIN
32 PIN
E
ED
17 PIN
e
ICL
16 PIN
Amax
A1 A2
Symbol
* *
* *
E 10.1 10.2 10.3
D 10.1 10.2 10.3
Amax 1.2
AL 0.1 AP 0.9 1 1.1
e 0.5
ICL 0.17 0.2 0.27
CL 0.125 0.15 0.2 É 10°
L 0.3 0.5 0.7 L1 1 L2 0.5
HE 11.6 12 12.4
HD 11.6 12 12.4
É2 15° É3 15°
R 0.1 R1 0.1
Dimension in Milimeters
Min. Nom. Max.
R1
R
D
L2
L
L1
*
E,D Excluding the tie bar cutting stub. ICL Lead width of basemetal. CL Lead thickness of basemetal.
1 = 1mm
8 EPSON S1D13700 Technical Manual
Page 14

2.2 Pin Functions

2.2.1 Power Supply Pins

Pin Name Function
HIOVDD
NIOVDD
COREVDD Power supply for internal logic. Connect a 3.3 V power supply to this pin. Note 1
V
SS
Note 1: Because the spike power supply current in the S1D13700 could reach levels that are several
tens higher than the average amount of dynamically consumed current, measures must be taken to minimize the power supply impedance of the S1D13700. For example, use thick power supply wiring from the power supply to the S1D13700 or insert a capacitor of 0.47 mF or more (with good frequency characteristics) between V These measures will help to reduce power supply impedance.

2.2.2 Oscillator and Clock Input Pins

CLKI Generally used as the input clock source for the bus and memory clocks.
XCG1 XCD1
Power supply for host interface I/O drive. Connect a 5 V or 3.3 V power supply to this pin. (Shared with MPU power supply pin, VCC) Note 1
Power supply for LCD I/O drive other than host of interface I/O. Connect a 5 V or 3.3 V power supply to this pin. Note 1
Connects to 0 V earth ground (GND).
and VSS close to the S1D13700.
DD
These pins are used to connect a crystal resonator for the internal clock-generating oscillator. For details, see Section 4.2 “Oscillator Circuit” on page 70. To use the external clock (fed in from the CLKI pin), fix XCG1 for input with a pullup resistor and leave XCD1 open. Note 2
Input, active low Set the frequency divide ratio of the display clock (pixel clock) relativ e to CLKI or an internally gener ­ated system clock.
2: PINS
CNF0 CNF1
CNF3 CNF2 Clock Retio
0 0 1/4 0 1 1/8 1 0 1/16 1 1 Not USE
Note 2: Because the external clock fed in from the CLKI pin is needed to internally generate the
fundamental timing in the S1D13700, the oscillation characteristic requirements given in Section 5.4.3 External Clock Input Characteristics on page 92 must be met.
S1D13700 Technical Manual EPSON 9
Page 15
2: PINS

2.2.3 System Bus Connecting Pins

DB0 – DB7
CNF2 CNF3
Tristate input/output, active high These pins comprise an 8-bit bidirectional data bus, which is connected to the 8-bit or 16-bit MPU data bus.
Input, active high The S1D13700 allows the MPU interface format to be changed depending on how CNF2 and CNF3 are set, so that it can be connected directly to the 80-series MPU (e.g., Z80 or 6802), or the MC68K-series MPU (68000) bus.
CNF3 CNF2 Mode
0 0 80 series ↑↑↑↑↑↑ ↑– 01 * ****** ** 1 0 6800 ↑↑E R/W# ↑↑ –– 1 1 MC68K ↑↑LDS# R/W# ↑↑DTACK#
Settings marked with * are inhibited.
AB15
– AB1
AB0 RD# WR# CS#
®
or GenericBus), 68-series MPU (6809
DB7
– DB0
WAIT# AS#
Note 3
Note 3: Normally, CNF2 and CNF3 should be corrected directly to power supply VDD or VSS to prevent
the mixture of noise. Should noise be mixed in, insert a capacitor between the CNF2 and
CNF3 lines and V
, as close to the IC pins as possible. This will help to effectively eliminate
SS
noise.
AB15 – AB1
AB0
Input, active high Normally, the MPU address bus is connected to these pins. The data bus signal is discriminated by a combi­nation of RD# and WR# signals, or R/W#, E, and LDS signals, as listed in the table below.
Input: CNF4 = 0 selects direct access; CNF4 = 1 selects indirect access. <Direct access for the 80-series interface>
CMF4
CNF4
*AB15–AB0 are used as register addresses.
<Indirect access for the 80-series interface>
CNF4
AB15
– AB1
0 0or1 0or1 0 1
0 0or1 0or1 1 0 Write to command/parameter registers
AB15
– AB1
1–001
1–101
1–010
1–110Command write (code only)
AB0 RD# WR# Function
Read from command/parameter registers
AB0 RD# WR# Function
Data (display data and cursor address) read
Data (display data and parameter) write
10 EPSON S1D13700 Technical Manual
Page 16
Input: CNF4 = 0 selects direct access; CNF4 = 1 selects indirect access. <Direct access for the 68-series interface>
2: PINS
CMF4
RD# (E)
WR# (R/W#)
CS#
CNF4
AB15
– AB1
0 0or1 0or1 1 1
AB0
WR#
(R/W#)
RD#
(E)
Read from command/parameter registers
Function
0 0or1 0or1 0 1 Write to command/parameter registers
*A15–A0 are used as register addresses.
<Indirect access for the 68-series interface>
CNF4
AB15
– AB1
AB0
WR#
(R/W#)
RD#
(E)
Function
1–011
1–111
1–001
Data (display data and cursor address) read
Data (display data and parameter) write
1–101Command write (code only)
• When the 80-series MPU is connected Input, active low This is the strobe signal used by the MPU as it reads data or status flags from the S1D13700. The data bus of the S1D13700 is in output mode while this signal remains low.
• When the 68-series MPU is connected Input, active high This is an enable clock input pin of the 68-series MPU.
• When the MC68K-series MPU is connected Input, active low Normally, this is an LDS# input pin of the MC68K-series MPU.
• When the 80-series MPU is connected Input, active low This is the strobe signal used by the 80-series MPU as it writes data or parameters to the S1D13700. The S1D13700 latches the data bus signal at the rising edge of WR#.
• When the 68-series MPU is connected Input This is a R/W# control signal input pin of the 68-series MPU. R/W# = HIGH : READ R/W# = LOW : WRITE
• When the MC68K-series MPU is connected Input This is a R/W# control signal input pin of the MC68K-series MPU. R/W# = HIGH : READ R/W# = LOW : WRITE
Input, active low This chip select signal is used by the MPU to activate the S1D13700 before accessing it, and is normally derived by decoding the address bus signal.
S1D13700 Technical Manual EPSON 11
Page 17
2: PINS
This signal forcibly inserts a wait state into the system during data transfer. When this signal is deasserted, data transfer is completed. After data transfer is complete, this signal is left free (placed in high-impedance state).
• When the 80-series MPU is connected Tri-state output, active low (wait state when asserted low)
WAIT#
AS#
RESET#
Connect this pin to WAIT# of the 80-series MPU.
• When the 68-series MPU is connected Unused. Therefore, leave this pin open.
• When the MC68K-series MPU is connected Tri-state output, active low (no wait state when asserted low) This pin serves as the DTACK# pin of the MC68K-series MPU.
• When the 80-series MPU is connected Unused. Therefore, fix this pin low.
• When the 68-series MPU is connected Unused. Therefore, fix this pin low.
• When the MC68K-series MPU is connected Input, active low Connect this pin to the address strobe AS# pin of the MC68K-series MPU.
Input, active low The RESET# input is used to initially reset the S1D13700 in hardware.
Note 4: Although this pin is a Schmitt trigger input to prevent the S1D13700 from being inavertently
reset by noise, care must be taken when intentionally lowering the power supply voltage.
Note 4
12 EPSON S1D13700 Technical Manual
Page 18

2.2.4 LCD Driver Control Pins

The S1D13700 can directly control both the X and Y drivers based on an enable chain, which is a method of effectively reducing the amount of current consumption needed to drive dot-matrix liquid crystal display elements.
2: PINS
FPDAT0 –
FPDAT3
FPSHIFT
XECL
FPLINE
MOD
YSCL
FPFRAME
YDIS
Output, active high This 4-bit dot data bus for the X driver (column driver) is connected to the data input pins of the X driver.
Output, falling edge triggered This signal causes the dot data bus signals (FPDAT0–FPDAT3) to be stored in the X driver at the signal’s falling edge, and thus functions as a shift clock for the internal shift register of the X driver. To reduce power consumption, this clock is turned off until the MPU starts sending data for the next display line after outputting the LP signal. (For details, see Section 5.4.4 “LCD Control Signal Timing Characteristics” on page 93.)
Output, falling edge triggered XECL is a dedicated clock signal for the X drivers cascaded by an enable chain. It causes the enable signal to be successively passed to the next X driver every 16 XSCL periods.
Output, falling edge triggered For the liquid crystal display elements to be successively driven, the X driver contains a circuit to latch each output bit of the internal shift register at the falling edge of LP. This signal is output for every display line.
Output This signal provides a one-frame interval for the X and Y drivers to determine the AC drive waveform for the LCD panel. Two types of cyclic signals are output depending on how the System Set command parameters are set.
Output, active high, rising edge triggered This signal is a clock for the Y driver, and is equivalent to XSCL for the X driver. The Y data signal (YD) is stored in the Y driver at the beginning of a frame, and YSCL is used as an internal shift clock.
Output, active high YD is data for the Y driver, and is a cyclic signal output at the first display line interval of a frame. The electrodes on the common side of liquid crystal display elements are sequentially scanned as the YD signal is sequentially shifted inside the Y driver synchronously with the YSCL signal.
Output, active high This signal is used to power down the LCD unit and is held high during the display period. Note 5
Note 5: The YDIS signal goes low at a time equivalent to one to two frames after the sleep command is
written. When the YDIS signal goes low, all Y driver outputs are forcibly brought to an intermediate level (unselected), thus causing display to turn off. Therefore, to power off the LCD unit, the liquid crystal drive power supply (with relatively large steady-state current) must be turned off at the same time display is turned off by using the YDIS signal.

2.2.5 TEST Control Pins

TESTEN
SCANEN
S1D13700 Technical Manual EPSON 13
Input, active high Test-enable input used only for production testing (with type-1 pulldown resistor, 50 ohms typ. at 3.3 V).
Input, active high Test-enable input used only for production testing (with type-1 pulldown resistor, 50 ohms typ. at 3.3 V).
Page 19
3: COMMANDS AND COMMAND REGISTERS

3COMMANDS AND COMMAND REGISTERS

3.1 Types of Commands (when Indirectly Interfaced)

When indirect mode is selected for the system interface, use commands to set up the display. The table below lists the types of commands, including the code of each command.
Purpose Command
Operation
control
Display
control
Drawing
control
Memory
control
SYSTM SET 1 0 1 0 1 0 0 0 0 0 0 40 SLEEP IN 1 0 1 0 1 0 1 0 0 1 1 53 Sleep operation. 0 27 Note 1
DISPON/OFF 1 0 1 0 1 0 1 1 0 0 D
SCROLL 1 0 1 0 1 0 0 0 1 0 0 44
CSRFORM 1 0 1 0 1 0 1 1 1 0 1 5D
CSRDIR 1 0 1
OVLAY 1 0 1 0 1 0 1 1 0 1 1 5B
CGRAM ADR
HDOT SCR 1 0 1 0 1 0 1 1 0 1 0 5A
GRAY SCALE
CSRW 1 0 1 0 1 0 0 0 1 1 0 46
CSRR 1 0 1 0 1 0 0 0 1 1 1 47
MWRITE 1 0 1 0 1 0 0 0 0 1 0 42
MREAD 1 0 1 0 1 0 0 0 0 1 1 43
Code
WR# RD# AB0
1 0 1 0 1 0 1 1 1 0 0 5C
1 0 1 0 1 1 0 0 0 0 0 60 Sets grayscale mode. 0 45
DB BIN
7 6 5 4 3 2 1 0DBHEX
58 •
59
CD CD
01001110
4C – 4FSets the direction of
Command
description
Sets initial operation and window size.
Instructs to turn display on or off and make the screen flash on and off.
Sets the display start address and display area.
Sets the cursor shape, etc.
cursor movement. Instructs screen
overlay mode. Sets the start address
of CG RAM. Sets the horizontal
direction dot unit and scroll position.
Sets the cursor address.
Instructs to read the cursor address.
Instructs to write to display memory.
Instructs to read display memory data.
Parameters
following the
command
No. of
parameters
819
1 28 Note 1
10 29
237
038
139
243
144
2 45 Note 1
2 46 Note 1
47 Note 1
—47
Remarks
See
pages
Note 1: As a r ule, each command is executed every time a parameter for the command is input to the
S1D13700, and completed before the next parameter (P) or command (C) is input. Therefore, the MPU can stop sending parameters in the middle and send the next command. In this case, the parameters that have already been sent are effective and other parameters not input to the S1D13700 retain their original values. However, two-byte parameters are handled as described below.
Note 1:
1. CSRW and CSRR commands: The parameter is executed one byte at a time. Therefore, the MPU can only alter or check the low-order byte.
2. Commands other than CSRW and CSRR: The parameter is not executed until its second byte is input.
SYSTEM SET SCROLL CGRAM ADR
3. Two-byte parameters consist of two bytes of data (as in the case of APL and APH).
4. Because the value of each register after power-on is indeterminate, make sure all command parameters are set.
14 EPSON S1D13700 Technical Manual
Page 20
3: COMMANDS AND COMMAND REGISTERS

3.2 Command Register Map (when Directly Interfaced)

When direct mode is selected for the system interface, directly access the registers to set up the display.
Address
0 x 8000 0 x 10
0 x 8001 0 x 00
0 x 8002 0 x 00
0 x 8003 0 x 00
0 x 8004 0 x 00
0 x 8005 0 x 00
0 x 8006 0 x 00
0 x 8007 0 x 00
0 x 8008 *
0 x 8009 0 x 00 r_DispOnOff 0000000
0 x 800A 0 x 00
0 x 800B 0 x 00 r_P1_Scroll
0 x 800C *
Hard
Register name bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0
Reset
R_P1_ SystemSet
R_P2_ SystemSet
R_P3_ SystemSet
R_P4_ SystemSet
R_P5_ SystemSet
R_P6_ SystemSet
R_P7_ SystemSet
R_P8_ SystemSet
2
0 x 01 R_SleepIn 0000000
r_P1_ DispOnOff
0 0 IV 1 WSM2M1M0
WF 0 0 0 FX
0000 FY
CR
TCR
LF
APL
APH
FP5 FP4 FP3 FP2 FP1 FP0 FC1 FC0
SAD1L A7SAD1L A6SAD1L A5SAD1L A4SAD1L A3SAD1L A2SAD1L A1SAD1L
1
0 x 00 r_P2_Scroll
SAD1H
A15
SAD1H
A14
SAD1H
A13
SAD1H
A12
SAD1H
A11
SAD1H
A10
SAD1H A9SAD1H
Sleep
In
Disp
On
A0
A8
0 x 800D 0 x 00 r_P3_Scroll SL1L7 SL1L6 SL1L5 SL1L4 SL1L3 SL1L2 SL1L1 SL1L0
0 x 800E 0 x 00 r_P4_Scroll
1
0 x 800F *
0 x 00 r_P5_Scroll
SAD2L A7SAD2L A6SAD2L A5SAD2L A4SAD2L A3SAD2L A2SAD2L A1SAD2L
A0
SAD2H
A15
SAD2H
A14
SAD2H
A13
SAD2H
A12
SAD2H
A11
SAD2H
A10
SAD2H A9SAD2H
A8
0 x 8010 0 x 00 r_P6_Scroll SL2L7 SL2L6 SL2L5 SL2L4 SL2L3 SL2L2 SL2L1 SL2L0
0 x 8011 0 x 00 r_P7_Scroll
1
0 x 8012 *
0 x 00 r_P8_Scroll
0 x 8013 0 x 00 r_P9_Scroll
1
0 x 8014 *
0 x 8015 0 x 00
0 x 8016 0 x 00
0 x 00 r_P10_Scroll
r_P1_ CsrForm
r_P2_ CsrForm
SAD3L A7SAD3L A6SAD3L A5SAD3L A4SAD3L A3SAD3L A2SAD3L A1SAD3L
A0
SAD3H
A15
SAD3H
A14
SAD3H
A13
SAD3H
A12
SAD3H
A11
SAD3H
A10
SAD3H A9SAD3H
A8
SAD4L A7SAD4L A6SAD4L A5SAD4L A4SAD4L A3SAD4L A2SAD4L A1SAD4L
A0
SAD4H
A15
SAD4H
A14
SAD4H
A13
SAD4H
A12
SAD4H
A11
SAD4H
A10
SAD4H A9SAD4H
A8
0000CRX3 CRX2 CRX1 CRX0
CM 0 0 0 CRY3 CRY2 CRY1 CRY0
0 x 8017 0 x 00 r_P1_CsrDir 000000CD1CD2 0 x 8018 0 x 00 r_P1_OvLay 0 0 0 OV DM2 DM1 MX1 MX0
S1D13700 Technical Manual EPSON 15
Page 21
3: COMMANDS AND COMMAND REGISTERS
Address
0 x 8019 0 x 00
0 x 801A *
0 x 801B 0 x 00 r_P1_HdotScr 00000D2D1D0
0 x 801C *
0 x 801D *
0 x 801E *
0 x 801F *
0 x 8020 0 x 00
*1 To ensure that two bytes are set at the same time, the low-order byte is xed when the high-order byte is written. *2 SLEEPIN = 0: Clock enable
*3 CSRW: Write only (00h when read), CSRR: read only (write invalid).
Other registers can be written to or read from (in units of bits).
Hard
Register name bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0
Reset
r_P1_ CGRAMAdr
1
0 x 00
3
0 x 00 r_P1_CSRW
3
0 x 00 r_P2_CSRW
3
0 x 00 r_P1_CSRR
3
0 x 00 r_P2_CSRR
r_P2_ CGRAMAdr
r_P1_ GrayScale
Using the internal oscillator circuit causes the oscillator to start oscillating. Using an externally sourced clock causes the clock to propagate to the internal circuits. The internal timing circuit is released from reset status by writing to any register after setting SLEEPIN = 0. (Therefore, internal SRAM cannot be accessed until that time.)
SAGLA7SAGLA6SAGLA5SAGLA4SAGLA3SAGLA2SAGLA1SAGL
A0
SAGH
A15
CSRLA7CSRLA6CSRLA5CSRLA4CSRLA3CSRLA2CSRLA1CSRL
CSRH
A15
CSRLA7CSRLA6CSRLA5CSRLA4CSRLA3CSRLA2CSRLA1CSRL
CSRH
A15
SAGH
A14
CSRH
A14
CSRH
A14
000000BPP1 BPP0
SAGH
A13
CSRH
A13
CSRH
A13
SAGH
A12
CSRH
A12
CSRH
A12
SAGH
A11
CSRH
A11
CSRH
A11
SAGH
A10
CSRH
A10
CSRH
A10
SAGH A9SAGH
A8
A0
CSRHA9CSRH
A8
A0
CSRHA9CSRH
A8
The following shows the relationship between memory and register maps in the S1D13700.
(MSB DB7 – LSB DB0)
0000h
Display RAM
Area
7FFFh
8000h
802Fh
Register Area
0x8021 – 0x802F Reserve
8030h
(CGROM Area)
85AFh
85B0h
Not Use
FFFFh
S1D13700 Memory Mapping (AB15 – AB0)
* The S1D13700 ignores any attempt to access address space 8030h–FFFFh. This address space ma y be employed as
a user area, but because there is no negate output availab le for the WAIT# pin of the S1D13700, inhibit access to this address space when not in use.
16 EPSON S1D13700 Technical Manual
Page 22

3.3 Command Description

3.3.1 Operation Control Commands

SYSTEM SET
This command and the parameters that follow specify initial reset of the device, set the window size, and the method of connecting with the LCD unit. This command determines the fundamental operation of the S1D13700. Therefore, if this command is incorrectly set, the functions of other commands may not work normally.
<Indirect mode> <Direct mode>
3: COMMANDS AND COMMAND REGISTERS
MSB LSB
D7 D6 D5 D4 D3 D2 D1 D0
C
0100
P1
00IV1W/S M2 M1 M0
WF0000
P2
P3
0000
P4
P5
P6
C/R
TC/R
L/F
0
000
FY
FX
Address
––
0x8000
0x8001
0x8002
0x8003
0x8004
0x8005
Register name
r_P1_SystemSet
bit5 : IV bit3 : WS bit2 : M2 bit1 : M1 bit0 : M0
r_P2_SystemSet
bit7 : WF bit2-0 : FX
r_P3_SystemSet
bit3-0 : FX
r_P4_SystemSet
bit7-0 : CR
r_P5_SystemSet
bit7-0 : TCR
r_P6_SystemSet
bit7-0 : LF
P7
P8
APL
APH
0x8006
0x8007
r_P7_SystemSet
bit7-0 : APL
r_P8_SystemSet
bit7-0 : APH
C The command alone has the following initial reset functions:
• Resets the internal timing circuit.
• Turns display off.
• Deactivates sleep mode (internal operation stopped state) (thus starting the oscillator). To deactivate sleep mode, make sure the command and one parameter (P1) are input. In direct interface mode, clearing the SleepIn bit has the same effect.
S1D13700 Technical Manual EPSON 17
Page 23
3: COMMANDS AND COMMAND REGISTERS
[Parameter P1]
M0 Specify the CG ROM to be used for display. Although internal CG ROM can generate 160
discrete character fonts (each consisting of 5 x 7 dots as shown in Section 4.4.1 “Character Fonts (Internal CG)” on page 81), internal CG RAM may be used when different character fonts or more characters (up to 256) are needed.
M0 0: Internal CG ROM (160 characters) + internal CG RAM (64 characters)
1: Internal CG RAM (256 characters)
Note: When the CG area is mapped in the display memory space, the memory area
available to store display data is reduced by the amount of CG area mapped.
M1 Selects the CG RAM definition area where the user can define any desired character pattern.
The CG RAM code may be selected from the 64 discrete codes assigned in Section 4.4.2 “Character Codes” on page 82.
M1 0: Without bit D6 correction The CG RAM1 and CG RAM2 areas are noncontiguous.
1: With bit D6 correction The CG RAM1 and CG RAM2 areas are contiguous.
M2 Select the CG size in the Y direction for more economical use of internal CG RAM. CGs whose
sizes in the Y direction are 17 dots or more cannot be handled with the character codes of the S1D13700. In such case, characters may be decomposed into bit images and displayed in graphic display mode of the S1D13700.
Only CG RAM1 is handled as CG RAM, with CG RAM2 handled as CG ROM.
Both CG RAM1 and RAM2 are handled as CG RAM.
The table below summarizes bank configurations by M1, M2, and M3.
Bank configurations
M2 M1 M0
Internal
000
External
Internal
010
External
M2 0: 8 dots
ROM
RAM
ROM
RAM
1: 16 dots
10 – 1F 20 – 2F 30 – 3F 40 – 4F 50 – 5F
160 characters (5 x 7 x 160)
64 characters (8 x 6 x 64)
160 characters (5 x 7 x 160) Same as shown above.
64 characters (6 x 8 x 64)
60 – 6F 70 – 7F A0 – AF B0 – BF C0 – CF D0 – DF
SAG+ { [80 – 8F], Row [2 : 0]}
[90 – 9F] [E0 – EF] [F0 – FF]
SAG+ { [A0 – AF], Row [2 : 0]}
[B0 – BF] [C0 – CF] [D0 – DF]
Internal ROM used Without correction Y size = 8
Internal ROM used With correction Y size = 8
18 EPSON S1D13700 Technical Manual
Page 24
M2 M1 M0
100
110
001
011
101
111
Internal
ROM
External
RAM
Internal
ROM
External
RAM
External
RAM
External
RAM
External
RAM
External
RAM
3: COMMANDS AND COMMAND REGISTERS
160 characters (5 x 7 x 160) Same as shown above.
SAG+ { [80 – 8F], Row [3 : 0]}
64 characters (6 x 8 x 64)
160 characters (5 x 7 x 160) Same as shown above.
SAG+ { [A0 – AF], Row [3 : 0]}
64 characters (6 x 16 x 64)
256 characters (8 x 8 x 256) F000 – F7FF
256 characters (8 x 8 x 256) F000 – F7FF
256 characters (8 x 16 x 256) F000 – FFFF
256 characters (8 x 16 x 256) F000 – FFFF
[90 – 9F] [E0 – EF] [F0 – FF]
[B0 – BF] [C0 – CF] [D0 – DF]
Internal ROM used Without correction Y size = 16
Internal ROM used With correction Y size = 16
External RAM Without correction Y size = 8
External RAM With correction Y size = 8
External RAM Without correction Y size = 16
External RAM With correction Y size = 16
M1 = 0 M1 = 1 (code [6] converted)
00 – 0F 00000000 – 00001111 Blank 40 – 4F 00000000 – 00001111 ROM 10 – 1F 00010000 – 00011111 ROM 50 – 5F 01010000 – 01011111 ROM 20 – 2F 00100000 – 00101111 ROM 60 – 6F 01100000 – 01101111 ROM 30 – 3F 00110000 – 00111111 ROM 70 – 7F 01110000 – 01111111 ROM 40 – 4F 01000000 – 01001111 ROM 00 – 0F 00000000 – 00001111 Blank 50 – 5F 01010000 – 01011111 ROM 10 – 1F 00010000 – 00011111 ROM 60 – 6F 01100000 – 01101111 ROM 20 – 2F 00100000 – 00101111 ROM 70 – 7F 01110000 – 01111111 ROM 30 – 3F 00110000 – 00111111 ROM 80 – 8F 10000000 – 10001111 RAM C0 – CF 11000000 – 11001111 ROM 90 – 9F 10010000 – 10011111 RAM D0 – DF 11010000 – 11011111 ROM A0 – AF 10100000 – 10101111 ROM E0 – EF 11100000 – 11101111 RAM B0 – BF 10110000 – 10111111 ROM F0 – FF 11110000 – 11111111 RAM C0 – CF 11000000 – 11001111 ROM 80 – 8F 10000000 – 10001111 RAM D0 – DF 11010000 – 11011111 ROM 90 – 9F 10010000 – 10011111 RAM E0 – EF 11100000 – 11101111 RAM A0 – AF 10100000 – 10101111 ROM F0 – FF 11110000 – 11111111 RAM B0 – BF 10110000 – 10111111 ROM
*M1: The 6th bit of the character code is automatically converted by hardware.
The memory area accessed changes.
S1D13700 Technical Manual EPSON 19
Page 25
3: COMMANDS AND COMMAND REGISTERS
W/S Selects the LCD unit drive method.
W/S 0: Single-screen drive method
1: Dual-screen drive method
Table 3-1 W/S Related Registers
Parameter
C/R C/R C/R C/R C/R TC/R TC/R TC/R TC/R TC/R L/F L/F L/F L/F L/F SL1 00H – L/F 00H – L/F + 1 (L/F)/2 (L/F)/2 SL2 00H – L/F 00H – L/F + 1 (L/F)/2 (L/F)/2 SAD1 First screen block First screen block First screen block First screen block SAD2 Second screen block Second screen block Second screen block Second screen block SAD3 Third screen block Third screen block Third screen block Third screen block SAD4 Invalid Invalid Fourth screen block Fourth screen block
Cursor Successively movable on all screens
IV = 1 IV = 0 IV = 1 IV = 0
W/S = 0 W/S = 1
Upper/lower screen configuration: Successively
movable on all screens
Note: 1. For details on how to set C/R and TC/R when using the HDOT SCR command, see Section
4.1.6 Determining Various Parameters on page 64.
2. The SL value for IV = 0 is the SL value for IV = 1 plus 1.
IV Corrects the screen origin during inverse display. Normally set IV = 1.
The most effective way to display characters in inverse video is to use a unique function of the S1D13700 that allows the text screen and graphics back-layered screen to be exclusive OR’d. However, because the character origin is at the upper-left corner of the screen when characters are mapped on the screen by the S1D13700, the uppermost line and leftmost column on the display screen do not have dots to draw the outline of characters, thus making the displayed characters illegible. Therefore, the S1D13700 uses the IV specification and horizontal direction dot scroll function (HDOTSCR command) to shift the origin of the text screen for correction with respect to the graphics back-layered screen, allowing characters to be displayed in inverse video anywhere on the screen. For details, see Section 4.1.7 “Scrolling” on page 65.
IV 0: Uppermost line of screen corrected
1: Uppermost line of screen not corrected
Origin of the screen
Background layer
IV
1 dot
HDOT SCR
Text
1 – 7 dots
<Display screen>
Figure 3-1 Combination of IV and HDOT SCR
Note: If the leftmost column must also be corrected, shift dots in the horizontal direction.
20 EPSON S1D13700 Technical Manual
Page 26
3: COMMANDS AND COMMAND REGISTERS
[Parameter P2]
FX Defines the size of the character field in the X direction (i.e., size of one character including a
space).
HEX
00 01
07
BIN
D4 D3 D2 D1 D0
00000 00001
•••••
•••••
00111
Number of dots
[FX]
1 2
• 8
Structure of the character field
1. Because the S1D13700 processes the display data in 8-bit units, if the character font exceeds 8 bits, the text screen must configure one character with two or more display memory addresses as normally prac­ticed. In this case, odd-numbered bits less than a unit of 8 bits are not displayed as shown below. Odd­numbered bits less than a unit of 8 bits are also not displayed on the back-layered screen as shown below.
2. In graphic display mode, the character field must normally be 8 bits long. For other character fields, odd­numbered bits less than a unit of 8 bits are not displayed.
FX
FX
8 bits 8 bits 8 bits
FY
8 bits 8 bits 8 bits
FY
Not displayed
<Background layer>
Address A
Address B
Address C
<Text screen>
Figure 3-2 Typical relationship between FX/FY and display addresses
In grayscale mode, FX must be fixed to ‘00111’ (8 dots).
WF Specifies the AC drive method of the liquid crystal.
WF 0: Line inversion drive method
1: Two-frame AC drive method (method B)
The two-frame AC drive method is an AC drive method in which the half period of the WF signal constitutes a one-frame interval. Normally, set WF = 1.
The line inversion drive method is a modified AC drive method in which the WF signal has its waveform inverted every 16 Y lines.
Note: Although the LCD ma y look better when WF is set to 0, stripes in the X direction
will appear when the LCD drive voltage is high or viewing angle large.
S1D13700 Technical Manual EPSON 21
Page 27
3: COMMANDS AND COMMAND REGISTERS
[Parameter P3]
FY Defines the size of the character field in the Y direction.
HEX
00 01
07
• 0E 0F
BIN
D3 D2 D1 D0
0000 0001
••••
••••
0111
•••• 1110 1111
Number of dots
[FX]
1 2
• 8
• 15 16
[Parameter P4]
C/R Defines the display interval in the X direction by indicating the number of display characters
counted in address units, as described in the section on parameter FX. When [FX] = 10 dots, for example, two memory addresses are counted per character. For details on how to calculate the [C/R] value, see Section 4.1.6 “Determining Various Parameters” on page 64. The value set for this parameter cannot be greater than the calculated [C/R] value, but can be equal to or less than the calculated [C/R] value. In that case, excess display sections are left blank.
HEX
00 01
4F
EE
EF
BIN
D7 D6 D5 D4 D3 D2 D1 D0
00000000 00000001
••••••••
•••••••• 01001111
••••••••
•••••••• 11101110 11101111
Characters per line
[C/R]
1 2
80
• 239 240
Note: 1.Make sure the number of dots in excess display sections is within 64.
2. For grayscale to be set to 2 Bpp or 4 Bpp, the set value of CR must be in­creased. CR (bytes) = [ (Panel Width) /8pixel character]*Bpp
22 EPSON S1D13700 Technical Manual
Page 28
3: COMMANDS AND COMMAND REGISTERS
[Parameter P5]
TC/R The condition [TC/R] [C/R] + 4 must always be met.
To minimize the amount of current consumed by the S1D13700 and LCD unit for a given display capacity, the S1D13700’s oscillation frequency (fosc) must be adjusted. Moreover, because the one-frame time (1/f according to the equation to calculate [TC/R] as described in Chapter 4 and adjust the S1D13700’s divide-by-n ratio.
) must be made constant to prevent flicker, define [TC/R]
FR
HEX
00 01
52
• FE FF
BIN
D7 D6 D5 D4 D3 D2 D1 D0
00000000 00000001
••••••••
•••••••• 01010010
•••••••
•••••••• 11111110 11111111
Characters per line
[TC/R]
1 2
83
• 255 256
[Parameter P6]
L/F Defines the display interval in the Y direction by indicating the number of display lines per
screen.
HEX
00 01
7F
• FE FF
BIN
D7 D6 D5 D4 D3 D2 D1 D0
00000000 00000001
••••••••
••••••••
01111111
••••••••
•••••••• 11111110 11111111
Number of lines
per screen
1 2
128
• 255 256
Note: When W/S = 1, [L/F] must be defined as an even number because dual-screen
display is assumed.
S1D13700 Technical Manual EPSON 23
Page 29
3: COMMANDS AND COMMAND REGISTERS
[Parameters P7, P8]
AP Defines the number of memory addresses in the X direction of a virtual screen.
MSB LSB
D0D1D2D3D4D5D6D7
APL AP7 AP6 AP5 AP4 AP3 AP2 AP1 AP0
APH AP15 AP14 AP13 AP12 AP11 AP10 AP9 AP8
HEX Number of memory
APH APL
0 0 0 0
• •
• •
0 0
• •
• • F F F F
0 0 0 1
• •
• •
5 0
• •
• • F E F F
addresses per line
[AP]
0 1
80
16
2
-2
216-1
Display screen
C/R
Defined area of display memory
AP
SLEEP IN
C When this command is input, the S1D13700 blanks the display for at least a one-frame period,
then stops all internal operations including clock oscillation before entering sleep mode. At this time, the LCD unit sends OFF data to the X driver while simultaneously sending the YDIS signal to the Y driver to turn the bias voltage off. Therefore, in no case will unexpected display remain on the screen when the liquid crystal is powered off by the YDIS signal.
In sleep mode, the S1D13700 registers retain the original state before entering sleep mode. Moreover, the display memory control pins are fixed high or low to maintain the integrity of data stored in display memory.
To restore the S1D13700 from sleep mode, write the command and one parameter (P1) of the SYSTEM SET to the S1D13700 once to immediately wake up the S1D13700. In direct interface mode, the S1D13700 can be restored from sleep mode by clearing the SleepIn bit. However, display memory cannot be accessed immediately after exiting sleep mode. The display RAM space (0000h–7FFFh) can be accessed by first accessing any other register once. To restore display, execute the DISP ON command immediately after exiting sleep mode.
Regardless of whether the S1D13700 is directly or indirectly interfaced, the entire screen must be set to the ON state before entering sleep mode. When in indirect interface mode, issue the DISP ON command. When in direct interface mode, set the DispOn bit to 1 before entering sleep mode.
<Indirect mode> <Direct mode>
MSB LSB
Address Register name
D7 D6 D5 D4 D3 D2 D1 D0
C
01010011
0x8008
r_SleepIn
bit0 : SleepIn
Note: 1. The YDIS signal goes low at a time equivalent to one to two fr ames after the sleep command
is written. When the YDIS signal goes low, all Y driver outputs are f orcibly brought to an inter-
24 EPSON S1D13700 Technical Manual
Page 30
3: COMMANDS AND COMMAND REGISTERS
mediate level (unselected), causing display to turn off. Therefore, for the LCD unit to be pow­ered down, the liquid crystal drive power supply (with relatively large steady-state current) must be turned off at the same time display is turned off by using the YDIS signal.
2. If the drive power supply of the liquid crystal remains on in sleep mode, a DC component may be applied to the LCD panel because all internal operations of the S1D13700 have been stopped in that mode. When priority is placed on reliability, however, the liquid crystal drive power supply must be turned off before writing the sleep command to prevent DC com­ponents from being applied to the LCD panel.
3. Although the bus is placed in the high-impedance state during sleep mode, some voltage may be supplied to the bus line for a bus with pull-up/pull-down resistors.

3.3.2 Display Control Commands

DISP ON/OFF
This command turns display of the entire screen on or off. The parameters that follow this command turn the cursor and each layered screen on or off individually, and
select the cursor blink rate and screen flashing rate. Setting a blink rate and flashing rate makes area flashing possible (i.e., flashing one entire line) instead of flashing just one character by means of cursor display.
<Indirect mode> <Direct mode>
MSB LSB
D7 D6 D5 D4 D3 D2 D1 D0
C
01011000
FP5 FP4 FP3 FP2 FP1 FP0 FC1 FC0
P1
C
D 0: Disables entire screen display.
1: Restores entire screen display.
Note: Parameter D (to disable entire screen display) has priority over parameter FP. Note: When the entire screen display is disabled (D=0), po wer to the panel is off (YDIS
= 0 level) and the panel timing signal is off.
[Parameter P1]
FC Selects turning the cursor on or off and defines a blink rate.
FC1, FC0 Cursor display
00 01 10 11
OFF (blank)
Blinking off
ON
Blink at fFR/32 Hz (approx. 2 Hz) Blink at fFR/64 Hz (approx. 1 Hz)
Cusor blink on/off ratio
ON : OFF = 7 : 3
Address Register name
0x8009
0x800A
r_DispOnOff
bit0 : DispOn
r_P1_DispOnOff
bit7-2 : FP5-FP0 bit1-0 : FC1-FC0
Note: As the MWRITE command always enab les the cursor, the cursor position can be
checked, even when performing consecutive writes to display memory while the cursor is ashing.
S1D13700 Technical Manual EPSON 25
Page 31
3: COMMANDS AND COMMAND REGISTERS
Note: To display the cursor in direct interface mode, read or write data to the frame
buffer. This action causes the cursor to move automatically to that position.
FP
FP1, FP0 FP3, FP2 FP5, FP4
00 01 10 11
First screen block (SAD1) Second screen block (SAD2, SAD4) Note Third screen block (SAD3)
Screen display off (blank)
Screen flashing off
Display on
Flash at fFR/32 Hz (approx. 2 Hz) Flash at fFR/4 Hz (approx. 15 Hz)
Screen flashing on/off ratio
ON:OFF = 7:3
Note: Although SAD4 is assumed when W/S = 1, the screens specified by SAD2 and
SAD4 cannot be made to ash independently of each other due to simultaneous control by parameters FP2 and FP3.
26 EPSON S1D13700 Technical Manual
Page 32
3: COMMANDS AND COMMAND REGISTERS
SCROLL
C Defines the scroll start address (SAD) and number of lines per block to be scrolled (SL).
Parameters P1 through P10 can be omitted when not required. Howev er, the parameters must be set sequentially as shown below.
<Indirect mode> <Direct mode>
MSB LSB
D7 D6 D5 D4 D3 D2 D1 D0
C
P1
P2
P3
P4
P5
P6
P7
01000100
A7 A6 A5 A4 A3 A2 A1 A0
(SAD1L)
A15 A14 A13 A12 A11 A10 A9 A8
(SAD1H)
L7 L6 L5 L4 L3 L2 L1 L0
A7 A6 A5 A4 A3 A2 A1 A0
(SAD2L)
A15 A14 A13 A12 A11 A10 A9 A8
(SAD2H)
L7 L6 L5 L4 L3 L2 L1 L0
A7 A6 A5 A4 A3 A2 A1 A0
(SAD3L)
(SL1)
(SL2)
Address
––
0x800B
0x800C
0x800D
0x800E
0x800F
0x8010
0x8011
Register name
r_P1_Scroll
bit7-0 : A7-A0
r_P2_Scroll
bit7-0 : A15-A8
r_P3_Scroll
bit7-0 : L7-L0
r_P4_Scroll
bit7-0 : A7-A0
r_P5_Scroll
bit7-0 : A15-A8
r_P6_Scroll
bit7-0 : L7-L0
r_P7_Scroll
bit7-0 : A7-A0
P8
A15 A14 A13 A12 A11 A10 A9 A8
P9
A7 A6 A5 A4 A3 A2 A1 A0
A15 A14 A13 A12 A11 A10 A9 A8
P10
(SAD3H)
(SAD4L) Note
(SAD4H)
Note
0x8012
0x8013
0x8014
r_P8_Scroll
bit7-0 : A15-A8
r_P9_Scroll
bit7-0 : A7-A0
r_P10_Scroll
bit7-0 : A15-A8
Note: Parameters P9 and P10 must be set only when the dual-screen drive method (W/S = 1)
and two-layered conguration are selected. SAD4 denes the four th screen block display start address.
S1D13700 Technical Manual EPSON 27
Page 33
3: COMMANDS AND COMMAND REGISTERS
HEX
L7 L6 L5 L4 L3 L2 L1 L0
00
00000000
01
00000001
••••••••
••••••••
7F
01111111
••••••••
••••••••
FE
11111110
FF
11111111
BIN
Number of lines
[SL]
1 2
128
• 255 256
The next page shows the relationship between display modes and SAD and SL.
28 EPSON S1D13700 Technical Manual
Page 34
[Display modes]
3: COMMANDS AND COMMAND REGISTERS
W/S
OV
DM2, 1
0 0
00
W/S
OV
DM2, 1
First layer Second layer
First screen block
Second screen block
Third screen block
(split)
SAD1
SL1
SAD3 Note 1
When not using split screens, set both SL1 and SL2 to L/F + 1.
<Example of screen configuration> Note 3
SAD2
SAD1
SL1
SAD3
First layer Second layer
First screen block
Second screen block
Third screen block
(split)
SAD1
SL1
SAD3 Note 1
When not using split screens, set both SL1 and SL2 to L/F + 1.
Second screen block
(graphics)
First screen block
(text)
Third screen block
(text)
SAD2
SL2
G2
SL2
L2
L1
SAD2
SL2
<Example of screen configuration> Note 3
0 0
SAD2
SAD1
01
SL1
SAD3
S1D13700 Technical Manual EPSON 29
Second screen block
(graphics)
First screen block
(graphics)
Third screen block
(text)
G2
SL2
L2
L1
Page 35
3: COMMANDS AND COMMAND REGISTERS
W/S
OV
DM2, 1
0 0
10
W/S
OV
DM2, 1
First layer Second layer
First screen block
Second screen block
Third screen block
(split)
SAD1
SL1
SAD3 Note 1
When not using split screens, set both SL1 and SL2 to L/F + 1.
<Example of screen configuration> Note 3
SAD2
SAD1
SL1
SAD3
First layer Second layer
First screen block
Second screen block
Third screen block
(split)
SAD1
SL1
SAD3 Note 1
SL1 SL2
Second screen block
(graphics)
First screen block
(text)
Third screen block
(graphics)
SAD2
SL2
G2
SL2
L2
L1
SAD2
SL2
<Example of screen configuration> Note 3
0 0
11
SAD1
SAD3
SAD2
SL1
Second screen block
(graphics)
First screen block
(graphics)
Third screen block
(graphics)
G2
SL2
L2
L1
30 EPSON S1D13700 Technical Manual
Page 36
3: COMMANDS AND COMMAND REGISTERS
W/S
OV
DM2, 1
0 0
11
W/S
OV
DM2, 1
1 0
00
First layer Second layer
First screen block
Second screen block
Third screen block
(split)
SAD1
SL1
SAD3 Note 1
SL1 > SL2
<Example of screen configuration> Note 3
SAD2
SAD1
SL1
SAD3
Second screen block
(graphics)
First screen block
(graphics)
Blank
First layer Second layer
Upper screen
SAD1
SL1
Lower screen SAD3 Note 2 SAD4 Note 2
<Example of screen configuration> Note 3
SAD2
SAD1
SL1
SAD3
Second screen block
(graphics)
First screen block
(text)
Third screen block
(text)
SAD2
SL2
SL2
G2
Third screen block
(graphics)
L2
L1
SAD2
SL2
G2
Fourth screen block
(graphics)
G4
(SAD4)
L2
L1
S1D13700 Technical Manual EPSON 31
Page 37
3: COMMANDS AND COMMAND REGISTERS
W/S
OV
DM2, 1
1 0
01
W/S
OV
DM2, 1
1 0
10
First layer Second layer
Upper screen
SAD1
SL1
Lower screen SAD3 Note 2 SAD4 Note 2
<Example of screen configuration> Note 3
SAD2
SAD1
SL1
SAD3
Second screen block
(graphics)
First screen block
(graphics)
Third screen block
(text)
First layer Second layer
Upper screen
SAD1
SL1
Lower screen SAD3 Note 2 SAD4 Note 2
<Example of screen configuration> Note 3
SAD2
SAD1
SL1
SAD3
Second screen block
(graphics)
First screen block
(text)
Third screen block
(graphics)
SAD2
SL2
G2
Fourth screen block
(graphics)
G4
(SAD4)
L2
L1
SAD2
SL2
G2
Fourth screen block
(graphics)
G4
(SAD4)
L2
L1
32 EPSON S1D13700 Technical Manual
Page 38
3: COMMANDS AND COMMAND REGISTERS
W/S
OV
DM2, 1
1 0
11
W/S
OV
DM2, 1
0 1
11
First layer Second layer
Upper screen
SAD1
SL1
Lower screen SAD3 Note 2 SAD4 Note 2
<Example of screen configuration> Note 3
SAD2
SAD1
SL1
SAD3
Second screen block
(graphics)
First screen block
(graphics)
Third screen block
(graphics)
First layer Second layer Third layer
Three-layer composition
SAD1
SL1
SAD2
SL2
<Example of screen configuration> Note 3
SAD1
SAD2
SL1
SAD3
First screen block
(graphics)
Second screen block (graphics)
Third screen block (graphics)
SAD2
SL2
G2
Fourth screen block
(graphics)
G4
(SAD4)
L2
L1
SAD3
G3
G2
SL2
L3
L2
L1
Note 1: SAD3 is added to SL1 or SL2 (whichever has the fewest lines). Note 2: Parameters corresponding to SL3 and SL4 are determined by L/F, and thus
need not be set.
Note 3: When W/S = 1, the differences between SL1 and (L/F) / 2 and between SL2 and
(L/F) / 2 are blanked.
SL1
L/F
(L/F)/2
S1D13700 Technical Manual EPSON 33
Upper screen
Blanked
Lower screen
Page 39
3: COMMANDS AND COMMAND REGISTERS
No. WS OV DM2 DM1 Panel Layer (block3,block1)
10000Single 2 (char, char) 20001Single 2 (char, graph) 30010Single 2 (graph, char) 40011Single 2 (graph, graph) 50100Single 2 No.1 60101Single 2 No.2 70110Single 2 No.3 80111Single 3 (graph, graph,graph)
91000Dual 2 (char, char) 101001Dual 2 (char, graph) 111010Dual 2 (graph, char) 121011Dual 2 (graph, graph) 131100Dual 2 No.9 141101Dual 2 No.10 151110Dual 2 No.11 161111Dual 2 No.12
CSRFORM
Defines the size and shape of the cursor displayed. Although the cursor is normally used in text display mode, the S1D13700 can also display the cursor in
graphic display mode to display kanji and other special characters.
<Indirect mode> <Direct mode>
MSB LSB
D7 D6 D5 D4 D3 D2 D1 D0
C
01011101
P1
P2
0 0 0 0 X3 X2 X1 X0
CM0 0 0 Y3Y2Y1Y0
Address
Register name
––
0x8015
r_P1_CsrForm
bit3-0 : CRX3-CRX0
0x8016
r_P2_CsrForm
bit7 : CM bit3-0 : CRX3-CRX0
34 EPSON S1D13700 Technical Manual
Page 40
3: COMMANDS AND COMMAND REGISTERS
[Parameter P1]
CRX Defines the size of the cursor in the X direction by the number of dots counted from the
character origin. Always make sure that CRX ≤ FX.
HEX
0 1
• 4
E
F
BIN
X3 X2 X1 X0
0000 0001
••••
0100
•••• 1110 1111
Number of dots
[CRX]
1 2
• 5
• 15 16
[Parameter P2]
CRY Defines the display line position of an underscored cursor in a character field by the number of
dots counted from the character origin, or the size of a block cursor in the Y direction by the number of dots counted from the character origin.
HEX
0 1
• 8
• E F
CM Defines the cursor shape.
BIN
Y3 Y2 Y1 Y0
0000 0001
••••
1000
•••• 1110 1111
Number of dots
[CRX]
Illegal
2
9
• 15 16
Character origin
S1D13700
Technical Manual
CM 0: Underscore cursor
1: Block cursor
The S1D13700 allows CM to be set to either 0 or 1 on the graphic display screen. If CRY < FY when CM is set to 1 on the text display screen, the set value of FY has priority.
EPSON
[CRX] = 5 dots [CRY] = 9 dots CM = 0
35
Page 41
3: COMMANDS AND COMMAND REGISTERS
CSRDIR
C Specifies the direction in which the cursor address counter is automatically shifted. When
horizontal screen movement is specified, the cursor address is shifted –1 or +1 by the S1D13700 internal arithmetic/logic circuit. When vertical screen movement is specified, the cursor address is made to jump as many as the number of memory addresses defined by the address pitch (AP). Therefore, when accessing display memory successively in a given direction, it is only necessary to set the start address first. Then the cursor address need not be set by the MPU from the next data on.
<Indirect mode> <Direct mode>
MSB LSB
Address Register name
D7 D6 D5 D4 D3 D2 D1 D0
C
0 1 0 0 1 1 CD1 CD2
0x8017
r_P1_CsrDir
bit1-0 : CD1-CD2
10
-AP
+1
0001
+AP
11
HEX
4C 4D
4E 4F
BIN
CD1 CD2
00 01 10 11
Shift direction
Right
Left
Up
Down
-1
Note: Because the cursor moves in address units even if FX ≥ 9, the cursor address must be
preset for movement in character units. (See Section 4.1.4 “Cursor” on page 61.
OVLAY
C Specifies the method of composing layered screens and text or graphic display mode for each
screen.
<Indirect mode> <Direct mode>
MSB LSB
Address
Register name
D7 D6 D5 D4 D3 D2 D1 D0
C
P1
01011011
0 0 0 OV DM2 DM1 MX1 MX0
––
0x8018
r_P1_OvLay
bit4 : OV bit3-2 : DM2-DM1 bit4 : MX1-MX0
36 EPSON S1D13700 Technical Manual
Page 42
3: COMMANDS AND COMMAND REGISTERS
[Parameter P1]
MX0 Specifies the method of composing layered screens.
MX1 Selects the method of screen composition from OR, AND, Exclusive OR, and Prioritized OR as
listed in the table below. Because screens are composed in units of layers, different composition methods cannot be used for individual screen blocks, even if a layer is divided into two screen blocks.
Prioritized OR is the same as simple OR unless the flashing of individual screens is used in combination with it.
MX1 MX0 Composition method Application example
00L1 ∪ L2 ∪ L3 Simple overlay (OR)
01 1 0 (L1L2)L3 Selective overlay (AND)
1 1 L1 > L2 > L3
(L1
L2) ∪ L3
Black & white reverse overlay (EOR)
Prioritized overlay (As in Figure 3-4)
Note: L1: First layer (text or graphics)
L2: Second layer (graphics only) L3: Third layer (graphics only)
Underlining, rules, mixed text, and graphic display
Characters in inverse video, area flashing, underlining
Simple animation, three-dimensional appearance
Note
Figure 3-3 Example of screen compositions
Note: L1: Not flashing
L2: Flashing at 17 Hz (as specied by DISP ON/OFF command) L3: Flashing at 2 Hz
S1D13700 Technical Manual EPSON 37
Page 43
3: COMMANDS AND COMMAND REGISTERS
The table below shows the relationship between L and FP when MX = 11b.
MX[1:0]=1
Prioritized OR
Flash = OFF Flash is ON for any screen.
FP1 FP3 FP5
no
yes
L1 is not blank. L1 is blank.
FP[1:0]=00
no
yes
no
FP[3:2]=00
L1 L2 L3 L1 L2 L3
(Same result as when MX = 00)
Figure 3-4 Prioritized overlay
yes
no
L2 is blank.
FP[5:4]=00
(All layers are blank.
L3 is blank.
yes
L1 L2 L3
Therefore, 00)
Layered
MX[1:0] FP[5:0] Flash Blank-off
3 11 000000 x – L1 | L2 | L3 2 11 000000 x – L1 | L2 3 000001 x – L1 L1 | L2 | L3 2 000001 x – L1 L1 | L2 3 000010 Ο – L1 L1 2 000010 Ο – L1 L1 3 000011 Ο – L1 L1 2 000011 Ο – L1 L1 3 000100 x – L2 – L1 | L2 | L3 2 000100 x – L2 – L1 | L2 3 000101 x – L2 L1 L1 | L2 | L3 2 000101 x – L2 L1 L1 | L2 3 000110 Ο – L2 L1 L1 2 000110 Ο –L2L1L1 3 000111 Ο – L2 L1 L1 2 000111 Ο –L2L1L1 3 001000 Ο – L2 – L2 2 001000 Ο –L2–L2 3 001001 Ο – L2 L1 L1 2 001001 Ο –L2L1L1 3 001010 Ο – L2 L1 L1 2 001010 Ο –L2L1L1 3 001011 Ο – L2 L1 L1 2 001011 Ο –L2L1L1 3 001100 Ο – L2 – L2 2 001100 Ο –L2–L2 3 001101 Ο – L2 L1 L1 2 001101 Ο –L2L1L1 3 001110 Ο – L2 L1 L1 2 001110 Ο –L2L1L1 3 001111 Ο – L2 L1 L1 2 001111 Ο –L2L1L1 3 010000 x L3 – – L1 | L2 | L3 2 010000 x – L1 | L2 3 010001 x L3 – L1 L1 | L2 | L3 2 010001 x – L1 L1 | L2 3 010010 Ο L3 – L1 L1 2 010010 Ο – L1 L1
38 EPSON S1D13700 Technical Manual
Layered
MX[1:0] FP[5:0] Flash Blank-off
Page 44
3: COMMANDS AND COMMAND REGISTERS
Layered
MX[1:0] FP[5:0] Flash Blank-off
Layered
MX[1:0] FP[5:0] Flash Blank-off
3 010011 Ο L3 – L1 L1 2 010011 Ο – L1 L1 3 010100 x L3 L2 – L1 | L2 | L3 2 010100 x – L2 – L1 | L2 3 010101 x L3 L2 L1 L1 | L2 | L3 2 010101 x – L2 L1 L1 | L2 3 010110 Ο L3 L2 L1 L1 2 010110 Ο –L2L1L1 3 010111 Ο L3 L2 L1 L1 2 010111 Ο –L2L1L1 3 011000 Ο L3 L2 – L2 2 011000 Ο –L2–L2 3 011001 Ο L3 L2 L1 L1 2 011001 Ο –L2L1L1 3 011010 Ο L3 L2 L1 L1 2 011010 Ο –L2L1L1 3 011011 Ο L3 L2 L1 L1 2 011011 Ο –L2L1L1 3 011100 Ο L3 L2 – L2 2 011100 Ο –L2–L2 3 011101 Ο L3 L2 L1 L1 2 011101 Ο –L2L1L1 3 011110 Ο L3 L2 L1 L1 2 011110 Ο –L2L1L1 3 011111 Ο L3 L2 L1 L1 2 011111 Ο –L2L1L1 3 100000 Ο L3 – – L3 2 100000 Ο –––00 3 100001 Ο L3 – L1 L1 2 100001 Ο – L1 L1 3 100010 Ο L3 – L1 L1 2 100010 Ο – L1 L1 3 100011 Ο L3 – L1 L1 2 100011 Ο – L1 L1 3 100100 Ο L3 L2 – L2 2 100100 Ο –L2–L2 3 100101 Ο L3 L2 L1 L1 2 100101 Ο –L2L1L1 3 100110 Ο L3 L2 L1 L1 2 100110 Ο –L2L1L1 3 100111 Ο L3 L2 L1 L1 2 100111 Ο –L2L1L1 3 101000 Ο L3 L2 – L2 2 101000 Ο –L2–L2 3 101001 Ο L3 L2 L1 L1 2 101001 Ο –L2L1L1 3 101010 Ο L3 L2 L1 L1 2 101010 Ο –L2L1L1 3 101011 Ο L3 L2 L1 L1 2 101011 Ο –L2L1L1 3 101100 Ο L3 L2 – L2 2 101100 Ο –L2–L2 3 101101 Ο L3 L2 L1 L1 2 101101 Ο –L2L1L1 3 101110 Ο L3 L2 L1 L1 2 101110 Ο –L2L1L1 3 101111 Ο L3 L2 L1 L1 2 101111 Ο –L2L1L1 3 110000 Ο L3 – – L3 2 110000 Ο –––00 3 110001 Ο L3 – L1 L1 2 110001 Ο – L1 L1 3 110010 Ο L3 – L1 L1 2 110010 Ο – L1 L1 3 110011 Ο L3 – L1 L1 2 110011 Ο – L1 L1 3 110100 Ο L3 L2 – L2 2 110100 Ο –L2–L2 3 110101 Ο L3 L2 L1 L1 2 110101 Ο –L2L1L1 3 110110 Ο L3 L2 L1 L1 2 110110 Ο –L2L1L1 3 110111 Ο L3 L2 L1 L1 2 110111 Ο –L2L1L1 3 111000 Ο L3 L2 – L2 2 111000 Ο –L2–L2 3 111001 Ο L3 L2 L1 L1 2 111001 Ο –L2L1L1 3 111010 Ο L3 L2 L1 L1 2 111010 Ο –L2L1L1 3 111011 Ο L3 L2 L1 L1 2 111011 Ο –L2L1L1 3 111100 Ο L3 L2 – L2 2 111100 Ο –L2–L2 3 111101 Ο L3 L2 L1 L1 2 111101 Ο –L2L1L1 3 111110 Ο L3 L2 L1 L1 2 111110 Ο –L2L1L1 3 111111 Ο L3 L2 L1 L1 2 111111 Ο –L2L1L1
S1D13700 Technical Manual EPSON 39
Page 45
3: COMMANDS AND COMMAND REGISTERS
DM1 Specifies the display mode of the first screen block.
DM2 Specifies the display mode of the third screen block.
DM1 (block1) 0: Text mode
1: Graphic mode
DM2 (block3) 0: Text mode
1: Graphic mode
Note: The second and fourth screen blocks are limited to graphics mode.
OV Specifies a two-layer or three-layer composition in graphics mode.
OV 0: Tow-layer composition
1: Three-layer composition
Note: Set OV = 0 for mixed text and graphics mode. When three-layer composition is
specied, both the rst and third screen blocks should be set to the graphics mode. (OV, DM2, DM1) = (1, 1, 1)
CGRAM ADR
C Defines the offset address of CG RAM in the display memory space.
<Indirect mode> <Direct mode>
MSB LSB
D7 D6 D5 D4 D3 D2 D1 D0
C
01011100
A7 A6 A5 A4 A3 A2 A1 A0
P1
(SAGL)
P2
A14 A13 A12 A11 A10 A9 A8
(SAGH)
Note: For details on how to define CG RAM, see Section 4.1.2 “Character Generator
(CG) on page 47.
Address
––
0x8019
0x801A
Register name
r_P1_CGRAMAdr
bit7-0 : A7-A0
r_P2_CGRAMAdr
bit7-0 : A15-A8
40 EPSON S1D13700 Technical Manual
Page 46
3: COMMANDS AND COMMAND REGISTERS
HDOT SCR
Although the screen can be scrolled left or right only in units of characters using the SCROLL command alone, the combined use of this command allows the screen to be scrolled in units of dots. The scrolling on individual layers, however, cannot be controlled.
This command defines the number of dots to be shifted from the character origin.
<Indirect mode> <Direct mode>
MSB LSB
D7 D6 D5 D4 D3 D2 D1 D0
C
01011010
00000D2D1D0
P1
Address
––
0x801B
Register name
r_P1_HDotScr
bit2-0 : D2-D0
[Parameter P1]
D0 – D2 The C/R value must be set to one more than the number of display characters before using
HDOT SCR to scroll the screen in units of dots. Smooth scrolling (dotwise scrolling) is possible when the MPU resends the HDOT SCR command to the S1D13700 at given time intervals for setting the number of dots to be shifted from the character origin.
HEX
00 01 02
• 06 07
BIN
D2 D1 D0
000 001 010
•••
••• 110 111
Number of dots to
be shifted
0 1 2
• 6 7
M
A
B
A
Z
B
X
Y
: Shifted M dots to the left (M increment)
: Fixed position M = 0 dots N = 0 dots
Z
A
B
Screen
X
: Shifted N dots to the right
Y
(N decrement)
N
Note: See Section 4.1.7 “Scrolling on page 65, for more information about this
function.
S1D13700 Technical Manual EPSON 41
Page 47
3: COMMANDS AND COMMAND REGISTERS
GRAY SCALE
This command sets up grayscale display mode.
<Indirect mode> <Direct mode>
MSB LSB
D7 D6 D5 D4 D3 D2 D1 D0
C
01100000
P1
0 0 0 0 0 0 D1 D0
[Parameter P1]
D0 – D1 Specify the depth of grayscale.
HEX
00 01 02 03
Note: For grayscale display, text and graphic mode overlays are inhibited.
BIN
D2 D1
00 01 10 11
Grayscale depth
1bpp 2bpp 4bpp
reserved
Address
Register name
––
0x8020
r_P1_GrayScale
bit1-0 : D1-D0
42 EPSON S1D13700 Technical Manual
Page 48

3.3.3 Drawing Control Commands

CSRW
C This command is used to write the cursor address to the cursor register. Because the S1D13700
has only one address input bit, only two addresses in the address space of the MPU can be specified at a time. Therefore, the MPU cannot directly access display memory. To compensate for this inconvenience, the S1D13700 has a 16-bit cursor register that serves the purpose of MPU addresses.
<Indirect mode> <Direct mode>
3: COMMANDS AND COMMAND REGISTERS
MSB LSB
D7 D6 D5 D4 D3 D2 D1 D0
C
01000110
A7 A6 A5 A4 A3 A2 A1 A0
P1
(CSRL)
A15 A14 A13 A12 A11 A10 A9 A8
P2
(CSRH)
Address
––
0x801C
0x801D
Register name
r_P1_CSRW
bit7-0 : A7-A0
r_P2_CSRW
bit7-0 : A15-A8
The cursor address is set in the S1D13700 before display memory (VRAM, CG RAM, or CG ROM) is automatically accessed. If this address is not set, display starts from the address set last or an automatically shifted address. (The cursor address register can only be modified by other than the CSRW command by executing a memory control command.)
The cursor address is not affected by scrolling display because it is managed by the absolute display memory addresses fixed in hardware. Note also that the cursor address points to the absolute display memory address where data for the origin part of the character field is stored.
CSRR
C This command is used to read a cursor address from the cursor register.When this command is
written to the S1D13700, the low-order byte of the cursor address (CSRL) is set in the output buffer. Therefore, the high-order byte of the cursor address (CSRH) also can be read out by entering the RD signal following this command.
<Indirect mode> <Direct mode>
MSB LSB
D7 D6 D5 D4 D3 D2 D1 D0
C
P1
P2
01000110
A7 A6 A5 A4 A3 A2 A1 A0
(CSRL) Note
A15 A14 A13 A12 A11 A10 A9 A8
(CSRH)
Note
Address
––
0x801E
0x801F
Register name
r_P1_CSRR
bit7-0 : A7-A0
r_P2_CSRR
bit7-0 : A15-A8
Note: This is the read data.
S1D13700 Technical Manual EPSON 43
Page 49
3: COMMANDS AND COMMAND REGISTERS

3.3.4 Memory Control Commands

MWRITE
This command is used by the MPU to place the S1D13700 in the data input state before writing data to display memory. Each time the WR# signal is input following this command, the S1D13700 automatically modifies the cursor address at which to write display memory according to the CSRDIR value. This allows the MPU to write two or more consecutive items of data to display memory.
MSB LSB
C
P1
P2
01000010
Pn
P1, P2, ..., Pn: Display data
n 1
MREAD
This command is used to place the S1D13700 in the data output state and store the contents of display memory (specified by the cursor address) in the data bus buffer before reading data from display memory. Each time the RD# signal is input following this command, the read cursor address of display memory is automatically modified according to the CSRDIR value, and read data is stored in the data bus buf fer. Because the command is executed in a manner similar to pipelined processing, high-speed readout limited only by the MPU cycle time is possible.
When the cursor is displayed, the read data and cursor positions do not match (with the cursor two positions ahead).
MSB LSB
C
P1
P2
01000011
Read data
Pn
44 EPSON S1D13700 Technical Manual
n 1
Page 50

4FUNCTION DESCRIPTION

4.1 Display Functions

4.1.1 Screen Management

(1) Character configuration
The S1D13700 can display characters using a row-scanning type of character generator that defines character patterns in the fourth quadrant with respect to the character origin as shown below. Although the character generator used determines the size of the character font area, the size of the character field can be varied in both the X and Y directions.
4: FUNCTION DESCRIPTION
Character origin
FY
Figure 4-1 Character display ([FX] 8 dots) Figure 4-2 Example of character generator definition
font area
FX
R0 01110000 R1 10001000 R2 10001000
Character font area
Space
SpaceCharacter
R3 10001000 R4 11111000 R5 10001000 R6 10001000 R7 00000000 R8 00000000 R9 00000000 R10 00000000 R11 00000000 R12 00000000 R13 00000000 R14 00000000 R15 00000000
D7 MSB
D0
LSB
Space
data
Space
data
Character font area: An area in which the character pattern is drawn Character field: Character font area + space T o alter the character field, lea v e an y portions other than the character font area set to 0 and increase FX or
FY to enlarge the size of space as desired.
S1D13700 Technical Manual EPSON 45
Page 51
4: FUNCTION DESCRIPTION
Even when one character requires two or more memory addresses, the character field can be set to any desired size.
FY
Note 1
FX
Portion not displayed
on the screen
Character font area
16 dots
Space
Portion not displayed on the screen
8 dots 8 dots
SpaceCharacter font area
Figure 4-3 Example of character configuration consisting of two or more memory addresses (when [FX] = 9)
Note 1: The S1D13700 does not automatically insert character spaces. If the character field is great-
er than or equal to 9 dots, two memory addresses are required to congure one character even when the character font area may be within 8 dots.
46 EPSON S1D13700 Technical Manual
Page 52

4.1.2 Character Generator (CG)

(1) Features of each character generator
1 Internal character generator
The internal character generator is effective for a minimum display system consisting of the S1D13700, display memory (data RAM), LCD unit, single-chip MPU, and a power supply. Moreover, because the internal character generator includes CMOS mask ROM, it is very adv antageous when lo w power consumption is desired.
Character font
• 5 x 7 dots (See Section 4.4.1 “Character Fonts (Internal CG)” on page 81.)
Number of characters
• JIS-compliant 160 characters
Combined use with CG RAM possible (up to 64 characters)
Processing of the character field space part
The S1D13700 automatically sets spaces in the range of 8 x 16 dots maximum.
2 CG RAM
CG RAM as a graphic generator allows any desired character font to be defined by the user. Moreover , because the MPU can alter address mapping in the display memory space can be altered as required, unused portions of display memory can be effectively utilized.
4: FUNCTION DESCRIPTION
Character font
• 8 x 8 dots maximum <M2 = 0>
• 8 x 16 dots maximum <M2 = 1>
Number of characters
• Up to 64 characters when used in combination with CG ROM
• Up to 256 characters when used only in F000H to FFFFH
Defined area of CG RAM in the display memory space
• CG RAM (maximum 64 characters) that can be used in combination with CG ROM can be allo­cated to any desired contiguous addresses.
• CG RAM (maximum 65 characters or more) that cannot be used in combination with CG ROM must be allocated to fixed addresses F000H through FFFFH. When 193 characters or more must be defined in this fixed address area, set SAG = F000H and M1 = 0.
(2) Concept of how character generator banks are set
Because the character codes handled by the S1D13700 consist of 8 bits, the number of discrete characters that can be displayed simultaneously is limited to a maximum of 256. The CGRAM ADR command can be used to switch banks, however, thus extending the number of usable characters as shown below.
CG RAM n
CG RAM 3
CG RAM 2
CG RAM n
CG RAM 3
CG RAM 2
Basic CG space
(8 x 16 pixels x 256
characters max)
MO=0
MO=1
CG ROM
(5 x 7 pixels x 160
characters max)
CG RAM
(8 x 16 pixels x 64cha)
CG RAM
(8 x 16 pixels x 256
characters max)
SAG
SAG
CG RAM 1
CG RAM 1
S1D13700 Technical Manual EPSON 47
Page 53
4: FUNCTION DESCRIPTION
Note: Up to 64 characters can be used in one bank when used in combination with CG ROM.
When using only CG RAM, up to 256 characters can be used in one bank. Also note that the relationship between CG patterns and character codes changes when banks are switched over.
(3) Method of determining the CG address
The addition shown below is performed to generate CG RAM addresses. Therefore, note that CG RAM data is not mapped from addresses set in the SAG register to the VRAM space, but are mapped based on the SAG + character code + row select address.
1When number of lines that comprise the character font is equal to or less than 8 (M2 = 0, M1 = 0)
SAG A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0
Character code
+ row select address
CG RAM address
00000D7D6D5D4D3D2D1D0000 0000000000000R2R1R0
VA15 VA14 VA13 VA12 VA11 VA10 VA9 VA8 VA7 VA6 VA5 VA4 VA3 VA2 VA1 VA0
2When number of lines that comprise the character font is from 9 to 16, including both ends (M2 = 1, M1
= 0)
SAG
Character code
+ row select address
CG RAM address
Note: Only the addressing above is supported.
A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0
0 0 00D7 D6 D5 D4 D3 D2 D1 D0 0 0 0 0 000000000000R3R2R1R0
VA15 VA14 VA13 VA12 VA11 VA10 VA9 VA8 VA7 VA6 VA5 VA4 VA3 VA2 VA1 VA0
Table 4-1 Row Select Addresses
R3 R2 R1 R0 ROW0 0 0 0 0 ROW1 0 0 0 1 ROW2 0 0 1 0
Line count 1
ROW7 0 1 1 1
1
ROW8 1 0 0 0
Line count 2
ROW14 1 1 1 0 ROW15 1 1 1 1
Note: 1.Line count l ... when character font consists of 8 lines or less
Line count 2 ... when character font consists of 9 lines or more
3When M1 = 1
For the character codes defined in CG RAM2, the S1D13700 automatically changes the D6 bit in the character code from 1 to 0. This ensures that the data storage area in CG RAM corresponds to
48 EPSON S1D13700 Technical Manual
Page 54
4: FUNCTION DESCRIPTION
contiguous addresses in the display memory space. Therefore, the CG RAM addresses to which to write data must be calculated as follows:
• Add addresses the same way as described above (M1 = 0).
• Change bit D6 in one character code from 1 to 0 when adding addresses. Example of CG RAM definition (method of storing data) (See Figure 4-9 “Example of display
memory mapping” on page 63.)
Conditions
• The pattern to define: Pattern A (8 x 16 dots per font) shown in Figure 4-1 “Character display
([FX] 8 dots)” on page 45.
• Start address of the CG RAM table: 4800H
• Character code of defined pattern: 80H (first character code in CG RAM area)
Setting list
CG RAM ADR 5CH
P1 00H P2 40H
CSRDIR 4CH CSRW 46H
P1 00H P2 48H
MWRITE 42H
P1 70H P2 88H P3 88H P4 88H P5 F8H P6 88H P7 88H P8 00H P9 00H
P16 00H
Set SAG after calculating it by performing the method of CG RAM address calculation in reverse.
Shift to the right
CG RAM area from 4800H
Write data for row 0 Write data for row 1 Write data for row 2 Write data for row 3 Write data for row 4 Write data for row 5 Write data for row 6 Write data for row 7 Write data for row 8
Write data for row 15
S1D13700 Technical Manual EPSON 49
Page 55
4: FUNCTION DESCRIPTION

4.1.3 Screen Configuration

(1) Screen conguration
The basic screen conguration of the S1D13700 consists of a text or graphics screen and an overlapping graphics screen. The graphics screen uses at least eight times as much display memory as the text screen.
Figure 4-4 schematically shows the relationship between the virtual and physical screens.
0000H
A/P
C/R
Character table
0800H
07FFH
Graphics table
47FFH
(XM, 0)
(XW, YM)
(XM, YM)
(0, YM)
Display
screen
(X, Y)
Y
(0, 0)
X
Figure 4-4 Relationship between virtual and physical screens
(2) Display address incrementation
The S1D13700 sequentially increments the display address in the X direction from the screen origin (home position) in the same way as a raster scan CRT. When the display address is incremented until the number of addresses equals C/R, one line of data is read from display memory. Next, to read the second line of data when in graphics mode, the S1D13700 starts from the address incremented by the distance equal to the address pitch (AP) from the address of the screen origin (SAD), then repeats the same operation as described above for the rst line.
Conversely, in text mode the S1D13700 repeats the same operation as described above for the rst line until the display address for one character is completed. (Character code is read from the same area, and data is read out in order of R0–R15 of the character generator.) (See Figure 4-2 Example of character generator definition on page 45.)
50 EPSON S1D13700 Technical Manual
Page 56
*ReadTurn
SAD2+CR
SAD2+AP+CR
SAD2+2AP+CR
SAD1+CR
SAD1+AP+CR
SAD1+2AP+CR
SAD2+3AP+CR
SAD2+4AP+CR
SAD2+5AP+CR
SAD1+3AP+CR
SAD1+4AP+CR
SAD1+5AP+CR
SAD2+6AP+CR
SAD2+7AP+CR
SAD2+8AP+CR
SAD1+6AP+CR
SAD1+7AP+CR
SAD1+8AP+CR
SAD2+9AP+CR
SAD2+10AP+CR
SAD2+11AP+CR
SAD1+9AP+CR
SAD1+10AP+CR
SAD1+11AP+CR
SAD2+12AP+CR
SAD2+13AP+CR
SAD2+14AP+CR
SAD1+12AP+CR
SAD1+13AP+CR
SAD1+14AP+CR
SAD2+15AP+CR
SAD1+15AP+CR
4: FUNCTION DESCRIPTION
SAD2+(LF-7)AP+CR
SAD2+(LF-6)AP+CR
SAD2+(SL1-7)AP+CR
SAD2+(SL1-6)AP+CR
SAD2+(SL1-5)AP+CR
SAD2+(SL1-4)AP+CR
SAD1+(SL1-7)AP+CR
SAD1+(SL1-6)AP+CR
SAD1+(SL1-5)AP+CR
SAD1+(SL1-4)AP+CR
SAD2+(SL1-3)AP+CR
SAD1+(SL1-3)AP+CR
SAD2+(SL1-2)AP+CR
SAD2+(SL1-1)AP+CR
SAD1+(SL1-2)AP+CR
SAD1+(SL1-1)AP+CR
SAD2+(SL1)AP+CR
SAD2+(SL1+1)AP+CR
SAD1+(SL1)AP+CR
SAD2+(SL1+2)AP+CR
SAD2+(SL1+3)AP+CR
SAD2+(SL1+4)AP+CR
SAD2+(SL1+5)AP+CR
SAD2+(SL1+6)AP+CR
SAD2+(SL1+7)AP+CR
SAD2+(SL1+8)AP+CR
SAD2+(SL1+9)AP+CR
SAD2+(SL1+10)AP+CR
SAD2+(SL1+11)AP+CR
SAD2+(SL1+12)AP+CR
SAD2+(SL1+13)AP+CR
SAD2+(SL1+14)AP+CR
SAD2+(SL1+15)AP+CR
SAD2+(SL1+16)AP+CR
SAD2+(LF-5)AP+CR
SAD2+(LF)AP+CR
SAD2+(LF-4)AP+CR
SAD2+(LF-3)AP+CR
SAD2+(LF-2)AP+CR
SAD2+(LF-1)AP+CR
SAD2+1
SAD2+AP+1
SAD2+2AP+1
SAD2+3AP+1
SAD2+4AP+1
SAD2+5AP+1
SAD2+6AP+1
SAD2+7AP+1
SAD2+8AP+1
SAD2+9AP+1
SAD2+10AP+1
SAD2+11AP+1
SAD2+12AP+1
SAD2+13AP+1
SAD2+14AP+1
SAD2+15AP+1
SAD1+1
SAD1+AP+1
SAD1+2AP+1
SAD1+3AP+1
SAD1+4AP+1
SAD1+5AP+1
SAD1+6AP+1
SAD1+7AP+1
SAD1+8AP+1
SAD1+9AP+1
SAD1+10AP+1
SAD1+11AP+1
SAD1+12AP+1
SAD1+13AP+1
SAD1+14AP+1
SAD1+15AP+1
SAD2
SAD2+AP
SAD2+2AP
SAD2+3AP
SAD2+4AP
SAD2+5AP
SAD2+6AP
SAD2+7AP
SAD2+8AP
SAD2+9AP
SAD2+10AP
SAD2+11AP
SAD2+12AP
SAD2+13AP
SAD2+14AP
SAD2+15AP
SAD1
SAD1+AP
SAD1+2AP
SAD1+3AP
SAD1+4AP
SAD1+5AP
SAD1+6AP
SAD1+7AP
SAD1+8AP
SAD1+9AP
SAD1+10AP
SAD1+11AP
SAD1+12AP
SAD1+13AP
SAD1+14AP
SAD1+15AP
2 (2)
3 . . . (3)
4 (4)
5 . . .67 . . .89 . . .
<< (W/S, OV, DM2, DM1, FY) = (0, 0, 0, 0, 8) >> (BK1, BK2, BK3, BK4) = (Character (Layer1), Graphic (Layer2), Character (Layer1), -)
LineNo 1 . . . (1)
10
11 . . .1213 . . .1415 . . .
16
SAD2+(SL1-7)AP+1
SAD1+(SL1-7)AP+1
SAD2+(SL1-7)AP
SAD1+(SL1-7)AP
SL1-7 . . .
SAD2+(SL1-6)AP+1
SAD1+(SL1-6)AP+1
SAD2+(SL1-6)AP
SAD1+(SL1-6)AP
SL1-6
SAD2+(SL1-5)AP+1
SAD1+(SL1-5)AP+1
SAD2+(SL1-5)AP
SAD1+(SL1-5)AP
SL1-5 . . .
SAD2+(SL1-4)AP+1
SAD1+(SL1-4)AP+1
SAD2+(SL1-4)AP
SAD1+(SL1-4)AP
SL1-4
SAD2+(SL1-3)AP+1
SAD1+(SL1-3)AP+1
SAD2+(SL1-3)AP
SAD1+(SL1-3)AP
SL1-3 . . .
SAD2+(SL1-2)AP+1
SAD1+(SL1-2)AP+1
SAD2+(SL1-2)AP
SAD1+(SL1-2)AP
SL1-2
SAD2+(SL1- 1)AP+ 1
SAD1+(SL1-1)AP+1
SAD2+(SL1- 1)AP
SAD1+(SL1-1)AP
SL1-1 . . .
SAD2+(SL1)AP+1
SAD1+(SL1)AP+1
SAD2+(SL1)AP
SAD1+(SL1)AP
SL1
SAD2+(SL1+1)AP+1
SAD2+(SL1+1)AP
SL1+1 . . .
SAD2+(LF-7)AP+1
SAD2+(LF-6)AP+1
SAD2+(LF-7)AP
LF-7 . . .
SAD2+(LF-6)AP
LF-6
SAD2+(LF-5)AP+1
SAD2+(LF-5)AP
LF-5 . . . (LF-5)
SAD2+(SL1+2)AP+1
SAD2+(SL1+3)AP+1
SAD2+(SL1+4)AP+1
SAD2+(SL1+5)AP+1
SAD2+(SL1+6)AP+1
SAD2+(SL1+7)AP+1
SAD2+(SL1+8)AP+1
SAD2+(SL1+9)AP+1
SAD2+(SL1+10)AP+1
SAD2+(SL1+11)AP+1
SAD2+(SL1+12)AP+1
SAD2+(SL1+13)AP+1
SAD2+(SL1+14)AP+1
SAD2+(SL1+15)AP+1
SAD2+(SL1+16)AP+1
SAD2+(SL1+2)AP
SAD2+(SL1+3)AP
SAD2+(SL1+4)AP
SAD2+(SL1+5)AP
SAD2+(SL1+6)AP
SAD2+(SL1+7)AP
SAD2+(SL1+8)AP
SAD2+(SL1+9)AP
SAD2+(SL1+10)AP
SAD2+(SL1+11)AP
SAD2+(SL1+12)AP
SAD2+(SL1+13)AP
SAD2+(SL1+14)AP
SAD2+(SL1+15)AP
SAD2+(SL1+16)AP
SAD3 CG3 SAD3+1 CG3 SAD3+CR CG3
SL1+2
SL1+3 . . .
SL1+4
SL1+5 . . .
SL1+6
SL1+7 . . .
SL1+8
SL1+9 . . .
SAD3+AP CG3 SAD3+AP+1 CG3 SAD3+AP+CR CG3
SL1+10
SL1+11 . . .
SL1+12
SL1+13 . . .
SL1+14
SL1+15 . . .
SL1+16
SAD2+(LF)AP+1
SAD2+(LF-4)AP+1
SAD2+(LF-3)AP+1
SAD2+(LF-2)AP+1
SAD2+(LF-1)AP+1
SAD2+(LF)AP
SAD2+(LF-4)AP
SAD2+(LF-3)AP
SAD2+(LF-2)AP
SAD2+(LF-1)AP
SAD3+(LD/8)AP CG3 SAD3+(LF/8)+1 CG3 SAD3+(LF/8)+CR CG3
LF-4 (LF-4)
LF (LF)
LF-3 . . . (LF-3)
LF-2 (LF-2)
LF-1 . . . (LF-1)
S1D13700 Technical Manual EPSON 51
Page 57
4: FUNCTION DESCRIPTION
*ReadTurn
SAD2+CR
SAD2+AP+CR
SAD2+2AP+CR
SAD2+3AP+CR
SAD2+4AP+CR
SAD2+5AP+CR
SAD2+6AP+CR
SAD2+7AP+CR
SAD2+8AP+CR
SAD2+9AP+CR
SAD2+10AP+CR
SAD2+11AP+CR
SAD2+12AP+CR
SAD1+AP+CR CG 1
SAD2+13AP+CR
SAD2+14AP+CR
SAD2+15AP+CR
SAD2+(SL1-7)AP+CR
SAD2+(SL1-6)AP+CR
SAD2+(SL1-5)AP+CR
SAD2+(SL1-4)AP+CR
SAD2+(SL1-3)AP+CR
SAD2+(SL1-2)AP+CR
SAD2+(SL1)AP+CR
SAD2+(SL1-1)AP+CR
SAD2+(SL1+1)AP+CR
SAD3+CR
SAD2+(SL1+2)AP+CR
SAD2+(SL1+3)AP+CR
SAD2+(SL1+4)AP+CR
SAD2+(SL1+5)AP+CR
SAD2+(SL1+6)AP+CR
SAD3+AP+CR
SAD3+2AP+CR
SAD3+3AP+CR
SAD3+4AP+CR
SAD3+5AP+CR
SAD2+(SL1+7)AP+CR
SAD2+(SL1+8)AP+CR
SAD2+(SL1+9)AP+CR
SAD2+(SL1+10)AP+CR
SAD2+(SL1+11)AP+CR
SAD3+6AP+CR
SAD3+7AP+CR
SAD3+8AP+CR
SAD3+9AP+CR
SAD3+10AP+CR
SAD2+(SL1+12)AP+CR
SAD2+(SL1+13)AP+CR
SAD2+(SL1+14)AP+CR
SAD3+11AP+CR
SAD3+12AP+CR
SAD3+13AP+CR
SAD2+(SL1+15)AP+CR
SAD2+(SL1+16)AP+CR
SAD3+14AP+CR
SAD3+15AP+CR
SAD2+(LF-7)AP+CR
SAD2+(LF-6)AP+CR
SAD2+(LF-5)AP+CR
SAD2+(LF-4)AP+CR
SAD2+(LF-3)AP+CR
SAD2+(LF-2)AP+CR
SAD2+(LF-1)AP+CR
SAD3+(LF-SL1-1)AP+CR
SAD3+(LF-SL1-2)AP+CR
SAD3+(LF-SL1-3)AP+CR
SAD3+(LF-SL1-4)AP+CR
SAD3+(LF-SL1-5)AP+CR
SAD3+(LF-SL1-6)AP+CR
SAD3+(LF-SL1-7)AP+CR
SAD2+(LF)AP+CR
SAD3+(LF-SL1)AP+CR
SAD2+1
SAD2+AP+1
SAD2+2AP+1
SAD2+3AP+1
SAD2+4AP+1
SAD2+5AP+1
SAD2+6AP+1
SAD2+7AP+1
SAD2+8AP+1
SAD2+9AP+1
SAD2+10AP+1
SAD2+11AP+1
SAD2+12AP+1
SAD2+13AP+1
SAD2+14AP+1
SAD2+15AP+1
SAD2+(SL1-7)AP+1
SAD2+(SL1-6)AP+1
SAD2+(SL1-5)AP+1
SAD1+AP+1 CG1
SAD2
SAD2+AP
SAD2+2AP
SAD2+3AP
SAD2+4AP
SAD2+5AP
SAD2+6AP
SAD2+7AP
SAD2+8AP
SAD2+9AP
SAD2+10AP
SAD2+11AP
SAD2+12AP
SAD2+13AP
SAD2+14AP
SAD2+15AP
SAD2+(SL1-7)AP
SAD2+(SL1-6)AP
SAD2+(SL1-5)AP
SAD1 CG1 SAD1+1 CG1 SAD1+CR CG1
2 (2)
3 (3)
4 (4)
5 67 89
<< (W/S, OV, DM2, DM1, FY) = (0, 0, 0, 0, 8) >> (BK1, BK2, BK3, BK4) = (Character (Layer1), Graphic (Layer2), Character (Layer1), -)
LineNo 1 (1)
SAD1+AP CG1
10
11 1213 1415
16
SL1-7
SL1-6
SL1-5
SAD2+(SL1-4)AP+1
SAD1+(SL1/8)AP+1 CG1 SAD1+(SL1/8)AP+CR CG1
SAD2+(SL1-4)AP
SAD1+(SL1/8)AP CG1
SL1-4
SAD2+(SL1-3)AP+1
SAD2+(SL1-3)AP
SL1-3
SAD2+(SL1-2)AP+1
SAD2+(SL1-2)AP
SL1-2
SAD2+(SL1-1)AP+1
SAD2+(SL1-1)AP
SL1-1
SAD2+(SL1)AP+1
SAD2+(SL1)AP
SL1
SAD2+(SL1+1)AP+1
SAD2+(SL1+2)AP+1
SAD3+1
SAD3+AP+1
SAD2+(SL1+2)AP
SAD2+(SL1+1)AP
SAD3
SAD3+AP
SL1+1
SL1+2
SAD2+(SL1+3)AP+1
SAD2+(SL1+4)AP+1
SAD2+(SL1+5)AP+1
SAD2+(SL1+6)AP+1
SAD3+2AP+1
SAD3+3AP+1
SAD3+4AP+1
SAD3+5AP+1
SAD2+(SL1+3)AP
SAD2+(SL1+4)AP
SAD2+(SL1+5)AP
SAD2+(SL1+6)AP
SAD3+2AP
SAD3+3AP
SAD3+4AP
SAD3+5AP
SL1+3
SL1+4
SL1+5
SL1+6
SAD2+(SL1+7)AP+1
SAD2+(SL1+8)AP+1
SAD2+(SL1+9)AP+1
SAD2+(SL1+10)AP+1
SAD3+6AP+1
SAD3+7AP+1
SAD3+8AP+1
SAD3+9AP+1
SAD2+(SL1+7)AP
SAD2+(SL1+8)AP
SAD2+(SL1+9)AP
SAD2+(SL1+10)AP
SAD3+6AP
SAD3+7AP
SAD3+8AP
SAD3+9AP
SL1+7
SL1+8
SL1+9
SL1+10
SAD2+(SL1+11)AP+1
SAD3+10AP+1
SAD2+(SL1+11)AP
SAD3+10AP
SL1+11
SAD2+(SL1+12)AP+1
SAD2+(SL1+13)AP+1
SAD3+11AP+1
SAD3+12AP+1
SAD2+(SL1+12)AP
SAD2+(SL1+13)AP
SAD3+11AP
SAD3+12AP
SL1+12
SL1+13
SAD2+(SL1+14)AP+1
SAD2+(SL1+15)AP+1
SAD3+13AP+1
SAD3+14AP+1
SAD2+(SL1+14)AP
SAD2+(SL1+15)AP
SAD3+13AP
SAD3+14AP
SL1+14
SL1+15
SAD2+(SL1+16)AP+1
SAD3+15AP+1
SAD2+(SL1+16)AP
SAD3+15AP
SL1+16
SAD2+(LF-7)AP+1
SAD2+(LF-6)AP+1
SAD2+(LF-5)AP+1
SAD2+(LF-4)AP+1
SAD3+(LF-SL1-4)AP+1
SAD3+(LF-SL1-5)AP+1
SAD3+(LF-SL1-6)AP+1
SAD3+(LF-SL1-7)AP+1
SAD2+(LF-7)AP
SAD2+(LF-6)AP
SAD2+(LF-5)AP
SAD2+(LF-4)AP
SAD3+(LF-SL1-4)AP
SAD3+(LF-SL1-5)AP
SAD3+(LF-SL1-6)AP
SAD3+(LF-SL1-7)AP
LF-7
LF-6
LF-5 (LF-5)
LF-4 (LF-4)
SAD2+(LF)AP+1
SAD2+(LF-3)AP+1
SAD2+(LF-2)AP+1
SAD2+(LF-1)AP+1
SAD3+(LF-SL1)AP+1
SAD3+(LF-SL1-1)AP+1
SAD3+(LF-SL1-2)AP+1
SAD3+(LF-SL1-3)AP+1
SAD2+(LF)AP
SAD2+(LF-3)AP
SAD2+(LF-2)AP
SAD2+(LF-1)AP
SAD3+(LF-SL1)AP
SAD3+(LF-SL1-1)AP
SAD3+(LF-SL1-2)AP
SAD3+(LF-SL1-3)AP
LF (LF)
LF-3 (LF-3)
LF-2 (LF-2)
LF-1 (LF-1)
52 EPSON S1D13700 Technical Manual
Page 58
*ReadTurn
SAD2+CR
SAD2+AP+CR
SAD2+2AP+CR
SAD2+3AP+CR
SAD2+4AP+CR
SAD2+5AP+CR
SAD2+6AP+CR
SAD2+7AP+CR
SAD2+8AP+CR
SAD2+9AP+CR
SAD2+10AP+CR
SAD2+11AP+CR
SAD2+12AP+CR
SAD1+AP+CR CG1
SAD2+13AP+CR
SAD2+14AP+CR
SAD2+15AP+CR
SAD2+(SL1-7)AP+CR
SAD2+(SL1-6)AP+CR
SAD2+(SL1-5)AP+CR
SAD2+(SL1-4)AP+CR
SAD2+(SL1-3)AP+CR
SAD2+(SL1-2)AP+CR
SAD2+(SL1)AP+CR
SAD2+(SL1-1)AP+CR
SAD2+(SL1+1)AP+CR
SAD2+(SL1+2)AP+CR
SAD2+(SL1+3)AP+CR
SAD2+(SL1+4)AP+CR
SAD2+(SL1+5)AP+CR
SAD2+(SL1+6)AP+CR
SAD2+(SL1+7)AP+CR
SAD2+(SL1+8)AP+CR
SAD2+(SL1+9)AP+CR
SAD2+(SL1+10)AP+CR
4: FUNCTION DESCRIPTION
SAD2+(LF-7)AP+CR
SAD2+(LF-6)AP+CR
SAD2+(SL1+11)AP+CR
SAD2+(SL1+12)AP+CR
SAD2+(SL1+13)AP+CR
SAD2+(SL1+14)AP+CR
SAD2+(SL1+15)AP+CR
SAD2+(SL1+16)AP+CR
SAD2+(LF-5)AP+CR
SAD2+(LF)AP+CR
SAD2+(LF-4)AP+CR
SAD2+(LF-3)AP+CR
SAD2+(LF-2)AP+CR
SAD2+(LF-1)AP+CR
<< (W/S, OV, DM2, DM1, FY) = (0, 0, 0, 0, 8) >> (BK1, BK2, BK3, BK4) = (Character (Layer1), Graphic (Layer2), Character (Layer1), -)
VA0-15(case1)
SAD2+1
SAD2+AP+1
SAD2
SAD2+AP
2 (2)
LineNo 1 (1)
SAD2+2AP+1
SAD2+3AP+1
SAD2+4AP+1
SAD2+5AP+1
SAD2+2AP
SAD2+3AP
SAD2+4AP
SAD2+5AP
SAD1 CG1 SAD1+1 CG1 SAD1+CR CG1
3 (3)
4 (4)
5 67 89
SAD2+6AP+1
SAD2+7AP+1
SAD2+8AP+1
SAD2+9AP+1
SAD2+6AP
SAD2+7AP
SAD2+8AP
SAD2+9AP
10
SAD2+10AP+1
SAD2+11AP+1
SAD2+12AP+1
SAD2+13AP+1
SAD1+AP+1 CG1
SAD2+10AP
SAD2+11AP
SAD2+12AP
SAD2+13AP
SAD1+AP CG1
11 1213 1415
SAD2+14AP+1
SAD2+14AP
SAD2+15AP+1
SAD2+15AP
16
SAD2+(SL1-7)AP+1
SAD2+(SL1-7)AP
SL1-7
SAD2+(SL1-6)AP+1
SAD2+(SL1-5)AP+1
SAD2+(SL1-6)AP
SAD2+(SL1-5)AP
SL1-6
SL1-5
SAD2+(SL1-4)AP+1
SAD2+(SL1-3)AP+1
SAD1+(SL1/8)AP+1 CG1 SAD1+(SL1/8)AP+CR CG1
SAD2+(SL1-4)AP
SAD2+(SL1-3)AP
SAD1+(SL1/8)AP CG1
SL1-4
SL1-3
SAD2+(SL1-2)AP+1
SAD2+(SL1-1)AP+1
SAD2+(SL1-2)AP
SAD2+(SL1-1)AP
SL1-2
SL1-1
SAD2+(SL1)AP+1
SAD2+(SL1)AP
SL1
SAD2+(SL1+1)AP+1
SAD2+(SL1+1)AP
SL1+1
SAD2+(SL1+2)AP+1
SAD2+(SL1+3)AP+1
SAD2+(SL1+2)AP
SAD2+(SL1+3)AP
SL1+2
SL1+3
SAD2+(SL1+4)AP+1
SAD2+(SL1+5)AP+1
SAD2+(SL1+4)AP
SAD2+(SL1+5)AP
SAD3 CG3 SAD3+1 CG3 SAD3+CR CG3
SL1+4
SL1+5
SAD2+(SL1+6)AP+1
SAD2+(SL1+7)AP+1
SAD2+(SL1+6)AP
SAD2+(SL1+7)AP
SL1+6
SL1+7
SAD2+(SL1+8)AP+1
SAD2+(SL1+9)AP+1
SAD2+(SL1+8)AP
SAD2+(SL1+9)AP
SL1+8
SL1+9
SAD2+(SL1+10)AP+1
SAD2+(SL1+10)AP
SL1+10
SAD2+(SL1+11)AP+1
SAD2+(SL1+11)AP
SL1+11
SAD2+(SL1+12)AP+1
SAD2+(SL1+12)AP
SAD3+AP CG3 SAD3+AP+1 CG3 SAD3+AP+CR CG3
SL1+12
SAD2+(SL1+13)AP+1
SAD2+(SL1+13)AP
SL1+13
SAD2+(SL1+14)AP+1
SAD2+(SL1+14)AP
SL1+14
SAD2+(SL1+15)AP+1
SAD2+(SL1+15)AP
SL1+15
SAD2+(SL1+16)AP+1
SAD2+(SL1+16)AP
SL1+16
SAD2+(LF-7)AP+1
SAD2+(LF-6)AP+1
SAD2+(LF-5)AP+1
SAD2+(LF-4)AP+1
SAD2+(LF-3)AP+1
SAD2+(LF-2)AP+1
SAD2+(LF-7)AP
SAD2+(LF-6)AP
SAD2+(LF-5)AP
SAD2+(LF-4)AP
SAD2+(LF-3)AP
SAD2+(LF-2)AP
SAD3+(LD/8)AP CG3 SAD3+(LF/8)+1 CG3 SAD3+(LF/8)+CR CG3
LF-7
LF-6
LF-5 (LF-5)
LF-4 (LF-4)
LF-3 (LF-3)
LF-2 (LF-2)
SAD2+(LF)AP+1
SAD2+(LF-1)AP+1
SAD2+(LF)AP
SAD2+(LF-1)AP
LF (LF)
LF-1 (LF-1)
S1D13700 Technical Manual EPSON 53
Page 59
4: FUNCTION DESCRIPTION
*ReadTurn
SAD2+CR
SAD2+AP+CR
SAD2+2AP+CR
SAD2+3AP+CR
SAD2+4AP+CR
SAD2+5AP+CR
SAD2+6AP+CR
SAD2+7AP+CR
SAD2+8AP+CR
SAD2+9AP+CR
SAD2+10AP+CR
SAD2+11AP+CR
SAD2+12AP+CR
SAD2+13AP+CR
SAD2+14AP+CR
SAD2+15AP+CR
SAD2+(SL1-7)AP+CR
SAD2+(SL1-6)AP+CR
SAD2+(SL1-5)AP+CR
SAD2+(SL1-4)AP+CR
SAD2+(SL1-3)AP+CR
SAD2+(SL1-2)AP+CR
SAD2+(SL1)AP+CR
SAD2+(SL1-1)AP+CR
SAD2+(SL1+1)AP+CR
SAD2+(SL1+2)AP+CR
SAD2+(SL1+3)AP+CR
SAD2+(SL1+4)AP+CR
SAD2+(SL1+5)AP+CR
SAD2+(SL1+6)AP+CR
SAD2+(SL1+7)AP+CR
SAD2+(SL1+8)AP+CR
SAD2+(SL1+9)AP+CR
SAD2+(SL1+10)AP+CR
SAD2+(SL1+11)AP+CR
SAD2+(SL1+12)AP+CR
SAD2+(SL1+13)AP+CR
SAD2+(SL1+14)AP+CR
SAD2+(SL1+15)AP+CR
SAD2+(SL1+16)AP+CR
SAD2+(LF-7)AP+CR
SAD2+(LF-6)AP+CR
SAD2+(LF-5)AP+CR
SAD2+(LF-4)AP+CR
SAD2+(LF-3)AP+CR
SAD2+(LF-2)AP+CR
SAD2+(LF-1)AP+CR
SAD2+(LF)AP+CR
SAD1+CR
SAD1+AP+CR
SAD2+1
SAD2+AP+1
SAD1+1
SAD1+AP+1
SAD1+2AP+CR
SAD1+3AP+CR
SAD1+4AP+CR
SAD2+2AP+1
SAD2+3AP+1
SAD2+4AP+1
SAD1+2AP+1
SAD1+3AP+1
SAD1+4AP+1
SAD1+5AP+CR
SAD1+6AP+CR
SAD1+7AP+CR
SAD2+5AP+1
SAD2+6AP+1
SAD2+7AP+1
SAD1+5AP+1
SAD1+6AP+1
SAD1+7AP+1
SAD1+8AP+CR
SAD1+9AP+CR
SAD1+10AP+CR
SAD2+8AP+1
SAD2+9AP+1
SAD2+10AP+1
SAD1+8AP+1
SAD1+9AP+1
SAD1+10AP+1
SAD1+11AP+CR
SAD1+12AP+CR
SAD2+11AP+1
SAD2+12AP+1
SAD1+11AP+1
SAD1+12AP+1
SAD1+13AP+CR
SAD1+14AP+CR
SAD1+15AP+CR
SAD2+13AP+1
SAD2+14AP+1
SAD2+15AP+1
SAD1+13AP+1
SAD1+14AP+1
SAD1+15AP+1
SAD1+(SL1-7)AP+CR
SAD1+(SL1-6)AP+CR
SAD1+(SL1-5)AP+CR
SAD2+(SL1-7)AP+1
SAD2+(SL1-6)AP+1
SAD2+(SL1-5)AP+1
SAD1+(SL1-7)AP+1
SAD1+(SL1-6)AP+1
SAD1+(SL1-5)AP+1
SAD1+(SL1-4)AP+CR
SAD1+(SL1-3)AP+CR
SAD1+(SL1-2)AP+CR
SAD2+(SL1-4)AP+1
SAD2+(SL1-3)AP+1
SAD2+(SL1-2)AP+1
SAD1+(SL1-4)AP+1
SAD1+(SL1-3)AP+1
SAD1+(SL1-2)AP+1
SAD3+CR
SAD1+(SL1)AP+CR
SAD1+(SL1-1)AP+CR
SAD2+(SL1)AP+1
SAD2+(SL1-1)AP+1
SAD2+(SL1+1)AP+1
SAD3+1
SAD1+(SL1)AP+1
SAD1+(SL1-1)AP+1
SAD3+AP+CR
SAD3+2AP+CR
SAD3+3AP+CR
SAD3+4AP+CR
SAD3+5AP+CR
SAD2+(SL1+2)AP+1
SAD2+(SL1+3)AP+1
SAD2+(SL1+4)AP+1
SAD2+(SL1+5)AP+1
SAD2+(SL1+6)AP+1
SAD3+AP+1
SAD3+2AP+1
SAD3+3AP+1
SAD3+4AP+1
SAD3+5AP+1
SAD3+6AP+CR
SAD3+7AP+CR
SAD3+8AP+CR
SAD3+9AP+CR
SAD3+10AP+CR
SAD2+(SL1+7)AP+1
SAD2+(SL1+8)AP+1
SAD2+(SL1+9)AP+1
SAD2+(SL1+10)AP+1
SAD2+(SL1+11)AP+1
SAD3+6AP+1
SAD3+7AP+1
SAD3+8AP+1
SAD3+9AP+1
SAD3+10AP+1
SAD3+11AP+CR
SAD3+12AP+CR
SAD2+(SL1+12)AP+1
SAD2+(SL1+13)AP+1
SAD3+11AP+1
SAD3+12AP+1
SAD3+13AP+CR
SAD3+14AP+CR
SAD3+15AP+CR
SAD2+(SL1+14)AP+1
SAD2+(SL1+15)AP+1
SAD2+(SL1+16)AP+1
SAD3+13AP+1
SAD3+14AP+1
SAD3+15AP+1
SAD3+(LF-SL1-5)AP+CR
SAD3+(LF-SL1-6)AP+CR
SAD3+(LF-SL1-7)AP+CR
SAD2+(LF-7)AP+1
SAD2+(LF-6)AP+1
SAD2+(LF-5)AP+1
SAD3+(LF-SL1-5)AP+1
SAD3+(LF-SL1-6)AP+1
SAD3+(LF-SL1-7)AP+1
SAD3+(LF-SL1-2)AP+CR
SAD3+(LF-SL1-3)AP+CR
SAD3+(LF-SL1-4)AP+CR
SAD2+(LF-4)AP+1
SAD2+(LF-3)AP+1
SAD2+(LF-2)AP+1
SAD3+(LF-SL1-2)AP+1
SAD3+(LF-SL1-3)AP+1
SAD3+(LF-SL1-4)AP+1
SAD3+(LF-SL1)AP+CR
SAD3+(LF-SL1-1)AP+CR
SAD2+(LF)AP+1
SAD2+(LF-1)AP+1
SAD3+(LF-SL1)AP+1
SAD3+(LF-SL1-1)AP+1
SAD2
SAD2+AP
SAD2+2AP
SAD2+3AP
SAD2+4AP
SAD2+5AP
SAD2+6AP
SAD2+7AP
SAD2+8AP
SAD2+9AP
SAD2+10AP
SAD2+11AP
SAD2+12AP
SAD2+13AP
SAD2+14AP
SAD2+15AP
SAD2+(SL1-7)AP
SAD2+(SL1-6)AP
SAD2+(SL1-5)AP
SAD2+(SL1-4)AP
SAD2+(SL1-3)AP
SAD2+(SL1-2)AP
SAD2+(SL1-1)AP
SAD1
SAD1+AP
SAD1+2AP
SAD1+3AP
SAD1+4AP
SAD1+5AP
SAD1+6AP
SAD1+7AP
SAD1+8AP
SAD1+9AP
SAD1+10AP
SAD1+11AP
SAD1+12AP
SAD1+13AP
SAD1+14AP
SAD1+15AP
SAD1+(SL1-7)AP
SAD1+(SL1-6)AP
SAD1+(SL1-5)AP
SAD1+(SL1-4)AP
SAD1+(SL1-3)AP
SAD1+(SL1-2)AP
SAD1+(SL1-1)AP
2 (2)
3 (3)
4 (4)
5 67 89
VA0-15(case2)
<< (W/S, OV, DM2, DM1, FY) = (0, 0, 1, 1, 8) >> (BK1, BK2, BK3, BK4) = Graphic (Layer1), Graphic (Layer2), Graphic (Layer1), -)
LineNo 1 (1)
10
11 1213 1415
16
SL1-7
SL1-6
SL1-5
SL1-4
SL1-3
SL1-2
SL1-1
SAD2+(SL1)AP
SAD1+(SL1)AP
SL1
SAD2+(SL1+1)AP
SAD2+(SL1+2)AP
SAD3
SAD3+AP
SL1+1
SL1+2
SAD2+(SL1+3)AP
SAD2+(SL1+4)AP
SAD2+(SL1+5)AP
SAD2+(SL1+6)AP
SAD3+2AP
SAD3+3AP
SAD3+4AP
SAD3+5AP
SL1+3
SL1+4
SL1+5
SL1+6
SAD2+(SL1+7)AP
SAD2+(SL1+8)AP
SAD2+(SL1+9)AP
SAD2+(SL1+10)AP
SAD3+6AP
SAD3+7AP
SAD3+8AP
SAD3+9AP
SL1+7
SL1+8
SL1+9
SL1+10
SAD2+(SL1+11)AP
SAD3+10AP
SL1+11
SAD2+(SL1+12)AP
SAD3+11AP
SL1+12
SAD2+(SL1+13)AP
SAD3+12AP
SL1+13
SAD2+(SL1+14)AP
SAD3+13AP
SL1+14
SAD2+(SL1+15)AP
SAD3+14AP
SL1+15
SAD2+(SL1+16)AP
SAD3+15AP
SL1+16
SAD2+(LF-7)AP
SAD2+(LF-6)AP
SAD2+(LF-5)AP
SAD2+(LF-4)AP
SAD2+(LF-3)AP
SAD3+(LF-SL1-3)AP
SAD3+(LF-SL1-4)AP
SAD3+(LF-SL1-5)AP
SAD3+(LF-SL1-6)AP
SAD3+(LF-SL1-7)AP
LF-7
LF-6
LF-5 (LF-5)
LF-4 (LF-4)
LF-3 (LF-3)
SAD2+(LF-2)AP
SAD2+(LF-1)AP
SAD3+(LF-SL1-1)AP
SAD3+(LF-SL1-2)AP
LF-2 (LF-2)
LF-1 (LF-1)
54 EPSON S1D13700 Technical Manual
SAD2+(LF)AP
SAD3+(LF-SL1)AP
LF (LF)
Page 60
*ReadTurn
SAD3+CR
SAD3+AP+CR
SAD2+CR
SAD2+AP+CR
SAD1+CR
SAD1+AP+CR
SAD3+2AP+CR
SAD3+3AP+CR
SAD3+4AP+CR
SAD3+5AP+CR
SAD3+6AP+CR
SAD2+2AP+CR
SAD2+3AP+CR
SAD2+4AP+CR
SAD2+5AP+CR
SAD2+6AP+CR
SAD1+2AP+CR
SAD1+3AP+CR
SAD1+4AP+CR
SAD1+5AP+CR
SAD1+6AP+CR
SAD3+7AP+CR
SAD3+8AP+CR
SAD3+9AP+CR
SAD3+10AP+CR
SAD3+11AP+CR
SAD3+12AP+CR
SAD2+7AP+CR
SAD2+8AP+CR
SAD2+9AP+CR
SAD2+10AP+CR
SAD2+11AP+CR
SAD2+12AP+CR
SAD1+7AP+CR
SAD1+8AP+CR
SAD1+9AP+CR
SAD1+10AP+CR
SAD1+11AP+CR
SAD1+12AP+CR
SAD3+13AP+CR
SAD3+14AP+CR
SAD3+15AP+CR
SAD2+13AP+CR
SAD2+14AP+CR
SAD2+15AP+CR
SAD1+13AP+CR
SAD1+14AP+CR
SAD1+15AP+CR
SAD3+16AP+CR
SAD3+17AP+CR
SAD3+18AP+CR
SAD2+16AP+CR
SAD2+17AP+CR
SAD2+18AP+CR
SAD1+16AP+CR
SAD1+17AP+CR
SAD1+18AP+CR
SAD3+19AP+CR
SAD3+20AP+CR
SAD3+21AP+CR
SAD3+22AP+CR
SAD3+23AP+CR
SAD2+20AP+CR
SAD2+19AP+CR
SAD2+21AP+CR
SAD2+22AP+CR
SAD2+23AP+CR
SAD1+20AP+CR
SAD1+19AP+CR
SAD1+21AP+CR
SAD1+22AP+CR
SAD1+23AP+CR
4: FUNCTION DESCRIPTION
SAD3+(LF-7)AP+CR
SAD3+(LF-6)AP+CR
SAD3+(LF-5)AP+CR
SAD3+(LF-4)AP+CR
SAD3+(LF-15)AP+CR
SAD3+(LF-14)AP+CR
SAD3+(LF-13)AP+CR
SAD2+(LF-15)AP+CR
SAD2+(LF-14)AP+CR
SAD2+(LF-13)AP+CR
SAD1+(LF-15)AP+CR
SAD1+(LF-14)AP+CR
SAD1+(LF-13)AP+CR
SAD3+(LF-9)AP+CR
SAD3+(LF-12)AP+CR
SAD3+(LF-11)AP+CR
SAD3+(LF-10)AP+CR
SAD2+(LF-9)AP+CR
SAD2+(LF-12)AP+CR
SAD2+(LF-11)AP+CR
SAD2+(LF-10)AP+CR
SAD1+(LF-9)AP+CR
SAD1+(LF-12)AP+CR
SAD1+(LF-11)AP+CR
SAD1+(LF-10)AP+CR
SAD3+(LF-8)AP+CR
SAD2+(LF-8)AP+CR
SAD1+(LF-8)AP+CR
SAD3+(LF-3)AP+CR
SAD2+(LF-7)AP+CR
SAD2+(LF-6)AP+CR
SAD2+(LF-5)AP+CR
SAD2+(LF-4)AP+CR
SAD2+(LF-3)AP+CR
SAD1+(LF-7)AP+CR
SAD1+(LF-6)AP+CR
SAD1+(LF-5)AP+CR
SAD1+(LF-4)AP+CR
SAD1+(LF-3)AP+CR
SAD3+(LF)AP+CR
SAD3+(LF-2)AP+CR
SAD3+(LF-1)AP+CR
SAD2+(LF)AP+CR
SAD2+(LF-2)AP+CR
SAD2+(LF-1)AP+CR
SAD+(LF)AP+CR
SAD1+(LF-2)AP+CR
SAD1+(LF-1)AP+CR
SAD3+1
SAD3+AP+1
SAD2+1
SAD2+AP+1
SAD1+1
SAD1+AP+1
SAD3
SAD3+AP
SAD2
SAD2+AP
SAD3+2AP+1
SAD3+3AP+1
SAD3+4AP+1
SAD3+5AP+1
SAD2+2AP+1
SAD2+3AP+1
SAD2+4AP+1
SAD2+5AP+1
SAD1+2AP+1
SAD1+3AP+1
SAD1+4AP+1
SAD1+5AP+1
SAD3+2AP
SAD3+3AP
SAD3+4AP
SAD3+5AP
SAD2+2AP
SAD2+3AP
SAD2+4AP
SAD2+5AP
SAD3+6AP+1
SAD3+7AP+1
SAD3+8AP+1
SAD3+9AP+1
SAD2+6AP+1
SAD2+7AP+1
SAD2+8AP+1
SAD2+9AP+1
SAD1+6AP+1
SAD1+7AP+1
SAD1+8AP+1
SAD1+9AP+1
SAD3+6AP
SAD3+7AP
SAD3+8AP
SAD3+9AP
SAD2+6AP
SAD2+7AP
SAD2+8AP
SAD2+9AP
SAD3+10AP+1
SAD2+10AP+1
SAD1+10AP+1
SAD3+10AP
SAD2+10AP
SAD3+11AP+1
SAD2+11AP+1
SAD1+11AP+1
SAD3+11AP
SAD2+11AP
SAD3+12AP+1
SAD2+12AP+1
SAD1+12AP+1
SAD3+12AP
SAD2+12AP
SAD3+13AP+1
SAD2+13AP+1
SAD1+13AP+1
SAD3+13AP
SAD2+13AP
SAD3+14AP+1
SAD2+14AP+1
SAD1+14AP+1
SAD3+14AP
SAD2+14AP
SAD3+15AP+1
SAD2+15AP+1
SAD1+15AP+1
SAD3+15AP
SAD2+15AP
SAD3+16AP+1
SAD2+16AP+1
SAD1+16AP+1
SAD3+16AP
SAD2+16AP
SAD3+17AP+1
SAD2+17AP+1
SAD1+17AP+1
SAD3+17AP
SAD2+17AP
SAD3+18AP+1
SAD3+20AP+1
SAD3+19AP+1
SAD2+18AP+1
SAD2+20AP+1
SAD2+19AP+1
SAD1+18AP+1
SAD1+20AP+1
SAD1+19AP+1
SAD3+18AP
SAD3+20AP
SAD3+19AP
SAD2+18AP
SAD2+20AP
SAD2+19AP
SAD3+21AP+1
SAD3+22AP+1
SAD3+23AP+1
SAD2+21AP+1
SAD2+22AP+1
SAD2+23AP+1
SAD1+21AP+1
SAD1+22AP+1
SAD1+23AP+1
SAD3+21AP
SAD3+22AP
SAD3+23AP
SAD2+21AP
SAD2+22AP
SAD2+23AP
SAD3+(LF-15)AP+1
SAD2+(LF-15)AP+1
SAD1+(LF-15)AP+1
SAD3+(LF-15)AP
SAD2+(LF-15)AP
SAD3+(LF-14)AP+1
SAD2+(LF-14)AP+1
SAD1+(LF-14)AP+1
SAD3+(LF-14)AP
SAD2+(LF-14)AP
SAD3+(LF-13)AP+1
SAD2+(LF-13)AP+1
SAD1+(LF-13)AP+1
SAD3+(LF-13)AP
SAD2+(LF-13)AP
SAD3+(LF-12)AP+1
SAD2+(LF-12)AP+1
SAD1+(LF-12)AP+1
SAD3+(LF-12)AP
SAD2+(LF-12)AP
SAD3+(LF-11)AP+1
SAD2+(LF-11)AP+1
SAD1+(LF-11)AP+1
SAD3+(LF-11)AP
SAD2+(LF-11)AP
SAD3+(LF-10)AP+1
SAD2+(LF-10)AP+1
SAD1+(LF-10)AP+1
SAD3+(LF-10)AP
SAD2+(LF-10)AP
SAD3+(LF-7)AP+1
SAD3+(LF-6)AP+1
SAD3+(LF-5)AP+1
SAD3+(LF-9)AP+1
SAD2+(LF-9)AP+1
SAD1+(LF-9)AP+1
SAD3+(LF-9)AP
SAD2+(LF-9)AP
SAD3+(LF-4)AP+1
SAD3+(LF-8)AP+1
SAD2+(LF-7)AP+1
SAD2+(LF-6)AP+1
SAD2+(LF-5)AP+1
SAD2+(LF-4)AP+1
SAD2+(LF-8)AP+1
SAD1+(LF-7)AP+1
SAD1+(LF-6)AP+1
SAD1+(LF-5)AP+1
SAD1+(LF-4)AP+1
SAD1+(LF-8)AP+1
SAD3+(LF-7)AP
SAD3+(LF-6)AP
SAD3+(LF-5)AP
SAD3+(LF-4)AP
SAD3+(LF-8)AP
SAD2+(LF-7)AP
SAD2+(LF-6)AP
SAD2+(LF-5)AP
SAD2+(LF-4)AP
SAD2+(LF-8)AP
SAD3+(LF)AP+1
SAD3+(LF-3)AP+1
SAD3+(LF-2)AP+1
SAD3+(LF-1)AP+1
SAD2+(LF)AP+1
SAD2+(LF-3)AP+1
SAD2+(LF-2)AP+1
SAD2+(LF-1)AP+1
SAD+(LF)AP+1
SAD1+(LF-3)AP+1
SAD1+(LF-2)AP+1
SAD1+(LF-1)AP+1
SAD3+(LF)AP
SAD3+(LF-3)AP
SAD3+(LF-2)AP
SAD3+(LF-1)AP
SAD2+(LF)AP
SAD2+(LF-3)AP
SAD2+(LF-2)AP
SAD2+(LF-1)AP
SAD1
SAD1+AP
SAD1+2AP
SAD1+3AP
SAD1+4AP
SAD1+5AP
SAD1+6AP
SAD1+7AP
SAD1+8AP
SAD1+9AP
SAD1+10AP
SAD1+11AP
SAD1+12AP
SAD1+13AP
SAD1+14AP
SAD1+15AP
SAD1+16AP
SAD1+17AP
SAD1+18AP
SAD1+20AP
SAD1+19AP
SAD1+21AP
SAD1+22AP
SAD1+23AP
2 (2)
3 (3)
4 (4)
5 67 89
VA0-15(case3)
<< (W/S, OV, DM2, DM1, FY) = (0, 1, 1, 1, 8) >> (BK1, BK2, BK3, BK4) = Graphic (Layer1), Graphic (Layer2), Graphic (Layer3), -)
LineNo 1 (1)
10
11 1213 1415 1617 1819 2021 2223
24
SAD1+(LF-15)AP
LF-15
SAD1+(LF-14)AP
LF-14
SAD1+(LF-13)AP
LF-13
SAD1+(LF-12)AP
LF-12
SAD1+(LF-11)AP
LF-11
SAD1+(LF-9)AP
SAD1+(LF-10)AP
LF-9
LF-10
SAD1+(LF-7)AP
SAD1+(LF-6)AP
SAD1+(LF-8)AP
LF-8
LF-7
LF-6
SAD1+(LF-5)AP
SAD1+(LF-4)AP
SAD1+(LF-3)AP
LF-5 (LF-5)
LF-4 (LF-4)
LF-3 (LF-3)
SAD1+(LF-2)AP
SAD1+(LF-1)AP
LF-2 (LF-2)
LF-1 (LF-1)
S1D13700 Technical Manual EPSON 55
SAD+(LF)AP
LF (LF)
Page 61
4: FUNCTION DESCRIPTION
*ReadTurn
SAD2+CR
SAD2+AP+CR
SAD2+2AP+CR
SAD2+3AP+CR
SAD2+1
SAD2+AP+1
SAD2+2AP+1
SAD2+3AP+1
SAD2+4AP+CR
SAD2+5AP+CR
SAD2+6AP+CR
SAD2+7AP+CR
SAD2+8AP+CR
SAD2+9AP+CR
SAD2+4AP+1
SAD2+5AP+1
SAD2+6AP+1
SAD2+7AP+1
SAD2+8AP+1
SAD2+9AP+1
SAD2+10AP+CR
SAD2+11AP+CR
SAD2+12AP+CR
SAD1+AP+CR CG1
SAD2+10AP+1
SAD2+11AP+1
SAD2+12AP+1
SAD1+AP+1 CG1
SAD2+13AP+CR
SAD2+14AP+CR
SAD2+15AP+CR
SAD2+13AP+1
SAD2+14AP+1
SAD2+15AP+1
SAD2+(SL1-7)AP+CR
SAD2+(SL1-6)AP+CR
SAD2+(SL1-5)AP+CR
SAD2+(SL1-7)AP+1
SAD2+(SL1-6)AP+1
SAD2+(SL1-5)AP+1
SAD2+(SL1-4)AP+CR
SAD2+(SL1-3)AP+CR
SAD2+(SL1-2)AP+CR
SAD2+(SL1-4)AP+1
SAD2+(SL1-3)AP+1
SAD2+(SL1-2)AP+1
SAD1+(SL1/8)AP+1 CG1 SAD1+(SL1/8)AP+CR CG 1
SAD2+(SL1)AP+CR
SAD2+(SL1-1)AP+CR
SAD2+(SL1)AP+1
SAD2+(SL1-1)AP+1
SAD4+CR
SAD4+AP+CR
SAD4+2AP+CR
SAD4+3AP+CR
SAD4+1
SAD4+AP+1
SAD4+2AP+1
SAD4+3AP+1
SAD4+4AP+CR
SAD4+5AP+CR
SAD4+6AP+CR
SAD4+7AP+CR
SAD4+8AP+CR
SAD4+4AP+1
SAD4+5AP+1
SAD4+6AP+1
SAD4+7AP+1
SAD4+8AP+1
SAD4+9AP+CR
SAD4+10AP+CR
SAD4+11AP+CR
SAD4+12AP+CR
SAD4+13AP+CR
SAD4+9AP+1
SAD4+10AP+1
SAD4+11AP+1
SAD4+12AP+1
SAD4+13AP+1
SAD4+14AP+CR
SAD4+15AP+CR
SAD4+14AP+1
SAD4+15AP+1
SAD4+(LF-SL2-7)AP+CR
SAD4+(LF-SL2-6)AP+CR
SAD4+(LF-SL2-5)AP+CR
SAD4+(LF-SL2-4)AP+CR
SAD4+(LF-SL2-7)AP+1
SAD4+(LF-SL2-6)AP+1
SAD4+(LF-SL2-5)AP+1
SAD4+(LF-SL2-4)AP+1
SAD4+(LF-SL2)AP+CR
SAD4+(LF-SL2-3)AP+CR
SAD4+(LF-SL2-2)AP+CR
SAD4+(LF-SL2-1)AP+CR
SAD4+(LF-SL2)AP+1
SAD4+(LF-SL2-3)AP+1
SAD4+(LF-SL2-2)AP+1
SAD4+(LF-SL2-1)AP+1
SAD2
SAD2+AP
2 (3)
LineNo 1 (1)
VA0-15(case4)
<< (W/S, OV, DM2, DM1, FY) = (1, 0, 0, 0, 8) >> (BK1, BK2, BK3, BK4) = (Character (Layer1), Graphic (Layer2), Character (Layer1), Graphic (Layer2))
SAD2+2AP
SAD2+3AP
SAD2+4AP
SAD2+5AP
SAD1 CG1 SAD1+1 CG1 SAD1+CR CG1
3 (5)
4 (7)
5 67 89
SAD2+6AP
SAD2+7AP
SAD2+8AP
SAD2+9AP
10
SAD2+10AP
SAD2+11AP
SAD2+12AP
SAD2+13AP
SAD1+AP CG1
11 1213 1415
SAD2+14AP
SAD2+15AP
16
SAD2+(SL1-7)AP
SL1-7
SAD2+(SL1-6)AP
SL1-6
SAD2+(SL1-5)AP
SL1-5
SAD2+(SL1-4)AP
SAD1+(SL1/8)AP CG1
SL1-4
SAD2+(SL1-3)AP
SL1-3
SAD2+(SL1-2)AP
SAD2+(SL1-1)AP
SL1-1 (LF-3)
SL1-2 (LF-5)
SAD2+(SL1)AP
SL1 (LF-1)
SAD4
SAD4+AP
SL1+1 (2)
SL1+2 (4)
SAD4+2AP
SAD4+3AP
SAD4+4AP
SAD4+5AP
SAD3 CG3 SAD3+1 CG3 SAD3+CR CG3
SL1+3 (6)
SL1+4 (8)
SL1+5
SL1+6
SAD4+6AP
SAD4+7AP
SAD4+8AP
SAD4+9AP
SL1+7
SL1+8
SL1+9
SL1+10
SAD4+10AP
SL1+11
SAD4+11AP
SL1+12
SAD4+12AP
SAD3+AP CG3 SAD3+AP+1 CG3 SAD3+AP+CR CG3
SL1+13
SAD4+13AP
SL1+14
SAD4+14AP
SL1+15
SAD4+15AP
SL1+16
SAD4+(LF-SL2-7)AP
SAD4+(LF-SL2-6)AP
SAD4+(LF-SL2-5)AP
SAD4+(LF-SL2-4)AP
SAD4+(LF-SL2-3)AP
SAD4+(LF-SL2-2)AP
SAD4+(LF-SL2-1)AP
SAD3+(LD/8)AP CG3 SAD3+(LF/8)+1 CG3 SAD3+(LF/8)+CR CG3
LF-7
LF-6
LF-5
LF-4
LF-3
LF-2 (LF-4)
LF-1 (LF-2)
56 EPSON S1D13700 Technical Manual
SAD4+(LF-SL2)AP
LF (LF)
Page 62
*ReadTurn
4: FUNCTION DESCRIPTION
SAD2+CR
SAD2+AP+CR
SAD2+2AP+CR
SAD2+3AP+CR
SAD1+CR
SAD1+AP+CR
SAD1+2AP+CR
SAD1+3AP+CR
SAD2+1
SAD2+AP+1
SAD2+2AP+1
SAD2+3AP+1
SAD1+1
SAD1+AP+1
SAD1+2AP+1
SAD1+3AP+1
SAD2+4AP+CR
SAD2+5AP+CR
SAD2+6AP+CR
SAD2+7AP+CR
SAD2+8AP+CR
SAD1+4AP+CR
SAD1+5AP+CR
SAD1+6AP+CR
SAD1+7AP+CR
SAD1+8AP+CR
SAD2+4AP+1
SAD2+5AP+1
SAD2+6AP+1
SAD2+7AP+1
SAD2+8AP+1
SAD1+4AP+1
SAD1+5AP+1
SAD1+6AP+1
SAD1+7AP+1
SAD1+8AP+1
SAD2+9AP+CR
SAD2+10AP+CR
SAD2+11AP+CR
SAD2+12AP+CR
SAD2+13AP+CR
SAD2+14AP+CR
SAD1+9AP+CR
SAD1+10AP+CR
SAD1+11AP+CR
SAD1+12AP+CR
SAD1+13AP+CR
SAD1+14AP+CR
SAD2+9AP+1
SAD2+10AP+1
SAD2+11AP+1
SAD2+12AP+1
SAD2+13AP+1
SAD2+14AP+1
SAD1+9AP+1
SAD1+10AP+1
SAD1+11AP+1
SAD1+12AP+1
SAD1+13AP+1
SAD1+14AP+1
SAD2+15AP+CR
SAD1+15AP+CR
SAD2+15AP+1
SAD1+15AP+1
SAD2+(SL1-7)AP+CR
SAD2+(SL1-6)AP+CR
SAD2+(SL1-5)AP+CR
SAD1+(SL1-7)AP+CR
SAD1+(SL1-6)AP+CR
SAD1+(SL1-5)AP+CR
SAD2+(SL1-7)AP+1
SAD2+(SL1-6)AP+1
SAD2+(SL1-5)AP+1
SAD1+(SL1-7)AP+1
SAD1+(SL1-6)AP+1
SAD1+(SL1-5)AP+1
SAD2+(SL1-4)AP+CR
SAD2+(SL1-3)AP+CR
SAD2+(SL1-2)AP+CR
SAD1+(SL1-4)AP+CR
SAD1+(SL1-3)AP+CR
SAD1+(SL1-2)AP+CR
SAD2+(SL1-4)AP+1
SAD2+(SL1-3)AP+1
SAD2+(SL1-2)AP+1
SAD1+(SL1-4)AP+1
SAD1+(SL1-3)AP+1
SAD1+(SL1-2)AP+1
SAD4+CR
SAD2+(SL1)AP+CR
SAD2+(SL1-1)AP+CR
SAD1+(SL1)AP+CR
SAD1+(SL1-1)AP+CR
SAD4+1
SAD2+(SL1)AP+1
SAD2+(SL1-1)AP+1
SAD1+(SL1)AP+1
SAD1+(SL1-1)AP+1
SAD4+AP+CR
SAD4+2AP+CR
SAD4+3AP+CR
SAD4+4AP+CR
SAD4+5AP+CR
CG3 SAD3+CR CG3
SAD4+AP+1
SAD4+2AP+1
SAD4+3AP+1
SAD4+4AP+1
SAD4+5AP+1
1
SAD4+6AP+CR
SAD4+7AP+CR
SAD4+8AP+CR
SAD4+9AP+CR
SAD4+10AP+CR
SAD4+6AP+1
SAD4+7AP+1
SAD4+8AP+1
SAD4+9AP+1
SAD4+10AP+1
SAD4+11AP+CR
SAD4+12AP+CR
SAD4+11AP+1
SAD4+12AP+1
SAD4+13AP+CR
SAD4+14AP+CR
SAD4+15AP+CR
SAD4+13AP+1
SAD4+14AP+1
SAD4+15AP+1
SAD4+(LF-SL2-7)AP+CR
SAD4+(LF-SL2-6)AP+CR
SAD4+(LF-SL2-5)AP+CR
SAD4+(LF-SL2-4)AP+CR
SAD4+(LF-SL2-7)AP+1
SAD4+(LF-SL2-6)AP+1
SAD4+(LF-SL2-5)AP+1
SAD4+(LF-SL2-4)AP+1
SAD4+(LF-SL2)AP+CR
SAD4+(LF-SL2-3)AP+CR
SAD4+(LF-SL2-2)AP+CR
SAD4+(LF-SL2-1)AP+CR
SAD4+(LF-SL2)AP+1
SAD4+(LF-SL2-3)AP+1
SAD4+(LF-SL2-2)AP+1
SAD4+(LF-SL2-1)AP+1
SAD2
SAD2+AP
SAD2+2AP
SAD2+3AP
SAD2+4AP
SAD1
SAD1+AP
SAD1+2AP
SAD1+3AP
SAD1+4AP
2 (3)
3 (5)
4 (7)
5 67 89
<< (W/S, OV, DM2, DM1, FY) = (1, 0, 0, 0, 8) >> (BK1, BK2, BK3, BK4) = (Character (Layer1), Graphic (Layer2), Character (Layer1), Graphic (Layer2))
LineNo 1 (1)
SAD2+5AP
SAD2+6AP
SAD2+7AP
SAD2+8AP
SAD1+5AP
SAD1+6AP
SAD1+7AP
SAD1+8AP
SAD2+9AP
SAD2+10AP
SAD2+11AP
SAD2+12AP
SAD1+9AP
SAD1+10AP
SAD1+11AP
SAD1+12AP
10
11 1213 1415
SAD2+13AP
SAD1+13AP
SAD2+14AP
SAD1+14AP
SAD2+15AP
SAD1+15AP
16
SAD2+(SL1-7)AP
SAD2+(SL1-6)AP
SAD1+(SL1-7)AP
SAD1+(SL1-6)AP
SL1-7
SL1-6
SAD2+(SL1-5)AP
SAD2+(SL1-4)AP
SAD1+(SL1-5)AP
SAD1+(SL1-4)AP
SL1-5
SL1-4
SAD2+(SL1-3)AP
SAD1+(SL1-3)AP
SL1-3
SAD2+(SL1-2)AP
SAD2+(SL1-1)AP
SAD1+(SL1-2)AP
SAD1+(SL1-1)AP
SL1-2 (LF-5)
SL1-1 (LF-3)
SAD2+(SL1)AP
SAD1+(SL1)AP
SL1 (LF-1)
SAD4
SAD4+AP
SL1+1 (2)
SL1+2 (4)
SAD4+2AP
SAD4+3AP
SAD4+4AP
SAD4+5AP
SAD3 CG3 SAD3+
SL1+4 (8)
SL1+5…SL1+6
SL1+3 (6)
SAD4+6AP
SAD4+7AP
SAD4+8AP
SAD4+9AP
SL1+7
SL1+8
SL1+9
SL1+10
SAD4+10AP
SL1+11
SAD4+11AP
SL1+12
SAD4+12AP
SAD3+AP CG3 SAD3+AP+1 CG3 SAD3+AP+CR CG3
SL1+13
SAD4+13AP
SL1+14
SAD4+14AP
SL1+15
SAD4+15AP
SL1+16
SAD4+(LF-SL2-7)AP
SAD4+(LF-SL2-6)AP
SAD4+(LF-SL2-5)AP
SAD4+(LF-SL2-4)AP
SAD4+(LF-SL2-3)AP
SAD4+(LF-SL2-2)AP
SAD4+(LF-SL2-1)AP
SAD3+(LD/8)AP CG3 SAD3+(LF/8)+1 CG3 SAD3+(LF/8)+CR CG3
LF-7
LF-6
LF-5
LF-4
LF-3
LF-2 (LF-4)
LF-1 (LF-2)
S1D13700 Technical Manual EPSON 57
SAD4+(LF-SL2)AP
LF (LF)
Page 63
4: FUNCTION DESCRIPTION
*ReadTurn
SAD2+CR
SAD2+AP+CR
SAD2+2AP+CR
SAD2+3AP+CR
SAD2+1
SAD2+AP+1
SAD2+2AP+1
SAD2+3AP+1
SAD2+4AP+CR
SAD2+5AP+CR
SAD2+6AP+CR
SAD2+7AP+CR
SAD2+8AP+CR
SAD2+4AP+1
SAD2+5AP+1
SAD2+6AP+1
SAD2+7AP+1
SAD2+8AP+1
SAD2+9AP+CR
SAD2+10AP+CR
SAD2+11AP+CR
SAD2+12AP+CR
SAD2+13AP+CR
SAD2+14AP+CR
SAD1+AP+CR CG1
SAD2+9AP+1
SAD2+10AP+1
SAD2+11AP+1
SAD2+12AP+1
SAD2+13AP+1
SAD2+14AP+1
SAD1+AP+1 CG1
SAD2+15AP+CR
SAD2+15AP+1
SAD2+(SL1-7)AP+CR
SAD2+(SL1-6)AP+CR
SAD2+(SL1-5)AP+CR
SAD2+(SL1-7)AP+1
SAD2+(SL1-6)AP+1
SAD2+(SL1-5)AP+1
SAD2+(SL1-4)AP+CR
SAD2+(SL1-3)AP+CR
SAD2+(SL1-2)AP+CR
SAD2+(SL1-4)AP+1
SAD2+(SL1-3)AP+1
SAD2+(SL1-2)AP+1
SAD1+(SL1/8)AP+1 CG1 SAD1+(SL1/8)AP+CR CG1
SAD2+(SL1)AP+CR
SAD2+(SL1-1)AP+CR
SAD2+(SL1)AP+1
SAD2+(SL1-1)AP+1
SAD4+CR
SAD4+AP+CR
SAD4+2AP+CR
SAD4+3AP+CR
SAD3+CR
SAD3+AP+CR
SAD3+2AP+CR
SAD3+3AP+CR
SAD4+1
SAD4+AP+1
SAD4+2AP+1
SAD4+3AP+1
SAD1+1
SAD3+AP+1
SAD3+2AP+1
SAD3+3AP+1
SAD4+4AP+CR
SAD4+5AP+CR
SAD4+6AP+CR
SAD4+7AP+CR
SAD4+8AP+CR
SAD3+4AP+CR
SAD3+5AP+CR
SAD3+6AP+CR
SAD3+7AP+CR
SAD3+8AP+CR
SAD4+4AP+1
SAD4+5AP+1
SAD4+6AP+1
SAD4+7AP+1
SAD4+8AP+1
SAD3+4AP+1
SAD3+5AP+1
SAD3+6AP+1
SAD3+7AP+1
SAD3+8AP+1
SAD4+9AP+CR
SAD4+10AP+CR
SAD4+11AP+CR
SAD4+12AP+CR
SAD4+13AP+CR
SAD3+9AP+CR
SAD3+10AP+CR
SAD3+11AP+CR
SAD3+12AP+CR
SAD3+13AP+CR
SAD4+9AP+1
SAD4+10AP+1
SAD4+11AP+1
SAD4+12AP+1
SAD4+13AP+1
SAD3+9AP+1
SAD3+10AP+1
SAD3+11AP+1
SAD3+12AP+1
SAD3+13AP+1
SAD4+14AP+CR
SAD4+15AP+CR
SAD3+14AP+CR
SAD3+15AP+CR
SAD4+14AP+1
SAD4+15AP+1
SAD3+14AP+1
SAD3+15AP+1
SAD4+(LF-SL2-7)AP+CR
SAD4+(LF-SL2-6)AP+CR
SAD4+(LF-SL2-5)AP+CR
SAD4+(LF-SL2-4)AP+CR
SAD3+(LF-SL1-4)AP+CR
SAD3+(LF-SL1-5)AP+CR
SAD3+(LF-SL1-6)AP+CR
SAD3+(LF-SL1-7)AP+CR
SAD4+(LF-SL2-7)AP+1
SAD4+(LF-SL2-6)AP+1
SAD4+(LF-SL2-5)AP+1
SAD4+(LF-SL2-4)AP+1
SAD3+(LF-SL1-4)AP+1
SAD3+(LF-SL1-5)AP+1
SAD3+(LF-SL1-6)AP+1
SAD3+(LF-SL1-7)AP+1
SAD4+(LF-SL2)AP+CR
SAD4+(LF-SL2-3)AP+CR
SAD4+(LF-SL2-2)AP+CR
SAD4+(LF-SL2-1)AP+CR
SAD3+(LF-SL1)AP+CR
SAD3+(LF-SL1-1)AP+CR
SAD3+(LF-SL1-2)AP+CR
SAD3+(LF-SL1-3)AP+CR
SAD4+(LF-SL2)AP+1
SAD4+(LF-SL2-3)AP+1
SAD4+(LF-SL2-2)AP+1
SAD4+(LF-SL2-1)AP+1
SAD3+(LF-SL1)AP+1
SAD3+(LF-SL1-1)AP+1
SAD3+(LF-SL1-2)AP+1
SAD3+(LF-SL1-3)AP+1
SAD2
SAD2+AP
SAD2+2AP
SAD2+3AP
SAD2+4AP
SAD1 CG1 SAD1+1 CG1 SAD1+CR CG1
2 (3)
3 (5)
4 (7)
5 67 89
LineNo 1 (1 )
<< (W/S, OV, DM2, DM1, FY) = (1, 0, 0, 0, 8) >> (BK1, BK2, BK3, BK4) = (Character (Layer1), Graphic (Layer2), Character (Layer1), Graphic (Layer2))
SAD2+5AP
SAD2+6AP
SAD2+7AP
SAD2+8AP
SAD2+9AP
SAD2+10AP
SAD2+11AP
SAD2+12AP
SAD1+AP CG1
10
11 1213 1415
SAD2+13AP
SAD2+14AP
SAD2+15AP
16
SAD2+(SL1-7)AP
SL1-7
SAD2+(SL1-6)AP
SL1-6
SAD2+(SL1-5)AP
SL1-5
SAD2+(SL1-4)AP
SAD1+(SL1/8)AP CG1
SL1-4
SAD2+(SL1-3)AP
SL1-3
SAD2+(SL1-2)AP
SAD2+(SL1-1)AP
SL1-2 (LF-5)
SL1-1 (LF-3)
SAD2+(SL1)AP
SL1 (LF-1)
SAD4
SAD4+AP
SAD3
SAD3+AP
SL1+1 (2)
SL1+2 (4)
SAD4+2AP
SAD4+3AP
SAD4+4AP
SAD4+5AP
SAD3+2AP
SAD3+3AP
SAD3+4AP
SAD3+5AP
SL1+4 (8)
SL1+5
SL1+6
SL1+3 (6)
SAD4+6AP
SAD4+7AP
SAD4+8AP
SAD4+9AP
SAD3+6AP
SAD3+7AP
SAD3+8AP
SAD3+9AP
SL1+7
SL1+8
SL1+9
SL1+10
SAD4+10AP
SAD3+10AP
SL1+11
SAD4+11AP
SAD3+11AP
SL1+12
SAD4+12AP
SAD3+12AP
SL1+13
SAD4+13AP
SAD3+13AP
SL1+14
SAD4+14AP
SAD3+14AP
SL1+15
SAD4+15AP
SAD3+15AP
SL1+16
SAD4+(LF-SL2-7)AP
SAD4+(LF-SL2-6)AP
SAD4+(LF-SL2-5)AP
SAD4+(LF-SL2-4)AP
SAD4+(LF-SL2-3)AP
SAD4+(LF-SL2-2)AP
SAD4+(LF-SL2-1)AP
SAD3+(LF-SL1-1)AP
SAD3+(LF-SL1-2)AP
SAD3+(LF-SL1-3)AP
SAD3+(LF-SL1-4)AP
SAD3+(LF-SL1-5)AP
SAD3+(LF-SL1-6)AP
SAD3+(LF-SL1-7)AP
LF-7
LF-6
LF-5
LF-4
LF-3
LF-2 (LF-4)
LF-1 (LF-2)
58 EPSON S1D13700 Technical Manual
SAD4+(LF-SL2)AP
SAD3+(LF-SL1)AP
LF (LF)
Page 64
*ReadTurn
4: FUNCTION DESCRIPTION
SAD2+CR
SAD2+AP+CR
SAD2+2AP+CR
SAD2+3AP+CR
SAD1+CR
SAD1+AP+CR
SAD1+2AP+CR
SAD1+3AP+CR
SAD2+1
SAD2+AP+1
SAD2+2AP+1
SAD2+3AP+1
SAD1+1
SAD1+AP+1
SAD1+2AP+1
SAD1+3AP+1
SAD2+4AP+CR
SAD2+5AP+CR
SAD2+6AP+CR
SAD2+7AP+CR
SAD2+8AP+CR
SAD1+4AP+CR
SAD1+5AP+CR
SAD1+6AP+CR
SAD1+7AP+CR
SAD1+8AP+CR
SAD2+4AP+1
SAD2+5AP+1
SAD2+6AP+1
SAD2+7AP+1
SAD2+8AP+1
SAD1+4AP+1
SAD1+5AP+1
SAD1+6AP+1
SAD1+7AP+1
SAD1+8AP+1
SAD2+9AP+CR
SAD2+10AP+CR
SAD2+11AP+CR
SAD2+12AP+CR
SAD2+13AP+CR
SAD2+14AP+CR
SAD1+9AP+CR
SAD1+10AP+CR
SAD1+11AP+CR
SAD1+12AP+CR
SAD1+13AP+CR
SAD1+14AP+CR
SAD2+9AP+1
SAD2+10AP+1
SAD2+11AP+1
SAD2+12AP+1
SAD2+13AP+1
SAD2+14AP+1
SAD1+9AP+1
SAD1+10AP+1
SAD1+11AP+1
SAD1+12AP+1
SAD1+13AP+1
SAD1+14AP+1
SAD2+15AP+CR
SAD1+15AP+CR
SAD2+15AP+1
SAD1+15AP+1
SAD2+(SL1-7)AP+CR
SAD2+(SL1-6)AP+CR
SAD2+(SL1-5)AP+CR
SAD1+(SL1-7)AP+CR
SAD1+(SL1-6)AP+CR
SAD1+(SL1-5)AP+CR
SAD2+(SL1-7)AP+1
SAD2+(SL1-6)AP+1
SAD2+(SL1-5)AP+1
SAD1+(SL1-7)AP+1
SAD1+(SL1-6)AP+1
SAD1+(SL1-5)AP+1
SAD2+(SL1-4)AP+CR
SAD2+(SL1-3)AP+CR
SAD2+(SL1-2)AP+CR
SAD1+(SL1-4)AP+CR
SAD1+(SL1-3)AP+CR
SAD1+(SL1-2)AP+CR
SAD2+(SL1-4)AP+1
SAD2+(SL1-3)AP+1
SAD2+(SL1-2)AP+1
SAD1+(SL1-4)AP+1
SAD1+(SL1-3)AP+1
SAD1+(SL1-2)AP+1
SAD4+CR
SAD2+(SL1)AP+CR
SAD2+(SL1-1)AP+CR
SAD3+CR
SAD1+(SL1)AP+CR
SAD1+(SL1-1)AP+CR
SAD4+1
SAD2+(SL1)AP+1
SAD2+(SL1-1)AP+1
SAD1+1
SAD1+(SL1)AP+1
SAD1+(SL1-1)AP+1
SAD4+AP+CR
SAD4+2AP+CR
SAD4+3AP+CR
SAD4+4AP+CR
SAD4+5AP+CR
SAD3+AP+CR
SAD3+2AP+CR
SAD3+3AP+CR
SAD3+4AP+CR
SAD3+5AP+CR
SAD4+AP+1
SAD4+2AP+1
SAD4+3AP+1
SAD4+4AP+1
SAD4+5AP+1
SAD3+AP+1
SAD3+2AP+1
SAD3+3AP+1
SAD3+4AP+1
SAD3+5AP+1
SAD4+6AP+CR
SAD4+7AP+CR
SAD4+8AP+CR
SAD4+9AP+CR
SAD4+10AP+CR
SAD3+6AP+CR
SAD3+7AP+CR
SAD3+8AP+CR
SAD3+9AP+CR
SAD3+10AP+CR
SAD4+6AP+1
SAD4+7AP+1
SAD4+8AP+1
SAD4+9AP+1
SAD4+10AP+1
SAD3+6AP+1
SAD3+7AP+1
SAD3+8AP+1
SAD3+9AP+1
SAD3+10AP+1
SAD4+11AP+CR
SAD4+12AP+CR
SAD3+11AP+CR
SAD3+12AP+CR
SAD4+11AP+1
SAD4+12AP+1
SAD3+11AP+1
SAD3+12AP+1
SAD4+13AP+CR
SAD4+14AP+CR
SAD4+15AP+CR
SAD3+13AP+CR
SAD3+14AP+CR
SAD3+15AP+CR
SAD4+13AP+1
SAD4+14AP+1
SAD4+15AP+1
SAD3+13AP+1
SAD3+14AP+1
SAD3+15AP+1
SAD4+(LF-SL2)AP+CR
SAD4+(LF-SL2-1)AP+CR
SAD4+(LF-SL2-2)AP+CR
SAD4+(LF-SL2-3)AP+CR
SAD4+(LF-SL2-4)AP+CR
SAD4+(LF-SL2-5)AP+CR
SAD4+(LF-SL2-6)AP+CR
SAD4+(LF-SL2-7)AP+CR
SAD3+(LF-SL1)AP+CR
SAD3+(LF-SL1-1)AP+CR
SAD3+(LF-SL1-2)AP+CR
SAD3+(LF-SL1-3)AP+CR
SAD3+(LF-SL1-4)AP+CR
SAD3+(LF-SL1-5)AP+CR
SAD3+(LF-SL1-6)AP+CR
SAD3+(LF-SL1-7)AP+CR
SAD4+(LF-SL2)AP+1
SAD4+(LF-SL2-1)AP+1
SAD4+(LF-SL2-2)AP+1
SAD4+(LF-SL2-3)AP+1
SAD4+(LF-SL2-4)AP+1
SAD4+(LF-SL2-5)AP+1
SAD4+(LF-SL2-6)AP+1
SAD4+(LF-SL2-7)AP+1
SAD3+(LF-SL1)AP+1
SAD3+(LF-SL1-1)AP+1
SAD3+(LF-SL1-2)AP+1
SAD3+(LF-SL1-3)AP+1
SAD3+(LF-SL1-4)AP+1
SAD3+(LF-SL1-5)AP+1
SAD3+(LF-SL1-6)AP+1
SAD3+(LF-SL1-7)AP+1
VA0-15(case5)
<< (W/S, OV, DM2, DM1, FY) = (1, 0, 1, 1, 8) >> (BK1, BK2, BK3, BK4) = (Graphic (Layer1), Graphic (Layer2), Graphic (Layer1), Graphic (Layer2))
SAD2
SAD2+AP
SAD1
SAD1+AP
2 (3)
LineNo 1 (1)
SAD2+2AP
SAD2+3AP
SAD2+4AP
SAD2+5AP
SAD1+2AP
SAD1+3AP
SAD1+4AP
SAD1+5AP
3 (5)
4 (7)
5 67 89
SAD2+6AP
SAD2+7AP
SAD2+8AP
SAD2+9AP
SAD1+6AP
SAD1+7AP
SAD1+8AP
SAD1+9AP
10
SAD2+10AP
SAD2+11AP
SAD2+12AP
SAD2+13AP
SAD1+10AP
SAD1+11AP
SAD1+12AP
SAD1+13AP
11 1213 1415
SAD2+14AP
SAD1+14AP
SAD2+15AP
SAD1+15AP
16
SAD2+(SL1-7)AP
SAD2+(SL1-6)AP
SAD1+(SL1-7)AP
SAD1+(SL1-6)AP
SL1-7
SL1-6
SAD2+(SL1-5)AP
SAD1+(SL1-5)AP
SL1-5
SAD2+(SL1-4)AP
SAD1+(SL1-4)AP
SL1-4
SAD2+(SL1-3)AP
SAD1+(SL1-3)AP
SL1-3
SAD2+(SL1-2)AP
SAD2+(SL1-1)AP
SAD1+(SL1-2)AP
SAD1+(SL1-1)AP
SL1-2 (LF-5)
SL1-1 (LF-3)
SAD2+(SL1)AP
SAD1+(SL1)AP
SL1 (LF-1)
SAD4
SAD4+AP
SAD3
SAD3+AP
SL1+1 (2)
SL1+2 (4)
SAD4+2AP
SAD4+3AP
SAD4+4AP
SAD4+5AP
SAD3+2AP
SAD3+3AP
SAD3+4AP
SAD3+5AP
SL1+4 (8)
SL1+3 (6)
SL1+5
SL1+6
SAD4+6AP
SAD4+7AP
SAD4+8AP
SAD4+9AP
SAD3+6AP
SAD3+7AP
SAD3+8AP
SAD3+9AP
SL1+7
SL1+8
SL1+9
SL1+10
SAD4+10AP
SAD3+10AP
SL1+11
SAD4+11AP
SAD3+11AP
SL1+12
SAD4+12AP
SAD3+12AP
SL1+13
SAD4+13AP
SAD3+13AP
SL1+14
SAD4+14AP
SAD3+14AP
SL1+15
SAD4+15AP
SAD3+15AP
SL1+16
SAD4+(LF-SL2-1)AP
SAD4+(LF-SL2-2)AP
SAD4+(LF-SL2-3)AP
SAD4+(LF-SL2-4)AP
SAD4+(LF-SL2-5)AP
SAD4+(LF-SL2-6)AP
SAD4+(LF-SL2-7)AP
SAD3+(LF-SL1-1)AP
SAD3+(LF-SL1-2)AP
SAD3+(LF-SL1-3)AP
SAD3+(LF-SL1-4)AP
SAD3+(LF-SL1-5)AP
SAD3+(LF-SL1-6)AP
SAD3+(LF-SL1-7)AP
LF-7
LF-6
LF-5
LF-4
LF-3
LF-2 (LF-4)
LF-1 (LF-2)
S1D13700 Technical Manual EPSON 59
SAD4+(LF-SL2)AP
SAD3+(LF-SL1)AP
LF (LF)
Page 65
4: FUNCTION DESCRIPTION
(3) Basic timing
The basic read cycle of display memory in the S1D13700 varies with the clock divide ratios set, as shown below.
When the display clock frequency divide ratio = 1/4, display data is output every 8 system clock periods. When the display clock frequency divide ratio = 1/8, display data is output every 16 system clock periods. When the display clock frequency divide ratio = 1/16, display data is output every 32 system clock
periods.
1-frame period
Display Data
Figure 4-5 Basic read cycle of display memory
Display period
TC/R
C/R
Line
1 2
3
[L/F]
0 0 0
0
Frequency division
adjustment period
R R R
R
LP
Figure 4-6 Relationship between TC/R and C/R
60 EPSON S1D13700 Technical Manual
Page 66

4.1.4 Cursor

(1) Cursor register function
The cursor register in the S1D13700 serves dual purposes as a cursor address register required to display the cursor on the screen, and as an address pointer to be referenced when accessing display memory.
Cursor register
To access any display memory area other than the screen while displaying the cursor, the cursor address must be preset before attempting such access and restored to the previous value after access is completed.
Note: The cursor will disappear if the cursor address is moved to any area other than the screen
(2) Direction of cursor movement
The cursor address is automatically shifted in the specied direction from the value preset by a memory control command.
(3) Cursor display layer
Although the S1D13700 can display up to three overlaid layers, the cursor can be displayed in only one of those layers. In other words, the cursor-attribute layer (or layer in which the cursor can be displayed) is:
4: FUNCTION DESCRIPTION
Cursor display address register
Address pointer
for more than several 100 ms.
First layer (L1) during two-layer composition, or Third layer (L3) during three-layer composition.
The cursor will not appear if moved to other than those cursor-attribute layers. If the cursor must be displayed, change the layers or move the cursor-attribute layer to the cursor address location.
Although the cursor is generally displayed in text mode, the S1D13700 can also display a dummy cursor in graphics mode. This is accomplished by using the graphics screen as a display plane while not displaying the text screen, but using it to only generate addresses for cursor control.
Example: DISP ON/OFF
D =1 FC1 = 0 FC0 = 1
Cursor ON
FP1 = 0 FP0 = 0
First screen block (text screen) OFF
FP3 = 0 FP2 = 1
Second screen block (graphics screen) ON
S1D13700 Technical Manual EPSON 61
Page 67
4: FUNCTION DESCRIPTION

4.1.5 Relationship between Display Memory and Screens

The display memory of the S1D13700 may be used as a virtual screen of greater width than the physical size of the LCD panel address range (C/R). One layer of the S1D13700 may be considered a window through which to look at the part of display memory that comprises a virtual screen. This window can be divided into two blocks that may correspond to independent areas on the virtual screen. Therefore, it is possible to use one block as a dynamically scrollable data area and the other as a stationary message area. (See Figures 4-7 and 4-
8.)
Screen
SAD1
First screen
SAD2
Second screen
SAD1
First screen block
SAD3
Third screen block
SAD2
Second screen
SAD2
SAD1
Third screen block
[W/S = 0]
block
L1
block
L2
L1
block
L2
SAD3
Third screen block
Second screen block
L1
L2 L3
SAD1 SAD3
SAD3
SAD3
SAD1
SAD2
C/R C1
C3
SAD2
SAD4
SAD2
C/R
G3
C/R
C3
SAD1
AP
C/R
C/R
G2
G2 G4
C/R
CG RAM
C/R
G2
C/R
G1
Screen
SAD1
First screen block
SAD3
Third screen block
SAD2
Second screen block
SAD4
Fourth screen block
[W/S = 1]
L1
L2
Figure 4-7 Relationship between display memory and screens
62 EPSON S1D13700 Technical Manual
Page 68
0000H
4: FUNCTION DESCRIPTION
AP
SAD1
L/F
SAD1
code
Character
SAD2
Back layer
SAG
FY
FX
CSRA
(MSB) (LSB)
D7 D0
0000
SL1
0300 0400
0800
SL2
2000
2800
4440 4800
4A00
F000
<Display memory>
CRY
CRX
Window (display area)
C/R
Figure 4-8 Window and display memory settings
(MSB) (LSB)
Page 1
Page 2
Page 1
Page 2
CG RAM
Unused
CG ROM
D7 D0
(code)
A B C
X Y
(code)
a b g
c
(MSB) (LSB)
D7 D0
HEX
70 01110000 88 10001000 88 10001000 88 10001000
Characters
F8 11111000 88 10001000 88 10001000 00 00000000
0000
02FF
0800
1FFF
#4800
#4807
ABC 1 2
E
(MSB) (LSB)
1
D7
2
<Enlarged view of layered screen>
1 2 3 4 5 6
Example of
character A
Display memory space (VRAM virtual screen)
[FX] 8 Dots [FY] 16 Dots [CRX] ≤ 8 Dots [CRY] ≤ 16 Dots [C/R] ≤ 240 Bytes [L/F] 256 Lines [AP] ≤ 64K Byte
FFFFH
XY
<Screen display>
ab
(MSB) (LSB)
D0 D7 D0
Figure 4-9 Example of display memory mapping
S1D13700 Technical Manual EPSON 63
Page 69
4: FUNCTION DESCRIPTION

4.1.6 Determining Various Parameters

(1) Determining FX
Determine the character eld size in the X direction [FX] from the number of dots in the X direction of display [VD] and the number of characters in the X direction [VC].
[VD] / [VC] [FX]
The brackets [ ] denote an integral value beginning with 1, and [FX] indicates the number of dots.
(2) Determining C/R
Next, determine a value for [C/R] from the values of [VC] and [FX].
[C/R] = | [FX] / 8 | rounded up x [VC]
Note: [C/R] indicates the number of characters obtained in units of addresses.
(3) Determining TC/R
TC/R must maintain the relationship [TC/R] [C/R] + 4.
(4) Relationship between f
OSC
and f
FR
Once TC/R has been determined, the lower-limit value of the oscillation frequency (f from the equation below because the frame frequency (f predetermined.
f
{[TC/R] x 9 + 1} x [L/F] x f
OSC
Note: 1. If standard crystals close to f
ate f
value for crystals with higher oscillation frequencies than the obtained value. To
OSC
do so, reverse the calculation of the [TC/R] value in the equation above.
2. For the f
value of Epson LCD units, refer to the LCD unit specifications.
FR
(5) Symptoms observed when TC/R is set incorrectly
Scanning of display in the Y direction stops, with horizontal lines displayed in high contrast.
All pixels go on or go off.
The LP pin output signal is incomplete or inactive.
The display of graphics or text becomes unstable.
Should any of the symptoms above be observed, even though the S1D13700s other signals connected to the LCD unit are normal, check whether the TC/R value is correct. If the TC/R value is the cause of the problem, simply set a larger TC/R value to restore normal operation.
Table 4-2 Example of Parameters for the LCD Unit
Number of pixels
x Y)
(X
x 240
320
[FX] [FY] [C/R] TC/R
e.g., [FX] = 8 dots 320 ÷ 8 = 40...0 No blank dots
e.g., [FX] = 6 dots 320 ÷ 6 = 53...2 Two blank dots
From a practical point of view , 8, 16, etc. are suitable.
) can be obtained
OSC
) and number of display lines [L/F] are
FR
FR
thus obtained are unavailable , determine the appropri-
OSC
X'tal
(MHz)
[CR] = 40 = address 27H During HDOT SCR, [C/R] = 41 addresses
[CR] = 53 = address 34H During HDOT SCR, [C/R] = 54 addresses
2BH 5.72
38H 7.40
Note: 1. Because the number of display dots varies with each LCD unit, there will be some frac-
tional display dots depending on the value set f or FX. In such case, the S1D13700 auto­matically blanks fractional parts at the right edge of the panel, and thus eliminates the need to manipulate display memory for adjustment.
2. Calculations are made assuming f
64 EPSON S1D13700 Technical Manual
= 60 Hz.
FR
Page 70

4.1.7 Scrolling

The MPU dynamically rewrites the scroll address registers (SAD1–SAD4) that provide the read start address in the S1D13700s display memory, thereby allowing various scroll modes to be set. In this case, the MPU manages all operations to execute scrolling, select scroll mode, and set a scroll rate.
(1) Intra-page scrolling
This refers to a mode of scroll operation whereby scrolling is performed within display memory space equivalent to one screen.
All lines are scrolled one line up and the bottom line is deleted as shown below. Since the S1D13700 does not automatically delete the bottom line, the MPU must rewrite the scroll address registers and simultaneously write blank data to the S1D13700.
4: FUNCTION DESCRIPTION
Before scrolling
After scrolling
<Screen>
ABC WXYZ 789
WXYZ 789
Blank
SAD1
SAD3 SAD1
<Display memory>
AP C/R
ABC WXYZ 789
Cleared
WXYZ 789
(2) Inter-page scrolling and page switching
Scrolling between pages and page switching can be performed only when display memory has more than one-screen equivalent capacity.
S1D13700 Technical Manual EPSON 65
Page 71
4: FUNCTION DESCRIPTION
(3) Scrolling in the X direction
This refers to scrolling display in the X direction one character at a time, regardless of display memory size.
Before scrolling
<Screen> <Display memory>
ABC
123
XYZ
SAD1
ABC 123
XYZ
AP
C/R
After scrolling
BC
23
XYZ1
SAD1
ABC 123
XYZ
(4) Omnidirectional scrolling
This mode of scrolling is available when display memory has ample capacity larger than one screen in both the X and Y directions. Although display is normally scrolled one character at a time, the HDO T SCR command can be used to scroll display in the X direction one dot at a time.
Note 1
<Screen> <Display memory>
AP
BC
Before scrolling
EFG
TUV
12
ABC
EFG
TUV
1234
C/R
567
89
FG
After scrolling
TUV
1234
56
ABC
EFG
TUV
1234
567
89
(5) Scroll units
Y direction X direction Text mode Characters Dots or characters Graphics mode Dots Dots
Note 2
Note 1: Omnidirectional scrolling in units of dots is possible by using the SCROLL and HDOT
SCR commands in combination.
Note 2: On a split screen, individual screen blocks cannot be independently scrolled in the X
direction in dot units.
66 EPSON S1D13700 Technical Manual
Page 72
4: FUNCTION DESCRIPTION
(6) Dotwise scrolling in the X direction (HDOT SCR)
Figure 4-10 shows the relationship between commands and display when a display pattern is smoothly scrolled to the left. In this case, the screen (window) moves to the right on a virtual screen. Therefore, the MPU only needs to sequentially increment the value of the HDOT SCR command parameter (number of dots to be shifted) without modifying the display start address (SAD) in the S1D13700 to shift display leftward one dot at a time. Then when display has been dot-shifted a distance equal to the character field, the MPU should reset the value of the HDOT SCR command parameter to 00H and simultaneously increment SAD by one address. Thus, smooth scrolling in the X direction is possible by performing this series of operations at appropriate time intervals.
To scroll the display pattern to the right, change the display dot address by reversing the order above. Should the window reach either edge of the virtual screen, use the MPU to manage the screen. Note that when smooth scrolling continues, the screen is not affected.
Also note that when scrolling display dotwise in the X direction using the HDOT SCR command, scrolling cannot be controlled separately in each layer because all layers are scrolled at the same time.
SAD = SAD
SAD = SAD + 1
HDOT SCR
parameter value
P1 = 00H
P1 = 01H
P1 = 02H
P1 = 03H
P1 = 07H
P1 = 00H
Off the screen Screen
Figure 4-10 Example of using HDOT SCR ([FX] = 8)
SAD SAD+1 SAD+2
Enlarged view
AP
Screen
C/R
Virtual screen
Note: Because the speed at which the LCD responds to instructions varies with temperature,
smooth scrolling at low temperatures in particular may not easily be recognized.
S1D13700 Technical Manual EPSON 67
Page 73
4: FUNCTION DESCRIPTION
Error

4.1.8 Attribute Display using the Layered Function

The S1D13700 provides a means of increasing the ability of expression on a monochrome liquid crystal display. More specically, it uses the OVLAY and DISP ON/OFF commands to display characters in inverse video, produce halftone menu pads, and ash a given screen area for various highlighting effects as shown below.
Highlighting effects MX1 MX0 Screen
Inverse
Halftone display
Area flashing display
Rules and underlining00
011
010
000
1
IV IV EPSON
1
1
1 0
11RL RL
EPSON
ME ME Yes, No
Yes, No
BL BL
LINE LINE
First layer,
single screen
Error
LINE LINE
Second layer, single screen
Use of the S1D13700s layered function will efciently accomplish the highlighting effects above. The following describes a few examples of using this function to realize highlighting effects. Not all such effects can be used within the same screen block, however.
(1) Inverse
1 Using the layered function
[Exclusive ORing of rst layer (text) and second layer (graphics)] 1-1 CSRW Write turn-on data 1 to the entire graphic area where characters are
CSDIR to be displayed in inverse video. MWRITE
1-2 OVLAY Specify an overlay method using the OVALY command so that the first
MX0 = 1 and second layers will be exclusive ORd. MX1 = 0
1-3 DISP ON/OFF Turn display of the rst and second layers on using the DISP ON/OFF
FP0= FP2 command. Characters are displayed in inverse video.
= 1
FP1= FP3
= 0
68 EPSON S1D13700 Technical Manual
Page 74
4: FUNCTION DESCRIPTION
(2) Halftone display
The S1D13700 uses the DISP ON/OFF commands FP parameter to produce halftone display. This is accomplished by ashing the screen at 15 Hz. However, because this method of display may cause display to icker, characteristics of the LCD module used must be carefully considered.
1 Menu pad display
[ORing by the layered function]
OVLAY
P1 = 00H Disable ashing of the rst layer and enable ashing of the second
DISP ON/OFF layer at 17 Hz, then overlay the rst and second layers by ORing.
P1 = 34H
SAD1 SAD2
AB AB
First layer Second layer Screen
AB
Halftone
2 Graph display
[ORing by the layered function]
OVLAY
P1 = 00H Disable ashing of the rst layer and enable ashing of the second
DISP ON/OFF layer at 15 Hz, then overlay the rst and second layers by ORing.
P1 = 34H
When displaying various data in the form of a graph for comparison purposes, this method of display is very effective because two types of diagrams distinguishable by differences in contrast can be displayed.
(3) Area ashing
1 For flashing a few characters
Because the S1D13700 has a high-speed interface circuit, alternately rewriting the character and blank codes from the MPU to ash characters is an appropriate method. In this case, the MPU rewrites display data at intervals of 0.5 to 1.0 second as regulated by its internal timer.
2 For flashing a large area
Divide the rst or second layer into halves with only the area required made to ash at 2 Hz, and overlay the halved layer blocks by ORing.
Scroll DISP ON/OFF OVLAY
S1D13700 Technical Manual EPSON 69
AB
XYZ
AB
XYZ
Page 75
4: FUNCTION DESCRIPTION

4.2 Oscillator Circuit

The S1D13700 features a built-in oscillator circuit, with a resonator connected to the XG and XD pins to generate oscillation. In addition to the crystal resonator, the feedback resistor Rf, drain resistor Rd, and oscillation capacitors CG and CD must be externally connected to the chip. The RC time constant needed to produce stable oscillation varies with the crystal resonator used and condition of the board. Determine the appropriate RC value through careful evaluation.
S1D13700
XCG1
XCD1
Rf
Rd
CG
CD
Xtal
Note: Note that the higher the oscillation frequency, the smaller the CG and CD values.
70 EPSON S1D13700 Technical Manual
Page 76

4.3 Example of Initial Settings

No Command Operation
1 Power on
Waits until power supply
2
stabilizes.
3 SYSTEM SET
C = 40H P1 = 38H
Waits at least 3 ms after V
Initializes the S1D13700. M0 : Internal CG ROM M1 : CG RAM (up to 32 characters) M2 : Y-direction character field range (8 lines) W/S : Dual-screen drive method IV : Uppermost line not corrected
4.5 V and external reset are deasserted.
DD
4: FUNCTION DESCRIPTION
8-bit bus interface
LCD unit 320
x 240 dot
P2 = 87H
P3 = 07H
P4 = 27FH
P5 = 2DH
P6 = EFH
P7 = 28H
P8 = 00H
4 SCROLL
C = 44H P1 = 00H P2 = 00H
P3 = 7FH
P4 = 00H P5 = 10H
P6 = 7FH
P7 = 00H P8 = 04H P9 = 00H P10 = 30H
FX : X-direction character field (8 dots) WF : Two-frame AC drive
FY : Y-direction character field (8 dots)
C/R : Display address range (40 columns per line)
TC/R : Total display address time in X direction (46 addresses per line)
L/F : Number of display lines (240)
AP : Virtual screen size in X direction (41 addresses)
Sets start address of the first screen block to 0000H.
Sets number of display lines in the first screen block to 120.
Sets start address of the second screen block to 1000H.
Sets number of display lines in the second screen block to 120.
Sets start address of the third screen block to 0400H.
Sets start address of the fourth screen block to 3000H.
= 6.0MHz,
f
OSC
fFR = 60Hz
S1D13700 Technical Manual EPSON 71
Page 77
4: FUNCTION DESCRIPTION
No Command Operation
Display
(SAD1)0000H
0257H
(SAD3)0400H
0657H
memory
First-screen block memory Third-screen block memory
(SAD2)1000H
Second-screen block memory
22BFH
(SAD4)3000H
Fourth-screen block memory
42BFH
5 HDOT SCR
C = 5AH P1 = 00H Sets number of dots to be shifted in the X direction to 0.
6 OVLAY
C = 5BH P1 = 01H
7 DISP ON/OFF
C = 58H P1 = 56H
8 CSRW
C = 46H P1 = 00H P2 = 00H
9 Clears the first layer
display data.
10 Clears the second layer
display data.
11 CSR FORM
C = 5DH P1 = 04H P2 = 86H
12 DISP ON/OFF
C = 59H
MX1, MX0 : Overlaid for inverse display DM1 : First screen block in text mode DM2 : Third screen block in text mode
D : Entire screen display disabled FC1, FC0 : Cursor made to blink at 2 Hz FP1, FP0 : Display of first screen block turned on FC3, FP2 : Display of second and fourth screen blocks turned on FP5, FP4 : Display of third screen block turned on
Sets cursor address to the first screen blocks start address (home position).
Writes 20H (space character code) to memory location corresponding to the first layer (text screen).
Writes 00H (dot turn-off data) to memory location corresponding to the second layer (graphics screen).
CRX : Cursor size in X direction (5 dots) CRY : Cursor size in Y direction (7 dots) CM : Block cursor
Restores entire screen display.
screen
72 EPSON S1D13700 Technical Manual
Page 78
No Command Operation
13 CSR DIR
C = 4CH Sets direction of cursor movement so that the cursor shifts to the right.
14 MWRITE
C = 42H P1 = 20H P2 = 45H P3 = 50H P4 = 53H P5 = 4FH P6 = 4EH
Sets space code. Sets character code for the letter E. Sets character code for the letter P. Sets character code for the letter S. Sets character code for the letter O. Sets character code for the letter N.
4: FUNCTION DESCRIPTION
15 CSRW
C = 46H P1 = 00H P2 = 10H
16 CSR DIR
C = 4FH
17 MWRITE
C = 42H P1 = FFH
P9 = FFH
18 CSRW
C = 46H P1 = 01H P2 = 10H
19 MWRITE
C = 42H P1 = FFH
P9 = FFH
Presets cursor address to the second screen blocks start address.
Sets direction of cursor movement so that the cursor shifts downward.
Fills the left side of displayed letter E with dots by entering character code to 9 lines of the second screen block that corresponds to the first column on the first line.
Presets the cursor address to address 10001H.
Fills the second screen block that corresponds to the second column on the first line with dots.
S1D13700 Technical Manual EPSON 73
Page 79
4: FUNCTION DESCRIPTION
No Command Operation
20 CSRW Repeats steps 18 and 19 until the background screen of the EPSON character string is filled
with dots as shown below.
29 MWRITE
Inverse display
30 CSRW
C = 46H
Presets the cursor address to the first column on the first line of the third screen block. P1 = 00H P2 = 04H
31 CSR DIR
C = 4CH Sets direction of cursor movement so that the cursor shifts to the right.
32 MWRITE
C = 42H P1 = 44H P2 = 6FH P3 = 74H P4 = 20H P5 = 4DH P6 = 61H P7 = 74H P8 = 72H P9 = 69H P10 = 78H P11 = 20H P12 = 4CH P13 = 43H P14 = 44H
Sets character code for the letter D.
Sets character code for the letter o.
Sets character code for the letter t.
Sets character code for the letter
Sets character code for the letter M.
Sets character code for the letter a.
Sets character code for the letter t.
Sets character code for the letter r.
Sets character code for the letter i.
Sets character code for the letter x.
Sets character code for the letter
Sets character code for the letter L.
Sets character code for the letter C.
Sets character code for the letter D.
74 EPSON S1D13700 Technical Manual
Page 80
Example of display mode settings [1]
[1] For overlaying text and graphics
1. Conditions (1) 320 x 240 dots: Single-screen drive method (1/240 duty cycle) (2) First layer: Text display (3) Second layer: Graphic display (4) Character font: 8 x 8 dots (5) CG RAM unused
2. Display memory allocation (1) First layer (text display)
Number of characters in horizontal direction = 320 / 8 = 40 Number of characters in vertical direction = 240 / 8 = 30
Therefore, the required size of memory is 40 x 30 = 1,200 bytes.
(2) Second layer (graphic display)
Number of characters in horizontal direction = 320 / 8 = 40 Number of characters in vertical direction = 240 / 1 = 240
Therefore, the required size of memory is 40 x 240 = 9,600 bytes.
4: FUNCTION DESCRIPTION
0000h
First layer (text)
(1,200 bytes)
[Relationship between display and memory]
04B0h
Second layer (graphics)
(9,600 bytes)
2A2Fh
04AFh
S1D13700 Technical Manual EPSON 75
Page 81
4: FUNCTION DESCRIPTION
3. Example of basic register settings SYSTEM SET Determination of TC/R
C = 40H P1 = 30H Assuming f P2 = 87H when f P3 = 07H P4 = 27H 6 MHz = {[TC/R] x 9 + 1} x 240 x 60 P5 = 2DH Therefore, [TC/R] = 46 P6 = EFH TC/R = 2DH P7 = 28H P8 = 00H
SCROLL
C = 44H P1 = 00H P2 = 00H P3 = F0H P4 = B0H P5 = 04H P6 = F0H P7 = *H P8 = *H P9 = *H P10 = *H * : don't care
FR
= 6 MHz,
OSC
= 60 Hz
CSRFORM
C = 5DH P1 = 04H P2 = 86H
HDOT SCR
C = 5AH P1 = 00H
OVLAY
C = 5BH P1 = 00H
DISP ON/OFF
C = 59H P1 = 16H
76 EPSON S1D13700 Technical Manual
Page 82
Example of display mode settings [2]
[2] For overlaying two graphic screens
1. Conditions (1) 320 x 240 dots: Single-screen drive method (1/240 duty cycle) (2) First layer: Graphic display (3) Second layer: Graphic display
2. Display memory allocation (1) First layer (graphic display)
Number of characters in horizontal direction = 320 / 8 = 40 Number of characters in vertical direction = 240 / 1 = 240
Therefore, the required size of memory is 40 x 240 = 9,600 bytes.
(2) Second layer (graphic display)
For the rst layer, the required size of memory is 40 x 240 = 9,600 bytes.
[Relationship between display and memory]
2580h
Second layer (graphics) (9,600 bytes)
4: FUNCTION DESCRIPTION
0000h
First layer (graphics) (9,600 bytes)
4AFFh
257Fh
S1D13700 Technical Manual EPSON 77
Page 83
4: FUNCTION DESCRIPTION
3. Example of basic register settings SYSTEM SET Determination of TC/R
C = 40H P1 = 30H Assuming f P2 = 87H when f P3 = 00H P4 = 27H 6 MHz = {[TC/R] x 9 + 1} x 240 x 60 P5 = 2DH Therefore, [TC/R] = 46 P6 = EFH TC/R = 2DH P7 = 28H P8 = 00H
SCROLL
C = 44H P1 = 00H P2 = 00H P3 = F0H P4 = 80H P5 = 25H P6 = F0H P7 = *H P8 = *H P9 = *H P10 = *H * : don't care
FR
= 6 MHz,
OSC
= 60 Hz
CSRFORM
C = 5DH P1 = 04H P2 = 86H
HDOT SCR
C = 5AH P1 = 00H
OVLAY
C = 5BH P1 = 00H
DISP ON/OFF
C = 59H P1 = 16H
78 EPSON S1D13700 Technical Manual
Page 84
Example of display mode settings [3]
[3] For overlaying three graphic screens
1. Conditions (1) 320 x 240 dots: Single-screen drive method (1/240 duty cycle) (2) First layer: Graphic display (3) Second layer: Graphic display (4) Third layer: Graphic display
2. Display memory allocation (1) First layer (graphic display)
Number of characters in horizontal direction = 320 / 8 = 40 Number of characters in vertical direction = 240 / 1 = 240
Therefore, the required size of memory is 40 x 240 = 9,600 bytes.
(2) Second and third layers (graphic display)
For the rst layer, the required size of memory is 40 x 240 = 9,600 bytes each.
[Relationship between display and memory]
4B00h
Third layer (graphics) (9,600 bytes)
4: FUNCTION DESCRIPTION
0000h
First layer (graphics) (9,600 bytes)
2580h
Second layer (graphics) (9,600 bytes)
707Fh
4AFFh
257Fh
S1D13700 Technical Manual EPSON 79
Page 85
4: FUNCTION DESCRIPTION
3. Example of basic register settings SYSTEM SET Determination of TC/R
C = 40H P1 = 30H Assuming f P2 = 87H when f P3 = 00H P4 = 27H 6 MHz = {[TC/R] x 9 + 1} x 240 x 60 P5 = 2DH Therefore, [TC/R] = 46 P6 = EFH TC/R = 2DH P7 = 28H P8 = 00H
SCROLL
C = 44H P1 = 00H P2 = 00H P3 = F0H P4 = 80H P5 = 25H P6 = F0H P7 = 00H P8 = 4BH P9 = *H P10 = *H * : don't care
FR
= 6 MHz,
OSC
= 60 Hz
CSRFORM
C = 5DH P1 = 04H P2 = 86H
HDOT SCR
C = 5AH P1 = 00H
OVLAY
C = 5BH P1 = 00H
DISP ON/OFF
C = 59H P1 = 16H
80 EPSON S1D13700 Technical Manual
Page 86
4: FUNCTION DESCRIPTION

4.4 Character Fonts and Character Codes

4.4.1 Character Fonts (Internal CG)

Lower 4bit (D0 to D3) or Character Code (Hexadeclmal)
0123456789ABCDEF
2
3
4
5
6
7
) or Character Code (Hexadeclmal)
7
A
to D
4
B
Hloner 4bit (D
C
D
1
Note: The character size is 5 x 7 dots.
represents a 6 x 8-dot entirely black pattern.
S1D13700
Technical Manual
EPSON
81
Page 87
4: FUNCTION DESCRIPTION

4.4.2 Character Codes

Relationship between Character Codes and Those Usable as CG RAM (for combined use with internal CG ROM)
Table 4-3 Character Codes
8-bit series
0000000011111111 0000111100001111 0011001100110011 0101010101010101
YS3 LS3
D7 D6 D5 D4 D3 D2 D1 D0 0123456789ABCDEF
0000 0 0001 1 0010 2 0011 3 0100 4 0101 5 0110 6 0111 7 1000 8 1001 9 1010 A 10 1011 B 11 1100 C 12 1101 D 13 1110 E 14 1111 F 15
4 low­order bits
4 high-
order
bits
`
¥
M
N
CG RAM1 CG RAM2
M1= 0
M1=1
82 EPSON S1D13700 Technical Manual
Page 88
5: SPECIFICATIONS

5SPECIFICATIONS

5.1 Absolute Maximum Ratings

Parameter Symbol Rating Unit Remark
HV
Power Supply Voltage
Input Voltage
Output Voltage
Output Current per Pin I Operating Temperature T
Storage Temperature T
Soldering Temperature and Time T
LV
HV LV
HV LV
OUT
solder
DD
DD
IN
IN
OUT
OUT
opr
stg
Note: 1. When using a power supply with high impedance, a large potential difference between the
chips internal power supply voltage and the input voltage may occur, thus making the power supply susceptible to latch-up. Therefore, pay particular attention to the power supply and its wiring.
2. All voltage are based on V
SS
= 0V
3. The symbol H*** indicates 5 V-block pins; L*** indicates 3.3 V-block pins.
-0.3 – 7.0 V
-0.3 – 4.0 V
-0.3 – HVDD + 0.5 V
-0.3 – LVDD + 0.5 V
-0.3 – HVDD + 0.5 V
-0.3 – LVDD + 0.5 V ±30 mA
-40 – 85 °C
-65 – 150 °C
Heat resistance rank SE2

5.2 Recommended Operating Conditions

SS
SS
Rated Value
HIOVDD V NIOVDD V
Parameter Symbol
Power Supply Voltage
(High Voltage)
Power Supply Voltage
(Low Voltage)
Core Power Supply
Voltage Input Voltage HIOVIN V Input Voltage NIOVIN V
Operating Temperature TOPR -20 25 70 °C
HIOVDD V
NIOVDD VSS = 0V
COREVDD VSS = 0V 3.0 3.3 3.6 V COREVDD
Test
Condition
= 0V
SS
Min. Typ. Max.
4.5 5.0 5.5
3.0 3.3 3.6
4.5 5.0 5.5
3.0 3.3 3.6
Unit
V HIOVDD
V NIOVDD
Applicable
Pins
S1D13700 Technical Manual EPSON 83
Page 89
5: SPECIFICATIONS

5.3 Electrical Characteristics

Parameter Symbol Test Condition
I
Input Leakage Current OFF-state Leakage Current
High Level Output Voltage V
Low Level Output Voltage V
High Level Input Voltage V
Low Level Input Voltage V
Positive Trigger Voltage V Negative Trigger Voltage V Hysteresis Voltage V
High Level Input Voltage V
Low Level Input Voltage V
Pulldown Resistance R
Operating Supply Current I
Quiescent Supply Current (between HV
and VSS)
DD
Quiescent Supply Current (between LV
and VSS)
DD
LI
I
OZ
IOH = -8.0mA
OH
HV
=Min
DD
IOL = 8.0m
OL
HV
=Min
DD
CMOS level
IH1
HVDD = Max CMOS level
IL1
HVDD = Min CMOS Schmitt 2.0 4.0 V
T1+
CMOS Schmitt 0.8 3.1 V
T1-
CMOS Schmitt 0.3 —— V
H1
TTL level
IH2
HVDD = Max TTL level
IL2
HVDD = Min VI = HV f
=10 MHz
OSC
Nonloaded
DD
PD
opr
256 x 200dot Sleep mode
I
QH
XCG1, CS#, RD# = V Sleep mode
I
QH
XCG1, CS#, RD# = V
Note 2)
DD
DD
[VSS = 0V, HVDD = 4.5 – 5.5V, Ta = -40 – 85°C]
Rated Value
Min. Typ . Max.
-1
-1
— —
1 1
Unit
HVDD-0.4 —— V
——0.4 V
3.5 ——V
——1.0 V
2.0 ——V
——0.8 V
30 60 144 k
TBD TBD mA
——30 uA
——35 uA
uA uA
Note: 1. The pulse applied to the RESET# pin must be held low for 200 µs or more to be effective.
However, avoid keeping the input pulse active for more than several seconds because the LCDs d.c. drive capability may be adversely affected.
2. The VB0–DB7 pins come with a feedback circuit, so that even when input becomes high im­pedance, the pins retain the state held immediately before. Therefore, input voltage of an in­termediate level allows input current to ow to the pin.
84 EPSON S1D13700 Technical Manual
Page 90
Parameter Symbol Test Condition
I
Input Leakage Current OFF-state Leakage Current
High Level Output Voltage V
Low Level Output Voltage V
High Level Input Voltage V
Low Level Input Voltage V
Positive Trigger Voltage V Negative Trigger Voltage V Hysteresis Voltage V Pulldown Resistance R
Operating Supply Current I
LI
I
OZ
IOH = -6.0mA
OH
HV
DD
IOL = 6.0m
OL
HV
DD
LVTTL level
IH1
VDD = Max LVTTL level
IL1
VDD = Min LVTTL Schmitt 1.1 2.4 V
T1+
LVTTL Schmitt 0.6 1.8 V
T1-
LVTTL Schmitt 0.1 ——V
H1
VI = V
PD
f
OSC
Nonloaded
opr
256 x 200dot
Quiescent Supply Current (between LV
and VSS)
DD
Sleep mode
I
QH
XCG1, CS#, RD# = V
5: SPECIFICATIONS
[VSS = 0V, VDD = LVDD = 3.3 – 0.3V, Ta = -40 – 85°C]
Rated Value
Min. Typ . Max.
-1 1uA
Note 2) -1 1uA
=Min
=Min
HVDD-0.4 —— V
——0.4 V
2.0 ——V
——0.8 V
DD
20 50 120 k
=10 MHz
TBD TBD mA
DD
——35 uA
Unit
S1D13700 Technical Manual EPSON 85
Page 91
5: SPECIFICATIONS

5.4 Timing Characteristics

5.4.1 System Bus (Generic Bus/80-series MPU)

T
CLK
MCLK
AB [16:0]
CS#
WR#, RD#
WAIT#
DB [15:0] (write)
t1
t2 t8
t3
t4
t14
t9 t
valid
t7
t10
t1 1
t12 t6
t13 t5
DB [15:0] (read)
valid
* MCLK denotes CLKI or the internally generated system clock.
86 EPSON S1D13700 Technical Manual
Page 92
5: SPECIFICATIONS
Gemeric Bus Interface Timing
[VSS = 0V, VDD = 4.5 – 5.5V, Ta = -40 – 85°C]
Symbol Parameter
T
f
CLK
CLK
t1
BUS clock frequency 64 MHz BUS clock period 1/f AB [16 : 0] setrup to first CLK rising edge where CS# = 0 and either
RD# = 0 or WR# = 0 t2 CS# setup to CLK rising edge 9 ns t3 RD#, WR# setup to CLK rising edge 9 ns t4 RD#, WR# state change to WAIT# driven low 1 5 ns t5 RD# falling edge to DB [15 : 0] driven (ead cycle) 3Tc+9ns Tclk t6 DB [15 : 0] setup to 4th rising CLK edge after CS# = 0 and WR# = 0 1 T t7 AB [16 : 0], CS# hold from RD#, WR# rising edge 8 ns
CS# deasserted to reasserted t8
- When read
- when Write (next cycle = write cycle)
- when Write (next cycle = read cycle)
2Tclk+8ns 5Tclk+8ns
t9 WAIT# rising edge to RD#, WR# rising edge 0 ns
WR#, RD# deasserted to reasserted
t10
t11
- When read
- when Write (next cycle = write cycle)
- when Write (next cycle = read cycle)
Rising edge of either RD# or WR# to WAIT# high impedance 0.5
TCLK
2Tclk+8ns 5Tclk+8ns
t12 D [15 : 0] hold from WR# rising edge (write cycle) 1 ns t13 D [15 : 0] hold from RD# rising edge (read cycle) 1 ns
Cycle Length Read
t14
Write (next write cycle) Write (next read cycle)
Spec
Min. Max.
CLK
ns
11 ns
1Tclk
1Tclk
0.5 T
6 7
T
10
Unit
CLK
ns ns ns
ns ns ns
CLK
CLK
S1D13700 Technical Manual EPSON 87
Page 93
5: SPECIFICATIONS
Gemeric Bus Interface Timing
[VSS = 0V, VDD = 3.0 – 3.6V, Ta = -40 – 85°C]
Symbol Parameter
T
f
CLK
CLK
BUS clock frequency 64 MHz BUS clock period 1/f AB [16 : 0] setrup to first CLK rising edge where CS# = 0 and either
t1
RD# = 0 or WR# = 0 t2 CS# setup to CLK rising edge 11 ns t3 RD#, WR# setup to CLK rising edge 11 ns t4 RD#, WR# state change to WAIT# driven low 1 7 ns t5 RD# falling edge to DB [15 : 0] driven (ead cycle) 3Tc+11ns Tclk t6 DB [15 : 0] setup to 4th rising CLK edge after CS# = 0 and WR# = 0 1 T t7 AB [16 : 0], CS# hold from RD#, WR# rising edge 10 ns
CS# deasserted to reasserted t8
- When read
- when Write (next cycle = write cycle)
- when Write (next cycle = read cycle)
2Tclk+10ns 5Tclk+10ns
t9 WAIT# rising edge to RD#, WR# rising edge 0 ns
WR#, RD# deasserted to reasserted
t10
t11
- When read
- when Write (next cycle = write cycle)
- when Write (next cycle = read cycle)
Rising edge of either RD# or WR# to WAIT# high impedance 0.5
TCLK
2Tclk+10ns 5Tclk+10ns
t12 D [15 : 0] hold from WR# rising edge (write cycle) 1 ns t13 D [15 : 0] hold from RD# rising edge (read cycle) 1 ns
Cycle Length Read
t14
Write (next write cycle) Write (next read cycle)
Spec
Min. Max.
CLK
ns
12 ns
1Tclk
1Tclk
0.5 T
6 7
T
10
Unit
CLK
ns ns ns
ns ns ns
CLK
CLK
88 EPSON S1D13700 Technical Manual
Page 94

5.4.2 System Bus Read/write characteristics II (MC68K-series MPU)

T
CLK
MCLK
5: SPECIFICATIONS
AB[16:0], WR
CS#
AS#
RD#
(UDS, LDS)
WAIT#
(DTACK#)
t1
t1
t1
t1
t2
t4
t13
t4
t5 t6
(RD# m6800)
t7
t8
t10 t9
DB[15:0](write)
valid
t12 t3
t1 1
DB[15:0](read) valid
* MCLK denotes CLKI or the internally generated system clock.
S1D13700 Technical Manual EPSON 89
Page 95
5: SPECIFICATIONS
Motorola M68K#1 Interface Timing
[VSS = 0V, VDD = 4.5 – 5.5V, Ta = -40 – 85°C]
Symbol Parameter
T
f
CLK
CLK
BUS clock frequency 64 MHz
BUS clock period 1/f
AB [16 : 0], WR# (R/W#) and CS# and AS# and RD# (UDS#, LDS#) t1
setup to first CLK rising edge t2 CS# and AS# asserted to WAIT# (DTACK#) driven 1 7 ns t3 RD# = 0 (UDS# = 0 or LDS# = 0) to DB [15 : 0] driven (read cycle) 3Tclk+9ns ns t4 AB [16 : 0], WR# (R/W#) and CS# hold from AS# rising edge 0 ns t5 WAIT# (DTACK#) falling edge to RD# (UDS#, LDS#) rising edge 1 T
RD# (USD#, LDS#) deasserted high to reasserted low t6
- When read
- when Write (next cycle = write cycle)
- when Write (next cycle = read cycle)
2Tclk+8ns
5Tclk+8ns t7 CLK rising edge to WAIT# (DTACK#) high impedance 1T t8 AS# rising edge to WAIT# (DTACK#) rising edge 3 12 ns
DB [15 : 0] valid to 4th CLK rising edge where CS# = 0, AS# = 0 and
t9
either RD# = 0 (UDS# = 0 or LDS# = 0) (wirte cycle)
t10 DB [15 : 0] hold from RD# (UDS#, LDS#) falling edge (wirte cycle) 4 ns
t11
t12
RD# (UDS#, LDS#) rising edge to DB [15 : 0] high impedance (read cycle)
DB [15 : 0] valid setup time to 2nd CLK falling edge after WAIT# (DTACK#) goes low (read cycle)
t13 Cycle Length Read
t13
Write (next write cycle) Write (next read cycle)
Spec
Min. Max.
CLK
ns
9 ns
1Tclk
CLK
1 T
6 ns
6 ns
7 8
T
11
Unit
CLK
ns ns ns
-2 ns
CLK
CLK
90 EPSON S1D13700 Technical Manual
Page 96
5: SPECIFICATIONS
Motorola M68K#1 Interface Timing
[VSS = 0V, VDD = 3.0 – 3.6V, Ta = -40 – 85°C]
Symbol Parameter
T
f
CLK
CLK
t1
BUS clock frequency 64 MHz BUS clock period 1/f AB [16 : 0], WR# (R/W#) and CS# and AS# and RD# (UDS#, LDS#)
setup to first CLK rising edge t2 CS# and AS# asserted to WAIT# (DTACK#) driven 1 10 ns t3 RD# = 0 (UDS# = 0 or LDS# = 0) to DB [15 : 0] driven (read cycle) 3Tclk+9ns ns t4 AB [16 : 0], WR# (R/W#) and CS# hold from AS# rising edge 0 ns t5 WAIT# (DTACK#) falling edge to RD# (UDS#, LDS#) rising edge 1 T
RD# (UDS#, LDS#) deasserted high to reasserted low t6
- When read
- when Write (next cycle = write cycle)
- when Write (next cycle = read cycle)
2Tclk+8ns
5Tclk+8ns t7 CLK rising edge to WAIT# (DTACK#) high impedance 1T t8 AS# rising edge to WAIT# (DTACK#) rising edge 3 15 ns
t9
DB [15 : 0] valid to 4th CLK rising edge where CS# = 0, AS# = 0 and either RD# = 0 (UDS# = 0 or LDS# = 0) (wirte cycle)
t10 DB [15 : 0] hold from RD# (UDS#, LDS#) falling edge (wirte cycle) 4 ns
t11
t12
RD# (UDS#, LDS#) rising edge to DB [15 : 0] high impedance (read cycle)
DB [15 : 0] valid setup time to 2nd CLK falling edge after WAIT# (DTACK#) goes low (read cycle)
Cycle Length Read
t13
Write (next write cycle) Write (next read cycle)
Spec
Min. Max.
CLK
ns
9 ns
1Tclk
-2 ns
CLK
1 T
8 ns
8 ns
7 8
T
11
Unit
CLK
ns ns ns
CLK
CLK
S1D13700 Technical Manual EPSON 91
Page 97
5: SPECIFICATIONS

5.4.3 External Clock Input Characteristics

CLKI
tRCL
tWL
tW
tFCL
tCL
[VSS = 0V, VDD = 4.5 – 5.5V, Ta = -40 – 85°C]
Symbol Parameter Unit
t t
t t
RCL
FCL
WH
WL
t
External input clock rise time 2ns External input clock fall time 2ns High-level pulse width of external input clock 7 ns Low-level pulse width of external input clock 7 ns External input clock period 16.4 ns
CL
Min. Max.
92 EPSON S1D13700 Technical Manual
Page 98

5.4.4 LCD Control Signal Timing Characteristics

(When driven at 1/64 duty cycle)
ROW NO
5: SPECIFICATIONS
164636261325416463
FPLINE (LP)
FPFRAME (YD)
MOD (WF)
YSCL
MOD (WF)
YSCL
FPLINE (LP)
FPSHIFT (XSCL)
0 – FPDAT3
FPDAT
XECL
FPSHIFT (XSCL)
FPDAT0 FPDAT3
FPLINE (LP)
XECL
MOD (WF(B))
FPFRAME (YD)
ROW 1
tr
t
LD
1 Frame time
1 Line time
ROW 2
t
WX
t
DS
t
L1
t
S2
tf t
t
DH
t
LS
t
WL
t
WXE
t
LD
t
DHY
t
L2
t
S1
t
DF
ROW 3
CX
YSCL
t
WY
S1D13700 Technical Manual EPSON 93
Page 99
5: SPECIFICATIONS
Signal Symbol Parameter
FPSHIFT
(XSCL)
FPDAT0
FPDAT3
FPLINE
ÅiLPÅj
MOD (WF)
FPFRAME
(YD)
YSCL t
t t t
t
t
t
t
DHY
t
CX
WX
DH
DS
LS
WL
LD
DF
WY
Shift Clock cycle time *1 XSCL Clock Pulse tCX/2-6 XD [3 : 0] hold from XSCL falling edge 2t
XD [3 : 0] setup to XSCL falling edge 2t Latch data setup time 2t
Latch pulse setup time 4t XSCL rising edge to LP falling edge delay time 0
WF delay time 6 ns
YSCL falling edge to YD falling edge 2t
YSCL clock pulse width 4t
*1
CNF [3 : 2] XSCL Cycle Time
00 4Tc ( = MCLK) 01 8Tc 10 16Tc 11 No Support
Spec
Min. Max.
C
C
C
C
C
C
Unit
ns
ns
nst
ns
ns
94 EPSON S1D13700 Technical Manual
Page 100

6 MPU INTERFACE

6.1 Connection to the System Bus

The S1D13700 uses a combination of CNF2/3/4, AB15–0, RD#, WR#, and CS# to discriminate information supplied to it via the system data bus as described in Section 2.2 Pin Functions on page 9.
In indirect interface mode, AB0 generally is connected to the least signicant bit of the system address bus. CNF2 and CNF3 are provided for changing the functions of S1D13700 pins 58 and 59 to enable the chip to be connected directly to the 80 or 68-series MPU bus, and are pulled high or low through a resistor when in use. For the 80-series MPU, the S1D13700 should normally be mapped in I/O space.

6.1.1 80-series MPU

<Direct access for the 80-series interface>
AB15
CNF4
– AB1
0 0or1 0or1 0 1 Read from command/parameter registers 0 0or1 0or1 1 1 Write to command/parameter registers
<Indirect access for the 80-series interface>
AB0 RD# WR# Function
6: MPU INTERFACE
AB15
CNF4
– AB1
1 001 1 1 0 1 Data (display data and cursor address) read 1 0 1 0 Data (display data and parameter) write 1 1 1 0 Command write (code only)
AB0 RD# WR# Function

6.1.2 68-series MPU

<Direct access for the 68-series interface>
AB15
CNF4
– AB1
0 0or1 0or1 1 1 Read from command/parameter registers 0 0or1 0or1 0 1 Write to command/parameter registers
<Indirect access for the 68-series interface>
CNF4
– AB1
1 011 1 1 1 1 Data (display data and cursor address) read 1 0 0 1 Data (display data and parameter) write 1 1 0 1 Command write (code only)
AB15
AB0
AB0
WR#
(R/W#)
WR#
(R/W#)
RD#
(E)
RD#
(E)
Function
Function
S1D13700 Technical Manual EPSON 95
Loading...