Other accessories ............................. 53
Endress+Hauser3
Function and system design
1
543
2
Liquiline CM442R/CM444R/CM448R
Measuring system
The overview shows examples of measuring systems. Other sensors and assemblies can be ordered
for conditions specific to your application (www.endress.com/products).
Measuring pointpH value or ORP
A complete measuring system comprises:
• TransmitterLiquiline
• Optional display
• Sensors with Memosens technology
• Assemblies to suit the sensors used
1Cabinet installation (without sensor and signal
cables)
1Optional display (back)
2Liquiline
3External power unit (CM444R and CM448R only)
4Power cable (to be provided by the customer)
5Display cable
pH measurement in drinking
water (→ Fig.)
• Retractable assembly Cleanfit
CPA871
• Sensor Orbisint CPS11D
• Measuring cable CYK10
ORP in drinking water
• Dipfit CYA112 immersion
assembly
• Sensor Orbisint CPS12D
• Measuring cable CYK10
Conductivity
Inductive conductivity
measurement in wastewater
treatment
• Sensor Indumax CLS50D
• Sensor fixed cable
Conductive conductivity
measurement in power plant
cooling water
• Sensor Condumax CLS15D
• Measuring cable CYK10
Oxygen
Oxygen in aeration basins
A0042875
• Dipfit CYA112 immersion
assembly
• Holder CYH112
• Sensor
• COS61D (optical) with fixed
cable (→ Fig.)
• COS51D (amperometric),
cable CYK10
Nitrate and SACTurbidity and interface
Nitrate in wastewater
• Sensor CAS51D-**A2 with fixed
cable
• Dipfit CYA112 immersion
assembly
• Holder CYH112
SAC in the wastewater treatment
outlet
• Sensor CAS51D-**2C2 with
fixed cable
• Dipfit CYA112 immersion
assembly
• Holder CYH112
DisinfectionIon-selective electrodes
Free available chlorine (and pH) in
drinking water
• Sensor CCS142D
• Sensor CPS11D
• Measuring cable CYK10
• Flow assembly CCA250
Turbidity in industrial water
• Sensor Turbimax CUS51D with
fixed cable (→ Fig.)
• Assembly Flowfit CUA250
• Spray head CUR3 (optional)
Interface in the primary clarifier
• Sensor Turbimax CUS71D
• Assembly CYA112
• Holder CYH112
Ammonium and nitrate
measurement in the aeration basin
• Sensor CAS40D with fixed cable
• Holder CYH112
4Endress+Hauser
Liquiline CM442R/CM444R/CM448R
Outlet 1
MENU
CH 1:1 pH
CH 1:1 Temperature
CH 1:2 Cond I
CH 2:1 Cond I
CH 2:2 Chlorine
CH 3:1 Current Input [Flow]
6.99 pH
25.1 °C
9.02 mS/cm
13.41 mS/cm
9.03 mg/l
15.1 nA
11:12:13 29.06.2013
10.00
mS/cm
8.00
mS/cm
29.05.2013
10:02:20
29.06.2013
11:09:15
6.00
pH
29.05.2013
10:02:20
29.06.2013
11:09:15
12.00
pH
Field Data Manager
2
1
4
3
Application example
• Transmitter CM444R-AAM44A0FM6 with:
4 x Memosens, Modbus TCP, 2 digital inputs and 2 digital outputs, 2 x relays for cleaning/limit
value, 2 x analog current input
• pH and temperature with CPS11D, item 1 (www.endress.com/cps11d)
• Chlorine with CCS142D, item 4 (www.endress.com/ccs142d)
• 2 x conductivity, inductive measurement with CLS50D, item 2 and 3 (www.endress.com/cls50d)
• 1 x measuring range switching for conductivity via Modbus module
• Flow assembly CCA250 with optional proximity switch INS (www.endress.com/cca250)
• Chlorine regulation with dosing interrupted if no flow: proximity switch via digital input of DIO
module, flow feedforward control (via digital or analog input), PFM-controlled dosing pump via
digital output of DIO module
2Measuring point in the CIP process
Data retention
• Storage of all measured values, incl. values of external sources, in the non-volatile memory
(data logbook)
• Data called up on site via user-defined measuring menu and load curve display of the data logbook
• Transmission of data by ethernet, CDI interface or SD card and storage in a tamper-proof database
(Field Data Manager)
• Data export to csv file (for Microsoft Excel)
Endress+Hauser5
A0025347
Slot and port assignment
BASE2-E
Slots
1
2
1
2
1
2
1
2
Ports
2DS2DS2DS2AI2AO4R
1
2
Sensor 1
Sensor 1
Sensor 1
Sensor 2
Sensor 2
Sensor 2
1
2
1
2
1
2
1
2
3
4
Liquiline CM442R/CM444R/CM448R
Device architecture
Order of the modules
Basic rule for hardware
upgrades
3Slot and port assignment of the hardware modules
• Inputs are assigned to measuring channels in the
ascending order of the slots and ports.
Adjacent example:
"CH1: 1:1 pH glass" means:
Channel 1 (CH1) is slot 1 (basic module) : Port 1 (input
1), pH glass sensor
• Outputs and relays are named according to their
function, e.g. "current output", and are displayed in
ascending order with the slot and port numbers
4Slot and port assignment on the
display
Depending on the version ordered, the device is supplied with a number of electronic modules, which
are assigned in a specific sequence in ascending order to slots 0 to 7. If you do not have a particular
module, the next moves up automatically:
• The basic module (which is always present) always occupies slots 0 and 1
• Fieldbus module 485
• Memosens input module 2DS (DS = digital sensor)
• Extension module for digital inputs and outputs DIO (DIO = digital input and output)
• Current input module 2AI (AI = analog input)
• Current output module 4AO or 2AO (AO = analog output)
• Relay modules AOR, 4R or 2R (AOR = analog output + relay, R = relay)
Modules with 4 ports are connected before modules of the same type with 2 ports.
Please note the following if upgrading the device:
• The sum of all current inputs and outputs may not exceed 8!
• A maximum of two "DIO" modules may be used.
6Endress+Hauser
Liquiline CM442R/CM444R/CM448R
12
3
4
43
42 41
Relay 1
Relay 2
Relay 3
Relay 4
Slot
Slot 4
Port 1
Pin 41
BASE2-E2DS
4R
2AO
43
42414342 41
43
42 41
43
42 41
Determining the hardware
delivery status
You must be aware of the type of modules and the number of them supplied with the device you
have ordered to determine the delivery status of your Liquiline.
• Basic module
One basic module in all versions. Always occupies slots 0 and 1.
• Fieldbus module
Optional, and only one fieldbus module is possible.
• Input modules
• Must be clearly assigned to the number of optional inputs ordered.
• Examples:
2 current inputs = module 2AI
4 Memosens inputs = 2 inputs with basic module + module 2DS with 2 further inputs
• Current outputs and relays
Various module combinations can exist.
The following table will help you determine which modules your device has, depending on the type
and number of outputs.
Relays
Current outputs
2-1 x 2R1 x 4R
41 x 2AO1 x AOR1 x 2AO + 1 x 4R
61 x 4AO1 x 4AO + 1 x 2R1 x 4AO + 1 x 4R
81 x 4AO + 1 x 2AO1 x 4AO + 1 x 2AO + 1 x 2R1 x 4AO + 1x 2AO + 1 x 4R
Sum up the number of modules and sort them according to the specified sequence → 6.
‣
024
This will give you the slot assignment for your device.
Terminal diagram
The unique terminal name is derived from:
Slot no. : Port no. : Terminal
Example, NO contact of a relay
Device with 4 inputs for digital sensors, 4 current outputs and 4 relays
• Base module BASE2-E (contains 2 sensor inputs, 2 current outputs)
• 2DS module (2 sensor inputs)
• 2AO module (2 current outputs)
• 4R module (4 relays)
5Creating a terminal diagram using the example of the NO contact (terminal 41) of a relay
Endress+Hauser7
A0039621
Device configuration using
the example of a CM442R**M1A1F0*
Liquiline CM442R/CM444R/CM448R
Ordered basic device (example)• Order code CM442R-**M1A1F0*
• Functionality: 1 x Memosens, 2 current outputs without HART
Extension options without additional
modules
Extension options by using an
extension module in free slot 2
Basic rule for extensionsThe sum of all current inputs and outputs may not exceed 8.
Restrictions if using CUS71D sensors
for interface measurement
Product Configuratorwww.endress.com/cm442r
Activation with activation code:
• Second Memosens input (71114663)
• HART (71128428)
• EtherNet/IP + web server (71449914)
• Modbus TCP + web server (71449915)
• PROFINET + web server (71449901)
• Web server (71449918)
PROFIBUS DP or Modbus RS485 with module 485 incl. activation
code:
• PROFIBUS DP (71140888)
• Modbus RS485 (71140889)
If module 485 is retrofitted, any existing current outputs are
disabled!
Additional inputs or outputs, relays:
• Module 2AI (71135639): 2 current inputs
• Module 2AO (71135632): 2 current outputs
• Module AOR (71111053): 2 current outputs, 2 relays
• Module 2R (71125375) or 4R (71125376): 2 or 4 relays
• Module DIO (71135638): 2 digital inputs and 2 digital outputs
Only one CUS71D can be connected. The second Memosens input
may not be used.
2Current outputs (2 x optional)7Service interface
32 x Memosens input (1 x optional)8Power supply, fixed cable sensors
4PROFIBUS DP/Modbus/Ethernet (optional)9Alarm relay
52 x current input (optional)102 or 4 x relays (optional)
A0039427
112 digital inputs and outputs (optional)
Device configuration using
the example of a CM444R**M42A1FA*
Liquiline CM442R/CM444R/CM448R
Ordered basic device (example)• Order code CM444R-**M42A1FA*
• Functionality:
• 4 x Memosens (2 on BASE2-E module + 2 on an extension
module 2DS)
• PROFIBUS communication (module 485)
• Web server (BASE2-E module)
• 2 current outputs without HART (on BASE2-E module)
• 2 current inputs (module 2AI)
3 slots are still free in this example. More or fewer slots can be free in
other versions.
Extension options without additional
modules
Modification options without
additional modules
Extension options by using extension
modules in free slots 5-7
Basic rule for extensionsThe sum of all current inputs and outputs may not exceed 8.
Restrictions if using CUS71D sensors
for interface measurement
Product Configuratorwww.endress.com/cm444r
None
Communication type changed by entering activation code. This
disables the communication type used previously!
Modbus RS485 + web server (71135636)
Retrofit by removing module 485 and entering the activation code
for:
• Modbus TCP + web server (71449915)
• EtherNet/IP + web server (71449914)
• PROFINET + web server (71449901)
• HART (71128428)
• Web server (71449918)
Only the following is possible for the example above:
• Module 2R (71125375) or 4R (71125376): 2 or 4 relays
• Module DIO (71135638): 2 digital inputs and 2 digital outputs
If extending to 8 measuring channels:
Module 2DS (71135631): 2 Memosens inputs
Additional inputs or outputs and relays if fieldbus module 485 is
removed:
• Module 2AO (71135632): 2 current outputs
• Module AOR (71111053): 2 current outputs, 2 relays
• Module 2R (71125375) or 4R (71125376): 2 or 4 relays
• Module DIO (71135638): 2 digital inputs and 2 digital outputs
If module 485 is removed and an Ethernet-based fieldbus is
used via BASE2-E module, a maximum of up to 6 current
outputs can be operated in addition. Only two current outputs
are possible with module 485.
• In the case of CM444R, every combination of Memosens sensors
(max. 4) is possible.
• An extension to CM448R is not advisable as the maximum number
of Memosens inputs when using CUS71D remains limited to 4.
10Endress+Hauser
Liquiline CM442R/CM444R/CM448R
mA
31
87
88
97
98
87
88
97
98
optional
optional
mA
mA
23
optional
optional
optional
optional
optional
1
2
3
3
4
2
2
5
5
6
8
8
9
10
10
10
10
7
32
31
32
31
32
24
23
24
87
88
97
98
38
87
88
97
98
38
mA
mA
optional
2
2
31
32
31
32
mA
mA
optional
2
2
31
32
31
32
HART
mA
31
32
optional
85
86
85
86
85
86
85
86
mA
mA
41
42
43
41
42
43
41
42
43
41
42
43
41
42
43
45
46
47
48
+
–
+
–
45
46
11
+
–
47
48
+
–
+
–
+
–
optional
L+L-L
N
~ =
PE
91
92
91
92
Function diagram CM444R
Endress+Hauser11
7Function diagram CM444R
1Current output 1:1, + HART (both optional)6Power supply
2Max. 7 x current output (optional)7Service interface
3Memosens input (2 x standard + 2 x optional)8Power supply, fixed cable sensors
4PROFIBUS DP/Modbus/Ethernet (optional)9Alarm relay
52 x current input (optional)102 or 4 x relays (optional)
A0039431
112 digital inputs and outputs (optional)
Device configuration using
the example of a CM448R**26A1*
Liquiline CM442R/CM444R/CM448R
Ordered basic device (example)• Order code CM448R-**26A1*
• Functionality:
• 6 x Memosens (2 on BASE2-E module + 2 on two 2DS extension
modules)
• PROFIBUS communication (module 485)
• Web server (BASE2-E module)
3 slots are still free in this example. More or fewer slots can be free in
other versions.
Extension options without additional
modules
Modification options without
additional modules
Extension options by using extension
modules in free slots 5-7
Basic rule for extensionsThe sum of all current inputs and outputs may not exceed 8.
Restrictions if using CUS71D sensors
for interface measurement
Product Configuratorwww.endress.com/cm448r
Activation code for the use of current outputs of the basic module:
2 current outputs (71140891)
Communication type changed by entering activation code. This
disables the communication type used previously!
Modbus RS485 + web server (71135636)
Retrofit by removing module 485 and entering the activation code for
communication via the BASE2 module:
• Modbus TCP + web server (71449915)
• EtherNet/IP + web server (71449914)
• PROFINET + web server (71449901)
• HART (71128428)
• Web server (71449918)
If extending to 8 measuring channels:
Module 2DS (71135631): 2 Memosens inputs
Additional inputs or outputs, relays:
• Module 2AO (71135632): 2 current outputs
• Module 2AI (71135639): 2 current inputs
• Module AOR (71111053): 2 current outputs, 2 relays
• Module 2R (71125375) or 4R (71125376): 2 or 4 relays
• Module DIO (71135638): 2 digital inputs and 2 digital outputs
If module 485 is removed and an Ethernet-based fieldbus is
used, a maximum of up to 6 current outputs can be operated in
addition. Only two current outputs are possible with module
485.
The maximum number of Memosens inputs that can be used is
limited to 4! Here, every combination of CUS71D and other
Memosens sensors is then possible.
12Endress+Hauser
Liquiline CM442R/CM444R/CM448R
87
88
97
98
87
88
97
98
optional
mA
mA
optional
optional
optional
optional
1
2
3
3
4
2
2
6
8
9
10
10
10
10
7
31
32
31
32
87
88
97
98
3
87
88
97
98
38
mA
mA
optional
2
2
31
32
31
32
mA
mA
optional
2
2
31
32
31
32
87
88
97
98
3
8
87
88
97
98
3
8
87
88
97
98
3
87
88
97
98
3
mA
31
optional
32
HART
mA
31
32
optional
85
86
85
86
85
86
85
86
8
8
8
8
85
86
85
86
85
86
85
86
41
42
43
41
42
43
41
42
43
41
42
43
41
42
43
47
48
+
–
47
48
+
–
optional
L+L-L
N
~ =
PE
45
46
+
–
+
–
45
46
+
–
+
–
91
92
91
92
23
optional
5
5
24
23
24
mA
mA
Function diagram CM448R
Endress+Hauser13
8Function diagram CM448R
1Current output 1:1, + HART (both optional)7Service interface
2Max. 7 x current output (optional)8Power supply, fixed cable sensors
3Max 8 x Memosens input (2 x of which are
4PROFIBUS DP/Modbus/Ethernet (optional)102 or 4 x relays (optional)
52 x current input (optional)112 digital inputs and outputs (optional)
6Power supply
optional)
A0039429
9Alarm relay
Liquiline CM442R/CM444R/CM448R
MEMO SENS
Communication and data processing
Communication protocols:
Fieldbus systems
• HART
• PROFIBUS DP (Profile 3.02)
• Modbus TCP or RS485
• PROFINET
• Ethernet/IP
Only one type of Fieldbus communication can ever be active. The last activation code entered
decides which bus is used.
The device drivers available make it possible to perform a basic setup and display measured
values and diagnostics information via the fieldbus. A full device configuration via the fieldbus
is not possible.
Extension module 485 and current outputs
For PROFIBUS DP, and Modbus RS485 communication protocols:
• CM442R
Current outputs cannot be used in parallel. Any existing current outputs are deactivated with the
installation of 485.
• CM444R/CM448R
A maximum of 2 current outputs can be used in parallel.
Ethernet functionality via Base2 module and current outputs
• CM442R
A maximum of 2 current outputs can be used in parallel.
• CM444R and CM448R
A maximum of 6 current outputs can be used in parallel.
Bus termination on the device
• Via slide switch at bus module 485
• Displayed via LED "T" on bus module 485
Reliability
Dependability
Memosens
Memosens makes your measuring point safer and more reliable:
• Non-contact, digital signal transmission enables optimum galvanic isolation
• No contact corrosion
• Completely watertight
• Sensor can be calibrated in a lab, thus increasing the availability of the measuring point in the
process
• Intrinsically safe electronics mean operation in hazardous areas is not a problem.
• Predictive maintenance thanks to recording of sensor data, e.g.:
• Total hours of operation
• Hours of operation with very high or very low measured values
• Hours of operation at high temperatures
• Number of steam sterilizations
• Sensor condition
Heartbeat diagnostics
• Heartbeat diagnostics screen with graphic indicators for the health of the device and sensor and
with a maintenance or (sensor-dependent) calibration timer
• Heartbeat status information on the health of the device and the condition of the sensor
: Sensor/device condition or maintenance timer > 20 %; no action is required
•
•: Sensor/device condition or maintenance timer > 5 ≤ 20 %, maintenance not yet urgent but
should be scheduled
•: Sensor/device condition or maintenance timer < 5 %, maintenance is recommended
• The Heartbeat sensor condition is the assessment of the calibration results and the sensor
diagnostic functions.
14Endress+Hauser
Liquiline CM442R/CM444R/CM448R
An unhappy smiley can be due to the calibration result, the measured value status or to the
operating hours limit having been exceeded. These limits can be configured in the sensor setup in a
way that adapts the Heartbeat diagnostics to the application.
Heartbeat and NAMUR category
The Heartbeat status indicates the sensor or device condition while the NAMUR categories (F, C, M,
S) assess the reliability of the measured value. The two conditions can correlate but do not have to.
• Example 1
• The number of remaining cleaning cycles for the sensor reaches 20% of the defined maximum
number. The Heartbeat symbol changes from
NAMUR status signal does not change.
• If the maximum number of cleaning cycles is exceeded, the Heartbeat symbol changes from
to . While the measured value can still be reliable, the NAMUR status signal changes to M
(maintenance required).
• Example 2
The sensor breaks. The Heartbeat status changes immediately from
status signal also changes immediately to F (failure).
Heartbeat Monitoring
Sensor data from Memosens sensors are transmitted via the EtherNet/IP, PROFINET, PROFIBUS DP,
HART, Modbus RTU and Modbus TCP fieldbus protocols. These data can be used for predictive
maintenance, for instance.
Examples include:
• Total hours of operation
• Hours of operation with very high or very low measured values
• Hours of operation at high temperatures
• Number of steam sterilizations
• Sensor identification
• Calibration information
For detailed information on "Ethernet/IP communication", see the product pages on the Internet
(→ SD01293C).
For detailed information on "Modbus communication", see the product pages on the Internet (→
SD01189C).
For detailed information on "PROFINET communication", see the product pages on the internet
(→ SD02490C).
For detailed information on "PROFIBUS communication", see the product pages on the Internet
(→ SD01188C).
More detailed information on HART communication is provided on the product pages on the
Internet (→ SD01187C).
to . The measured value is still reliable so the
to and the NAMUR
Heartbeat Verification
Heartbeat Verification makes it possible to verify the correct operation of the measuring device
without interrupting the process. This verification can be documented anytime.
Sensor Check System (SCS)
The Sensor Check System (SCS) monitors the high impedance of the pH glass. An alarm is issued if a
minimum impedance value is undershot or a maximum impedance is exceeded.
• Glass breakage is the main reason for a drop in high impedance values
• The reasons for increasing impedance values include:
• Dry sensor
• Worn pH glass membrane
For the SCS, upper and lower limit values can be enabled or disabled independently of one
another.
Process Check System (PCS)
The process check system (PCS) checks the measuring signal for stagnation. An alarm is triggered if
the measuring signal does not change over a specific period (several measured values).
The main causes of stagnating measured values are:
• Contaminated sensor, or sensor outside of medium
• Sensor defective
• Process error (e.g. through control system)
Endress+Hauser15
Liquiline CM442R/CM444R/CM448R
Self-monitoring functions
Current inputs are deactivated in the event of overcurrent and reactivated once the overcurrent
stops. Board voltages are monitored and the board temperature is also measured.
USP and EP
The limit functions for pharmaceutical water in accordance with USP and EP specifications are
implemented in the software for conductivity measurements:
• "Water for Injection" (WFI) as per USP <645> and EP
• "Highly Purified Water" (HPW) as per EP
• "Purified Water" (PW) as per EP
The uncompensated conductivity value and the temperature are measured for the USP/EP limit
functions. The measured values are compared against the tables defined in the standards. An alarm
is triggered if the limit value is exceeded. Furthermore, it is also possible to configure an early
warning alarm that signals undesired operating states before they occur.
ChemocleanPlus
Freely programmable sequence control
• e.g. for automatic sensor cleaning in retractable assemblies for reliable measurement results in
processes with a high risk of contamination
• Individual, time-based activation of 4 outputs e.g. relays
• Starting, stopping or pausing of activities via digital input or fieldbus signals e.g. from limit
position switches
MaintainabilityModular design
The modular transmitter design means it can be easily adapted to suit your needs:
• Retrofit extension modules for new or extended range of functions, e.g. current outputs, relays and
digital communication
• Upgrade to maximum eight-channel measurement
• Optional: M12 sensor connector for connecting any kind of Memosens sensor
• Optional: CDI connector for external access to the service interface (avoids having to unscrew the
housing cover)
9CM444R: example
A0042325
A0042346
10Extension module
16Endress+Hauser
Liquiline CM442R/CM444R/CM448R
Data logger function
• Adjustable scan time: 1 to 3600 s (1 h)
• Data logbooks:
• Max. 8 data logbooks
• 150,000 entries per logbook
• Graphic display (load curves) or numerical list
• Calibration logbook: max. 75 entries
• Hardware version logbook:
• Hardware configuration and modifications
• Max. 125 entries
• Version logbook:
• E.g. software updates
• Max. 50 entries
• Operation logbook: max. 250 entries
• Diagnostics logbook: max. 250 entries
A0015032
11Data logbook: Graphic display
Logbooks remain unchanged even after a software update.
SD card
The exchangeable storage medium enables:
• Quick and easy software updates and upgrades
• Data storage of internal device memory (e.g. logbooks)
• Transfer of complete configurations to a device with an identical setup (backup function)
• Transfer of configurations without the TAG and bus address to devices with an identical setup
(copy function)
• Saving of screenshots for documentation purposes
Endress+Hauser offers industry-approved SD cards as accessories. These memory cards provide
maximum data security and integrity.
Other SD cards up to a maximum weight of 5 g can also be used. However, Endress+Hauser does not
accept any responsibility for the data security of such cards.
External signals for device control and for activating external devices
Hardware options, e.g. module "DIO" with 2 digital inputs and 2 digital outputs or fieldbus module
"485" enable the following:
• via a digital input signal
• measuring range switching for conductivity (upgrade code required, see accessories)
• switching between different calibration datasets in the case of optical sensors
• an external hold
• a cleaning interval to be triggered
• switching on and off a PID controller, e.g. via the proximity switch of the CCA250
• the use of the input as an "analog input" for pulse-frequency modulation (PFM)
• via a digital output signal
• the static transmission (similar to a relay) of diagnostic states, point level switch states etc.
• the dynamic transmission (comparable to a non-wearing "analog output") of PFM signals, e.g. to
control dosing pumps.
Endress+Hauser17
Loading...
+ 39 hidden pages
You need points to download manuals.
1 point = 1 manual.
You can buy points or you can get point for every manual you upload.