Emerson PACSystems, RX3i, RSTi-EP TCP User Manual

User Manual
GFK-2224Y
August 2019
PACSystems RX3i and RSTi-EP TCP/IP Ethernet Communications User Manual
WARNING
Warning notices are used in this publication to emphasize that hazardous voltages, currents, temperatures, or other conditions that could cause personal injury exist in this equipment or may be associated with its use.
In situations where inattention could cause either personal injury or damage to equipment, a Warning notice is used.
CAUTION
Caution notices are used where equipment might be damaged if care is not taken.
Note: Notes merely call attention to information that is especially significant to understanding and operating the
equipment.
These instructions do not purport to cover all details or variations in equipment, nor to provide for every possible contingency to be met during installation, operation, and maintenance. The information is supplied for informational purposes only, and Emerson makes no warranty as to the accuracy of the information included herein. Changes, modifications, and/or improvements to equipment and specifications are made periodically and these changes may or may not be reflected herein. It is understood that Emerson may make changes, modifications, or improvements to the equipment referenced herein or to the document itself at any time. This document is intended for trained personnel familiar with the Emerson products referenced herein.
Emerson may have patents or pending patent applications covering subject matter in this document. The furnishing of this document does not provide any license whatsoever to any of these patents.
Emerson provides the following document and the information included therein as-is and without warranty of any kind, expressed or implied, including but not limited to any implied statutory warranty of merchantability or fitness for particular purpose.
© 2019 Emerson. All rights reserved.
Emerson Terms and Conditions of Sale are available upon request. The Emerson logo is a
trademark and service mark of Emerson Electric Co. All other marks are the property of their
respective owners.

Contents i

Table of Contents

Table of Contents ..................................................................................................................................... i
Table of Figures ....................................................................................................................................... ix
Section 1: Introduction......................................................................................................................... 1
1.1 Revisions in this Manual ........................................................................................................ 2
1.2 PACSystems Documentation ................................................................................................ 3
1.2.1 PACSystems Manuals ................................................................................................... 3
1.2.2 RX3i Manuals ............................................................................................................... 3
1.2.3 RSTi-EP Manuals ........................................................................................................... 4
1.3 Ethernet Interfaces for PACSystems Controllers ..................................................................... 5
1.3.1 RX3i Rack-Based Ethernet Interfaces – Features ........................................................... 5
1.3.2 RX3i & RSTi-EP Embedded Ethernet Interface - Features ............................................... 6
1.3.3 Ethernet Interface Specifications .................................................................................. 8
1.3.4 Ethernet interface Ports ............................................................................................. 10
1.3.5 Station Manager ......................................................................................................... 11
1.3.6 Firmware Upgrades .................................................................................................... 12
1.3.7 SRTP Client (Channels) ............................................................................................... 12
1.3.8 Modbus TCP Client (Channels) ................................................................................... 12
1.3.9 Ethernet Global Data (EGD) ........................................................................................ 13
1.3.10 SRTP Inactivity Timeout .............................................................................................. 14
1.4 Ethernet Redundancy Operation ......................................................................................... 14
1.4.1 Hot Standby (HSB) CPU Redundancy .......................................................................... 15
1.4.2 Non-HSB Redundancy ................................................................................................ 16
1.4.3 Effect of Redundancy Role Switching on Ethernet Communications ........................... 16
1.4.4 SRTP Server Operation in a Redundancy System ......................................................... 18
1.4.5 SRTP Client Operation in a Redundancy System .......................................................... 18
1.4.6 Modbus TCP Server Operation in a Redundancy System ............................................. 19
1.4.7 Modbus TCP Client Operation in a Redundancy System .............................................. 19
1.4.8 EGD Class 1 (Production & Consumption) in a Redundancy System ............................ 19
1.4.9 EGD Class 2 Commands in a Redundancy System ....................................................... 19
1.4.10 Web Server Operation in a Redundancy System ......................................................... 20
1.4.11 FTP Operation in a Redundancy System ...................................................................... 20
1.4.12 SNTP Operation in a Redundancy System ................................................................... 20
1.4.13 Remote Station Manager Operation in a Redundancy System..................................... 20
1.4.14 IP Address Configuration in a Redundancy System ...................................................... 21
Contents ii
Section 2: Installation and Start-up: RX3i/RSTi-EP Embedded Interface .................................................. 22
2.1 RX3i/RSTi-EP Embedded Ethernet Interface Indicators .......................................................... 22
2.1.1 Ethernet Port LEDs Operation ..................................................................................... 22
2.1.2 Module Installation .................................................................................................... 25
2.2 Ethernet Port Connector ..................................................................................................... 25
2.2.1 Connection to a 10Base-T/100Base-TX Network......................................................... 25
2.2.2 10Base-T/100Base-TX Port Pinouts ............................................................................ 25
2.3 Pinging TCP/IP Ethernet interfaces on the Network ............................................................... 26
2.3.1 Determining if an IP Address is Already Being Used ..................................................... 26
Section 3: Installation and Start-up: Ethernet Module Interfaces ........................................................... 27
3.1 Ethernet Module Interface Characteristics............................................................................ 28
3.1.1 Front Panel Port ......................................................................................................... 29
3.1.2 Ethernet Port Connections ......................................................................................... 29
3.1.3 LEDs on the RX3i Ethernet Interface Module ............................................................... 30
3.1.4 Ethernet LEDs ............................................................................................................. 30
3.1.5 Restart/Reset Pushbutton Operation .......................................................................... 32
3.2 Ethernet Module Installation ............................................................................................... 34
3.2.1 Module Installation .................................................................................................... 34
3.2.2 Module Removal ........................................................................................................ 34
3.3 Ethernet Port Connectors ................................................................................................... 35
3.3.1 Embedded Switch ...................................................................................................... 35
3.3.2 Connection to a 10Base-T/100Base-TX/1000Base-T Network ..................................... 37
3.4 Station Manager Port .......................................................................................................... 39
3.4.1 Port Settings .............................................................................................................. 39
3.5 Verifying Proper Power-Up of the Ethernet Interface After Configuration ............................... 39
3.6 Pinging TCP/IP Ethernet interfaces on the Network ............................................................... 40
3.6.1 Determining if an IP Address is Already Being Use ....................................................... 40
3.7 Ethernet Plug-in Applications .............................................................................................. 41
Section 4: Configuration ..................................................................................................................... 42
4.1 RX3i/RSTi-EP Embedded Ethernet Interfaces ........................................................................ 43
4.1.1 Ethernet Configuration Data ...................................................................................... 43
4.1.2 Initial IP Address Assignment ...................................................................................... 44
Contents iii
4.1.3 Configuring the Ethernet Interface Parameters .......................................................... 45
4.2 RX3i Rack-Based Ethernet Interface Modules........................................................................ 57
4.2.1 Ethernet Configuration Data ...................................................................................... 58
4.2.2 Initial IP Address Assignment ...................................................................................... 59
4.2.3 Configuring Ethernet Interface Parameters ................................................................ 64
4.2.4 Configuring Ethernet Global Data ............................................................................... 71
Section 5: Ethernet Global Data .......................................................................................................... 90
5.1 Comparison Model for Ethernet Global Data Support ........................................................... 91
5.2 Ethernet Global Data Operation .......................................................................................... 91
5.2.1 EGD Producer ............................................................................................................. 91
5.2.2 EGD Consumers ......................................................................................................... 92
5.3 EGD Exchanges .................................................................................................................. 92
5.3.1 Content of an Ethernet Global Data Exchange ............................................................ 93
5.3.2 Data Ranges (Variables) in an Ethernet Global Data Exchange .................................... 93
5.3.3 Valid Memory Types for Ethernet Global Data............................................................. 93
5.3.4 Planning Exchanges .................................................................................................... 95
5.3.5 Using Ethernet Global Data in a Redundancy System .................................................. 95
5.4 Sending an Ethernet Global Data Exchange to Multiple Consumers ....................................... 95
5.4.1 Multicasting Ethernet Global Data .............................................................................. 96
5.4.2 Broadcasting Ethernet Global Data ............................................................................. 97
5.4.3 Changing Group ID in Run Mode ................................................................................ 97
5.5 Ethernet Global Data Timing ............................................................................................... 99
5.5.1 EGD Synchronization .................................................................................................. 99
5.5.2 Configurable Producer Period for an EGD Exchange .................................................. 100
5.5.3 Consumer Update Timeout Period ........................................................................... 100
5.6 Effect of PLC Modes and Actions on EGD Operations ........................................................... 102
5.6.1 Run Mode Store of EGD ............................................................................................ 103
5.7 Monitoring Ethernet Global Data Exchange Status .............................................................. 108
5.7.2 Exchange Status Word Error Codes ........................................................................... 108
Contents iv
Section 6: Programming EGD Commands ......................................................................................... 110
6.1 General Use of EGD Commands......................................................................................... 111
6.2 Using EGD Commands in a Redundancy System ................................................................. 111
6.3 COMMREQ Format for Programming EGD Commands ........................................................ 111
6.4 COMMREQ Status for the EGD Commands ......................................................................... 112
6.4.1 COMMREQ Status Values ......................................................................................... 113
6.5 Read PLC Memory (4000).................................................................................................. 113
6.5.1 Read PLC Memory Command Block .......................................................................... 114
6.6 Write PLC Memory (4001) ................................................................................................. 117
6.6.1 Write PLC Memory Command Block ......................................................................... 117
6.7 Read EGD Exchange (4002) ............................................................................................... 119
6.7.1 Read EGD Exchange Command Block ....................................................................... 119
6.8 Write EGD Exchange (4003) .............................................................................................. 122
6.8.1 Write EGD Exchange Command Block ...................................................................... 122
6.9 Masked Write to EGD Exchange (4004) .............................................................................. 124
6.9.1 Masked Write EGD Exchange Command Block ......................................................... 124
Section 7: SNTP Operation................................................................................................................ 127
7.1 Normal SNTP Operation .................................................................................................... 127
7.1.1 SNTP Broadcast and Multicast Operation Mode ........................................................ 127
7.1.2 SNTP Unicast Operation Mode.................................................................................. 127
7.2 Multiple SNTP Servers (Applies only to SNTP Broadcast and Multicast Mode) ........................ 128
7.3 Loss or Absence of SNTP Timing Signals ............................................................................. 128
7.4 Time-Stamping of Ethernet Global Data Exchanges ............................................................ 129
7.4.1 Obtaining Timestamps from the Ethernet Interface Clock ........................................ 130
7.4.2 Obtaining Timestamps from the CPU TOD Clock ...................................................... 132
Section 8: Programming SRTP Channel Commands ........................................................................... 143
8.1 Model Comparison for SRTP Server Capabilities .................................................................. 144
8.2 SRTP Channel Commands ................................................................................................. 144
8.2.1 Channel Operations ................................................................................................. 144
8.2.2 Aborting and Re-tasking a Channel ........................................................................... 145
Contents v
8.2.3 Monitoring the Channel Status ................................................................................. 145
8.2.4 SRTP Channel Commands in a Redundant System .................................................... 145
8.2.5 Executing a Channel Command ................................................................................ 146
8.3 COMMREQ Format for Programming Channel Commands .................................................. 147
8.3.1 The COMMREQ Command Block: General Description ............................................. 148
8.3.2 Establish Read Channel (2003) ................................................................................. 150
8.3.3 Establish Write Channel (2004) ................................................................................ 154
8.3.4 Send Information Report (2010) ............................................................................... 157
8.3.5 Abort Channel (2001) ............................................................................................... 160
8.3.6 Retrieve Detailed Channel Status (2002) .................................................................. 161
8.4 Programming for Channel Commands ............................................................................... 164
8.4.1 COMMREQ Sample Logic .......................................................................................... 164
8.4.2 Sequencing Communications Requests .................................................................... 167
8.4.3 Managing Channels and TCP Connections ................................................................ 168
8.4.4 Use “Channel Re-Tasking” To Avoid Using Up TCP Connections ................................ 168
8.4.5 Client Channels TCP Resource Management ............................................................. 169
8.4.6 SRTP Application Timeouts....................................................................................... 169
8.5 Monitoring Channel Status ............................................................................................... 170
8.5.1 Format of the COMMREQ Status Word ..................................................................... 170
Section 9: Modbus/TCP Server .......................................................................................................... 172
9.1 Model Comparison for Modbus/TCP Server Capabilities ...................................................... 173
9.2 Modbus Conformance Classes ........................................................................................... 174
9.2.1 Server Protocol Services ........................................................................................... 174
9.2.2 Station Manager Support ......................................................................................... 174
9.3 Reference Mapping .......................................................................................................... 174
9.3.1 Modbus Reference Tables ........................................................................................ 174
9.3.2 Address Configuration ............................................................................................. 176
9.4 Modbus Function Codes ................................................................................................... 177
Section 10: Modbus/TCP Client .............................................................................................. 179
10.1 Model Comparison for Modbus/TCP Client Capabilities ....................................................... 180
10.2 Communications Request ................................................................................................. 180
10.2.1 Structure of the Communications Request ............................................................... 180
10.2.2 COMMREQ Function Block ....................................................................................... 181
10.2.3 COMMREQ Command Block ..................................................................................... 181
Contents vi
10.2.4 Modbus/TCP Channel Commands ............................................................................ 181
10.2.5 Status Data .............................................................................................................. 182
10.2.6 Operation of the Communications Request .............................................................. 182
10.3 COMMREQ Function Block and Command Block ................................................................ 184
10.3.1 The COMMREQ Function Block ................................................................................. 184
10.3.2 The COMMREQ Command Block .............................................................................. 185
10.4 Modbus/TCP Channel Commands ..................................................................................... 186
10.4.1 Open a Modbus/TCP Client Connection (3000) ......................................................... 186
10.4.2 Close a Modbus/TCP Client Connection (3001) ......................................................... 189
10.4.3 Read Data from a Modbus/TCP Device (3003) .......................................................... 190
10.4.4 Write Data to a Modbus/TCP Device (3004) .............................................................. 197
10.4.5 Mask Write Register Request to a Modbus Server Device (3009) ............................... 201
10.4.6 Read/Write Multiple Registers to/from a Modbus Server Device (3005) .................... 202
10.5 Status Data ...................................................................................................................... 204
10.5.1 Types of Status Data ................................................................................................. 204
10.6 Controlling Communications in the Ladder Program .......................................................... 205
10.6.1 Essential Elements of the Ladder Program ................................................................ 205
10.6.2 Managing Channels and TCP Connections ................................................................ 206
10.6.3 Client Channels TCP Resource Management ............................................................. 206
10.6.4 COMMREQ Ladder Logic Example ............................................................................. 207
10.6.5 Troubleshooting a Ladder Program .......................................................................... 212
10.6.6 Monitoring the Communications Channel ................................................................ 213
Section 11: OPC UA Server ..................................................................................................... 217
11.1 Model Comparison for OPC UA Server Capabilities .............................................................. 218
11.2 OPC UA Certificate Security ............................................................................................... 218
11.2.1 Controlling the OPC UA Server with PAC Machine Edition ......................................... 218
11.2.2 Application Logic to Control the OPC UA Server ........................................................ 222
11.2.3 Connect OPC UA Client to OPC UA Server ................................................................. 232
Contents vii
Section 12: Diagnostics ......................................................................................................... 245
12.1 What to do if You Cannot Solve the Problem ...................................................................... 246
12.2 Diagnostic Tools Available for Troubleshooting .................................................................. 246
12.3 Initialization Example of the RX3i Ethernet ETM001-Jx Module Interface .............................. 248
12.4 ETHERNET OK/OK LED Blink Codes for Hardware Failures (ETM001-Jx) ................................. 250
12.5 Controller Fault Table ....................................................................................................... 251
12.5.1 Controller Fault Table Descriptions ........................................................................... 252
12.6 Monitoring the Ethernet Interface Status Bits ..................................................................... 255
12.6.1 LAN Interface Status (LIS) Bits ................................................................................... 258
12.6.2 Channel Status Bits ................................................................................................... 260
12.7 Monitoring the FT Output of the COMMREQ Function Block. ............................................... 261
12.8 Monitoring the COMMREQ Status Word ............................................................................ 263
12.8.1 Format of the COMMREQ Status Word ..................................................................... 263
12.8.2 Major Error Codes in the COMMREQ Status Word ..................................................... 264
12.8.3 Minor Error Codes for Major Error Codes 05H (at Remote Server PLC) and 85H (at Client
PLC) ......................................................................................................................... 265
12.8.4 Minor Error Codes for Major Error Code 11H (at Remote Server PLC) ......................... 266
12.8.5 Minor Error Codes for Major Error Code 90H (at Client PLC) ...................................... 268
12.8.6 Minor Error Codes for Major Error Code 91H (at Remote Modbus/TCP Server) .......... 271
12.8.7 Minor Error Codes for Major Error Code A0H (at Client PLC) ...................................... 272
12.9 Using the EGD Management Tool (RX3i Ethernet Module) .................................................. 273
12.9.1 Installing the EGD Management Tool ....................................................................... 273
12.9.2 Launching the EGD Management Tool ..................................................................... 273
12.9.3 Monitoring EGD Devices ........................................................................................... 274
12.9.4 Monitoring Status of Ethernet Global Data for a Device ............................................ 275
12.10 Troubleshooting Common Ethernet Difficulties ................................................................. 279
12.10.1 COMMREQ Fault Errors ............................................................................................. 279
12.10.2 PLC Timeout Errors ................................................................................................... 279
12.10.3 Application Timeout Errors ....................................................................................... 281
12.10.4 EGD Configuration Mismatch Errors ......................................................................... 281
12.10.5 Station Manager Lockout under Heavy Load ............................................................. 282
12.10.6 PING Restrictions ..................................................................................................... 282
12.10.7 SRTP and Modbus/TCP Connection Timeout ............................................................ 282
12.10.8 Sluggish Programmer Response after Network Disruption ....................................... 283
Contents viii
12.10.9 EGD Command Session Conflicts .............................................................................. 285
12.10.10 SRTP Request Incompatibility with Existing Host Communications Toolkit Devices or
Other SRTP Clients ................................................................................................... 285
12.10.11 COMMREQ Flooding Can Interrupt Normal Operation .............................................. 285
12.10.12 Accelerated EGD Consumption Can Interfere with EGD Production .......................... 285
12.10.13 Channels Operation Depends Upon PLC Input Scanning ........................................... 286
Section 13: Network Administration ....................................................................................... 288
13.1 IP Addressing ................................................................................................................... 288
13.1.1 IP Address Format for Network Classes A, B, C .......................................................... 288
13.1.2 IP Addresses Reserved for Private Networks .............................................................. 289
13.1.3 Multicast IP Addresses .............................................................................................. 289
13.1.4 Loopback IP Addresses ............................................................................................. 289
13.1.5 Overlapping Subnets ................................................................................................ 290
13.2 Gateways ......................................................................................................................... 293
13.2.1 Networks Connected by a Gateway .......................................................................... 293
13.3 Subnets and Supernets ..................................................................................................... 293
13.3.1 Subnet Addressing and Subnet Masks ...................................................................... 294
13.3.2 Example: Network Divided into Two Subnets ............................................................ 294
13.3.3 Example: Two Networks Combined into a Supernet .................................................. 295
SNTP Time Transfer to CPU Parameters (task n) .................................................................................... 303

Contents ix

Table of Figures

Figure 1: Ethernet Connection System Diagram ..................................................................................................... 5
Figure 2: Ethernet Operation in Redundancy Mode .............................................................................................. 15
Figure 3: Basic Non-HSB System with Redundant IP.............................................................................................. 16
Figure 4: RJ45 Connector ..................................................................................................................................... 25
Figure 5: Ethernet Cable Routing ......................................................................................................................... 26
Figure 6: ETM001-Jx Faceplate ............................................................................................................................. 28
Figure 7: ETM001-Kxxx Faceplate ........................................................................................................................ 28
Figure 8: Ethernet Port Connectors on IC695ETM001-Kxxx ................................................................................... 29
Figure 9: Install Module into RX3i Backplane ........................................................................................................ 34
Figure 10: Remove Module from RX3i Backplane ................................................................................................. 34
Figure 11: Diagram of Embedded Ethernet Switch ............................................................................................... 35
Figure 12: System Diagram: Ethernet Routing Using Embedded Switch ................................................................ 36
Figure 13: Connection Using Hub/Switch/Repeater .............................................................................................. 38
Figure 14: Direct Connection to the Embedded Ethernet Ports .............................................................................. 38
Figure 15: Expand CPU Slot to Display Ethernet Node ........................................................................................... 44
Figure 16: Expand RX3i CPU Node to Configure Embedded Ethernet interface ....................................................... 47
Figure 17: CPE330/CPE400/CPL410/CPE100/CPE115/ETM001-Kxxx Settings tab .................................................. 49
Figure 18: CPE330 Advanced Ethernet Configuration LAN1 & LAN2 ...................................................................... 50
Figure 19: CPE100/CPE115/CPE400/CPL410 Advanced Ethernet Configuration LAN1 & LAN2 ............................... 51
Figure 20: SNTP PME configuration for the CPE302/CPE305/CPE310/CPE330/CPE400/CPL410 CPU settings .......... 52
Figure 21: SNTP Multicast/Broadcast or Unicast Mode Settings ............................................................................ 52
Figure 22: UTC Time Zone Settings ...................................................................................................................... 53
Figure 23: Terminals Tab Settings in PAC Machine Edition .................................................................................... 53
Figure 24: Adding Ethernet Global Data (EGD) to the Configuration ..................................................................... 54
Figure 25: Defining EGD Produced Data Exchange ............................................................................................... 55
Figure 26: Defining EGD Consumed Data Exchange ............................................................................................. 55
Figure 27: Configuring Multicast & Broadcast EGD on LAN1 ................................................................................. 56
Figure 28: Configuring Multicast & Broadcast EGD on LAN2 ................................................................................. 57
Figure 29: Setting Temporary IP Address .............................................................................................................. 60
Figure 30: Install ETM001-Jx Module in Rack/Slot & Expand to Configure .............................................................. 64
Figure 31: Expand Node to View Ethernet Global Data ......................................................................................... 71
Figure 32: Local Producer ID ................................................................................................................................ 72
Figure 33: Configuring the EGD Configuration Server ........................................................................................... 73
Figure 34: Exchange ID Offset in an Ethernet Redundancy System ........................................................................ 88
Figure 35: Configuring Redundancy for Ethernet Global Data ............................................................................... 89
Figure 36: Configuring Produce in Backup Mode Parameter ................................................................................. 89
Figure 37: Producing & Consuming Ethernet Global Data ..................................................................................... 91
Contents x
Figure 38: Adding Symbolic Reference to Ethernet Global Data Exchange ............................................................. 94
Figure 39: Grouping of Devices for Ethernet Global Data Multicasting .................................................................. 96
Figure 40: Memory Sharing between PLC and Ethernet interface .......................................................................... 99
Figure 41: EGB Timing Example #1 .................................................................................................................... 101
Figure 42: EGB Timing Example #2 .................................................................................................................... 101
Figure 43: Sample COMMREQ Ladder Diagram .................................................................................................. 111
Figure 44: Example: Masked Write to EGD Exchange Bit Mask and Data Bits ....................................................... 126
Figure 45: Obtaining Timestamps from the Ethernet interface Clock .................................................................. 130
Figure 46: Obtaining Timestamps from the PLC Time Clock ................................................................................ 131
Figure 47: Obtaining Timestamps from the SNTP Server’s Time Clock................................................................. 132
Figure 48: Synchronizing CPU Time-of-Day Clock to an SNTP Server ................................................................... 133
Figure 49: Operating Sequence for CPU Clock Synchronization ........................................................................... 134
Figure 50 Hardware Configuration Module in PME ............................................................................................. 136
Figure 51: COMMREQ to Control the CPU Time-of-Day Clock .............................................................................. 137
Figure 52: COMMREQ Sequence for Establish Read Channel ............................................................................... 146
Figure 53: COMMREQ for Programming Channel Commands ............................................................................ 147
Figure 54: Interpreting Detailed Channel Status Words ...................................................................................... 163
Figure 55: Sample Ladder Logic for COMMREQ .................................................................................................. 166
Figure 56: Interpreting COMMREQ Status Word ................................................................................................. 170
Figure 57: Calculations for Modbus File and Record %W Memory Address ........................................................... 175
Figure 58: Phases of a COMMREQ Execution ...................................................................................................... 181
Figure 59: Illustration of Phased Operation of a COMMREQ ................................................................................ 183
Figure 60: The COMMREQ Function Block .......................................................................................................... 184
Figure 61: Interpreting the COMMREQ Status Word ........................................................................................... 205
Figure 62: COMMREQ Ladder Logic Segment ..................................................................................................... 207
Figure 63: COMMREQ Ladder Logic Segment (continued) .................................................................................. 208
Figure 64: COMMREQ Ladder Logic Segment (continued) .................................................................................. 209
Figure 65: COMMREQ Ladder Logic Segment (continued) .................................................................................. 210
Figure 66: COMMREQ Ladder Logic Segment (continued) .................................................................................. 211
Figure 67: COMMREQ Ladder Logic Segment (continued) .................................................................................. 211
Figure 68: COMMREQ Ladder Logic Segment (continued) .................................................................................. 212
Figure 69: Example of Start OPC UA Server Service Request ................................................................................ 223
Figure 70: Example of Stop OPC UA Server Service Request ................................................................................. 224
Figure 71: Example of Clear OPC UA Server Service Request ................................................................................ 225
Figure 72: Example of Restart OPC UA Server Request ........................................................................................ 226
Figure 73: SERVER_STATUS Word bit definitions ................................................................................................ 227
Figure 74: Example of Get OPC UA Server Status Service Request ........................................................................ 228
Figure 75: CONFIG_STATUS Word bit definitions ................................................................................................ 229
Figure 76: Server Status Definition ..................................................................................................................... 230
Figure 77: Config Status Definition .................................................................................................................... 230
Contents xi
Figure 78: Example of Get Provisioning Mode Status Service Request .................................................................. 231
Figure 79: OPC UA Binary Connection String ...................................................................................................... 232
Figure 80: Project Inspector/Ethernet Config Window ........................................................................................ 233
Figure 81: OPC UA Server Client Connection String ............................................................................................. 234
Figure 82: OPC UA Client Connection Dialog ...................................................................................................... 234
Figure 83: PME Controller Hardware Configuration – Passwords Disabled .......................................................... 235
Figure 84: PME Controller Hardware Configuration – Passwords Enabled ........................................................... 236
Figure 85: PME Online Command to Set Passwords ............................................................................................ 237
Figure 86: Example OPC UA Address Space ........................................................................................................ 238
Figure 87: PME Variable Inspector ...................................................................................................................... 239
Figure 88: Application Variable Address Space ................................................................................................... 240
Figure 89: OPC UA Address Space - Server Node ................................................................................................. 241
Figure 90: Server Specific Address Space ............................................................................................................ 241
Figure 91: BuildInfo Subscription ....................................................................................................................... 242
Figure 92: OPC UA Address Space - Application Information ............................................................................... 242
Figure 93: OPC UA Address Space – Device Information ..................................................................................... 243
Figure 94: States of the Ethernet interface ......................................................................................................... 248
Figure 95: Fault Extra Data Example .................................................................................................................. 251
Figure 96: Monitoring FT Output in COMMREQ Function Block ........................................................................... 261
Figure 97: Decoding the COMMREQ Status Word ............................................................................................... 263
Figure 98: EGD Management Tool Screenshot ................................................................................................... 273
Figure 99: EGD Monitoring Tool Monitoring EGD Network ................................................................................. 274
Figure 100: EGD Management Tool Displaying EGD Exchange Information ........................................................ 275
Figure 101: EGD Management Tool Displaying EGD Statistics ............................................................................ 276
Figure 102: EGD Management Tool Displaying List of Variables for an Exchange ................................................ 277
Figure 103: IP Address Format for Network Classes A, B, C .................................................................................. 288
Figure 104: CPE330 Overlapping Local IP Subnet Example .................................................................................. 290
Figure 105: Expected Response Path .................................................................................................................. 292
Figure 106: Actual Response Path ...................................................................................................................... 292
Figure 107: Gateway Connected to Two Networks ............................................................................................. 293
Figure 108: Class B Network netid and hostid Bit Formats .................................................................................. 294
Figure 109: Use of Subnet Mask ......................................................................................................................... 294
Figure 110: Network 2 Divided into Subnets 2.1 and 2.2 .................................................................................... 295
Figure 111: Subnet Mask Used to Affect a Supernet ............................................................................................ 296
Figure 112: Resulting Supernet .......................................................................................................................... 296
PACSystems™ RX3i and RSTi-EP TCP/IP Ethernet Communications User Manual Section 1
GFK-2224Y August 2019
Introduction 1

Section 1: Introduction

This chapter includes basic information about Ethernet interfaces for the PACSystems family of controllers. It describes features of the Ethernet interfaces in both conventional and redundancy systems. The rest of this manual provides instructions for installing and applying the PACSystems Ethernet interfaces:
Section 2:, Installation and Start-up: RX3i/RSTi-EP Embedded Interface describes user features and basic installation procedures.
Section 3:, Installation and Start-up: Ethernet Module Interfaces describes user features and basic installation procedures.
Section 4:, Configuration describes assigning a temporary IP address and configuring the Ethernet interface parameters. For the RX3i rack-based and embedded interfaces, describes how to configure Ethernet Global Data (EGD) and set up the RS-232 port for Local Station Manager operation.
Section 5:, Ethernet Global Data describes basic EGD operation for rack-based and embedded interfaces.
Section 6:, Programming EGD Commands describes a set of commands that can be used in the application
program to read and write PLC data or use Ethernet Global Data exchange data over the network.
Section 7:, SNTP Operation describes the benefit of synchronizing SNTP-capable interfaces with an SNTP server to keep internal clocks up-to-date for accurate timestamp communications.
Section 8:, Programming SRTP Channel Commands explains how to implement PLC to PLC communications over the Ethernet network using Service Request Transfer Protocol (SRTP) Channel commands.
Chapter 9, Modbus/TCP Server describes the implementation of the Modbus TCP Server feature for the PACSystems family of products.
Chapter 10, Modbus/TCP Client explains how to program communications over the Ethernet network using
Modbus TCP Channel commands.
Chapter 11, OPC UA Server explains how to program communications for this protocol using the embedded Ethernet port.
Chapter 12, Diagnostics describes diagnostic techniques for a PACSystems Ethernet interface. This chapter also lists COMMREQ Status codes.
Chapter 13, Network Administration discusses how devices are identified on the network and how data is routed among devices.
Appendix A, Configuring Advanced User Parameters describes optional configuration of internal operating parameters used by the Ethernet interface. For most applications, the default Advanced User Parameters (AUPs) should not be changed.
PACSystems™ RX3i and RSTi-EP TCP/IP Ethernet Communications User Manual Section 1
GFK-2224Y August 2019
Introduction 2

1.1 Revisions in this Manual

A given feature may not be implemented on all PACSystems Ethernet interfaces. To determine whether a feature is available on a given model and firmware version, please refer to the Important Product Information (IPI) document provided with the product.
This revision of TCP/IP Ethernet Communications for PACSystems RX3i and RSTi-EP includes the following changes:
Rev
Date
Description
Y
Aug­2019
RX3i IC695ETM001-Kxxx Available
o Backwards compatible with IC695ETM001
o Station Manager serial port replaced with Ethernet port
o Two Ethernet connectors relocated to the bottom of the module.
o Achilles Level 2 Security cert-tested.
o New option to select user-based parameters into menu systems. AUP
functionalist is partially deprecated.
Diagnostics information for the RX3i embedded Ethernet interface has been moved from Chapter 12 to Chapter 11.
W
Jul­2018
Added IC695CPL410 (new CPU w/Linux)
V
Apr­2018
Extended the document to EPSCPE115
U
Feb­2018
Addition of CPE302 throughout.
Clarification (Section 1.3.4) as to which products support 1000Base-T IEEE 802.3.
T
Oct­2017
Added CPE400 LAN3 (Redundancy-only LAN)
Clarified support for Redundant IP Addressing in various CPU configurations.
S
Aug­2017
Content added to Ethernet interface Status Bits for RSTi-EP CPE100.
R
May­2017
Content added in support of RSTi-EP CPE100.
Q
Mar­2017
Content added in support of CPE400 and embedded SNTP.
P
Sept­2015
Added section Sessions and Subscriptions for OPC UA.
Content added in support of CPE330 (new product).
PACSystems™ RX3i and RSTi-EP TCP/IP Ethernet Communications User Manual Section 1
GFK-2224Y August 2019
Introduction 3
M
Oct­2014
Effective with RX3i CPE305/CPE310 firmware version 8.20, OPC UA Server is supported using the embedded Ethernet port.
Effective with RX3i CPE305/CPE310 firmware version 8.30, EGD Class 1 is supported on the embedded Ethernet interface. Earlier CPU versions do not directly support EGD. However, EGD was supported on the Ethernet interface Module ETM001.
L
Jun­2013
Newly available features:
TCP/IP communication services using SRTP
SRTP Client (Channels)
Modbus/TCP Server, supporting Modbus Conformance classes 0, 1, and 2.
Modbus/TCP Client, supporting Modbus Conformance classes 0, 1, and Function
Codes 15, 22, 23, and 24 for Conformance class 2.
Support for Unicast mode, and Daylight Saving and Local Time corrections for SNTP operation.
Diagnostics information for the RX3i embedded Ethernet interface has been moved from Chapter 2 Section 2:to 11. Configuration information has been moved to Section 4:.
Information about Channel Status bits has been removed from chapters 2, 7 and 9, and consolidated in Chapter 11.

1.2 PACSystems Documentation

1.2.1 PACSystems Manuals

PACSystems RX7i, RX3i and RSTi-EP CPU Reference Manual
GFK-2222
PACSystems RX7i, RX3i and RSTi-EP CPU Programmer’s Reference Manual
GFK-2950
PACSystems TCP/IP Ethernet Communications Station Manager User Manual
GFK-2225
PACSystems Hot Standby CPU Redundancy User’s Guide
GFK-2308
PAC Machine Edition Logic Developer Getting Started
GFK-1918
PACSystems RXi, RX7i, RX3i and RSTi-EP Controller Secure Deployment Guide
GFK-2830
PACSystems RX7i Installation Manual
GFK-2223

1.2.2 RX3i Manuals

PACSystems RX3i System Manual
GFK-2314
PACSystems RX3i Ethernet Network Interface Unit (NIU) User’s Manual
GFK-2439
PACSystems™ RX3i and RSTi-EP TCP/IP Ethernet Communications User Manual Section 1
GFK-2224Y August 2019
Introduction 4
PACSystems RX3i IEC 61850 Ethernet Communication Module User Manual
GFK-2849
PACSystems RX3i Serial Communications Modules User Manual
GFK-2460
PACSystems RX3i IEC 104 Server Module IC695EIS001 User’s Manual
GFK-2949
PACSystems RX3i IC695CPE400 1.2GHz 64MB Rackless CPU w/Field Agent QSG
GFK-3002
PACSystems RX3i IC695CPL410 1.2GHz 64MB Rackless CPU w/Linux QSG
GFK-3053

1.2.3 RSTi-EP Manuals

PACSystems RSTi-EP System Manual
GFK-2958
PACSystems™ RX3i and RSTi-EP TCP/IP Ethernet Communications User Manual Section 1
GFK-2224Y August 2019
Introduction 5

1.3 Ethernet Interfaces for PACSystems Controllers

A PACSystems Ethernet interface enables a PACSystems controller to communicate with other PACSystems equipment and with Series 90 and VersaMax controllers. The Ethernet interface provides TCP/IP communications with other PLCs, host computers running the Host Communications Toolkit or CIMPLICITY software, and computers running the TCP/IP version of the programming software. These communications use the proprietary SRTP and Ethernet Global Data (EGD) protocols over a four-layer TCP/IP (Internet) stack.
The Ethernet interface has SRTP client/server capability. As a client, the interface can initiate communications with other PLCs that contain Ethernet interfaces. This is done from the PLC ladder program using the COMMREQ function. As a server, the Ethernet interface responds to requests from devices such as PLC programming software, a Host computer running an SRTP application, or another PLC acting as a client.
Network
Connection
Ethernet Cable
Host Computer or Control
Device running a Host
Communications Toolkit
Ethernet Interface
PACSystems and Series 90 PLCs
Computer Running
Programming Software-
TCP/IP Ethernet
Ethernet Interface
Ethernet Interface
Network
Connection
Figure 1: Ethernet Connection System Diagram

1.3.1 RX3i Rack-Based Ethernet Interfaces – Features

Full RX3i Controller programming and configuration services with inactivity timeout
Periodic data exchange using Ethernet Global Data (EGD)
EGD Commands to read and write PLC and EGD exchange memory over the network
TCP/IP communication services using SRTP
SRTP Client (Channels)
Modbus TCP Server, supporting Modbus Conformance classes 0, 1, and 2
Modbus TCP Client, supporting Modbus Conformance classes 0, 1, and Function Codes 15, 22, 23,
and 24 for Conformance class 2
Redundant IP Addressing capability
PACSystems™ RX3i and RSTi-EP TCP/IP Ethernet Communications User Manual Section 1
GFK-2224Y August 2019
Introduction 6
Comprehensive station management and diagnostic tools
Extended controller connectivity via IEEE 802.3 CSMA/CD 10 Mbps, 100M bps and 1000 Mbps
Ethernet LAN port connectors
Network switch that has Auto negotiate, Sense, Speed, and crossover detection
Protocol is stored in flash memory in the Ethernet interface and is easily upgraded through the CPU
serial port.
Communications with remote PLCs and other nodes reachable through routers. The gateway IP
address must be configured.

1.3.2 RX3i & RSTi-EP Embedded Ethernet Interface - Features

Periodic data exchange using Ethernet Global Data (EGD).
Full RX3i controller programming and configuration services with inactivity timeout
TCP/IP communication services using SRTP.
SRTP Client (Channels)
Modbus TCP Server, supporting Modbus Conformance classes 0, 1, and 2.
Modbus TCP Client, supporting Modbus Conformance classes 0, 1, and Function Codes 15, 22, 23,
and 24 for Conformance class 2.
Communications with remote PLCs and other nodes reachable through routers. The Gateway IP
address must be configured.
Comprehensive station management and diagnostic tools. For supported commands, refer to the
PACSystems TCP/IP Ethernet Communications Station Manager User Manual, GFK-2225J or later.
1.3.2.1 CPE302/CPE305/CPE310
Extended controller connectivity via IEEE 802.3 CSMA/CD 10 Mbps and 100 Mbps Ethernet LAN port
connectors.
Network switch that has Auto negotiate, Sense, Speed, and crossover detection.
Direct connection to Base-T (twisted pair) network switch, hub, or repeater without an external
transceiver.
PACSystems™ RX3i and RSTi-EP TCP/IP Ethernet Communications User Manual Section 1
GFK-2224Y August 2019
Introduction 7
CPE330/CPE400/CPL410
Two independent 10/100/1000 Ethernet LANs under the control of the embedded RX3i PLC. Port 1 attaches to LAN1 through a dedicated RJ45 connector. Port 2 attaches to LAN2 through a pair of internally-switched RJ45 connectors. Space is provided to mark in the two corresponding IP addresses.
The embedded Ethernet interface permits the CPU to support two LANs.
CPE400 has a third Ethernet port (located on the underside) which is under the control of Field
Agent.
CPL410 also has a third Ethernet port (located on the underside) which is under the control of the Linux OS.
RSTi-EP CPE100/CPE115
Two independent 10/100 Ethernet LANs. Port 1 attaches to LAN1 through a dedicated RJ45 connector. Port 2 attaches to LAN2 through three internally-switched RJ45 connectors.
The embedded Ethernet interface permits the CPU to support two LANs.
Refer to the PACSystems RX7i, RX3i and RSTi-EP CPU Reference Manual, GFK-2222, specifically to the section, RX3i CPU Features and Specifications for RX3i CPUs & RSTi-EP CPU Features and Specifications for RSTi-EP CPU, for a detailed list of features and
specifications.
PACSystems™ RX3i and RSTi-EP TCP/IP Ethernet Communications User Manual Section 1
GFK-2224Y August 2019
Introduction 8

1.3.3 Ethernet Interface Specifications

RX3i Rack-Based Ethernet Interface Modules Connectors
IC695ETM001-Jx or earlier
- Two RJ45 connectors
- One 9-pin d-sub male serial connector (Station Manager port)
IC695ETM001-Kxxx Three autosensing RJ45 ports
LAN IC695ETM001-Jx or earlier: IEEE 802.3 CSMA/CD Medium Access Control 10/100 Mbps IC695ETM001-Kxxx: IEEE 802.3 CSMA/CD Medium Access Control 10/100/1000 Mbps
Number of IP addresses
One
Maximum number of simultaneous connections
A maximum of 48 SRTP Server total connections A maximum of 16 Modbus/TCP Server connections A maximum of 32 communication channels. (Each channel may be an
SRTP Client or a Modbus/TCP Client. Any given channel can be assigned to only one protocol at a time.)
Embedded Ethernet Switch
Yes – Allows daisy chaining of Ethernet nodes.
Serial Port
IC695ETM001-Jx Station Mgr Port: RS-232 DCE, 1200 - 115200 bps.
IC695ETM001-Kxxx Not applicable.
Station Manager
IC695ETM001-Jx Access via local serial port or remote UDP. Refer to the PACSystems TCP/IP Ethernet Communications Station Manager User Manual, GFK-2225J or later, for supported commands.
IC695ETM001-Kxxx Station Manager serial port has been replaced by the front panel Ethernet port
Maximum ETM001 Modules per CPU rack
Eight positions
PACSystems™ RX3i and RSTi-EP TCP/IP Ethernet Communications User Manual Section 1
GFK-2224Y August 2019
Introduction 9
1.3.3.1 RX3i Embedded Interface
Connector
CPE302/CPE305 & CPE310: One RJ45 connector CPE330: Three RJ45 connectors CPE400: Six RJ45 connectors: five on front for LAN1, LAN2 & LAN3; one EFA
on underside. (There is also a serial RJ45 on underside, marked COM1.) CPL410: Six RJ45 connectors: five on front for LAN1, LAN2 & LAN3; one ETH on underside. (There is also a serial RJ45 on underside, marked COM1.) CPE100/CPE115: Four RJ45 connectors
LAN
IEEE 802.3 CSMA/CD Medium Access Control 10/100/1000 Mbps
CPE302/CPE305 & CPE310 has one 10Base-T/100Base-TX Port (LAN1)
CPE330 has two independent 10/100 Mbps Ethernet LANs:
The top Ethernet port attaches to LAN1 using a dedicated RJ45
connector
The bottom two Ethernet ports attach to LAN2 using a pair of internally-
switched RJ45 connectors
CPE400 supports four independent 10/100/1000 Ethernet LANs which are under the control of the embedded RX3i PLC.
LAN1 attaches via the upper, dedicated RJ45 front-panel connector. LAN2 and LAN3
1
each attach via a pair of internally-switched RJ45 front-
panel connectors.
The fourth LAN, labeled EFA (Embedded Field Agent), is located on the
underside, and is specifically used for Field Agent connectivity.
CPL410 supports four independent 10/100/1000 Ethernet LANs which are under the control of the embedded RX3i PLC.
LAN1 attaches via the upper, dedicated RJ45 front-panel connector. LAN2 and LAN3 each attach via a pair of internally-switched RJ45 front-
panel connectors. The fourth LAN, labeled ETH (Ethernet), is located on the underside, and is under the control of the embedded Linux Operating System.
CPE100/CPE115 supports two independent 10/100 Ethernet LANs located on the front panel.
LAN1 attaches via the upper, dedicated RJ45 connector. LAN2 attach via three internally-switched RJ45 connectors.
Number of IP addresses
CPE302/CPE305 & CPE310: One IP address CPE330 has two IP addresses CPE400 has four IP addresses (one for EFA, three for Ethernet LANs) CPL410 has four IP addresses (one for ETH, three for Ethernet LANs) CPE100/CPE115 has two IP addresses
1
CPE400 firmware version 9.30 supports Redundancy via LAN3. No LAN components other than the two Redundant
CPUs are permitted on LAN3. All firmware versions of CPL410 support the same feature.
PACSystems™ RX3i and RSTi-EP TCP/IP Ethernet Communications User Manual Section 1
GFK-2224Y August 2019
Introduction 10
Maximum number of connections
For CPE302/CPE305 & CPE310 LAN1:
Up to 32 SRTP Server connections, includes: Up to 16 simultaneous Modbus/TCP Server connections. Up to 16 Client channels. (Each channel may be an SRTP Client or a
Modbus/TCP Client. Any given channel can be assigned to only one
protocol at a time.)
OPC UA Server with support for up to 5 concurrent sessions with up to
10 concurrent variable subscriptions and up to 12,500 variables.
Up to 255 simultaneous Class 1 Ethernet Global Data (EGD) exchanges.
For CPE330, CPE4001 and CPL410, the embedded Ethernet permits the CPU to support LAN1 and LAN2 with:
Up to 48 simultaneous SRTP Server connections, and Up to 16 simultaneous Modbus/TCP Server connections Up to 32 Clients are permitted; each may be SRTP or Modbus/TCP OPC UA Server with support for up to 5 concurrent sessions with up to
10 concurrent variable subscriptions and up to 12,500 variables
Up to 255 simultaneous Class 1 Ethernet Global Data (EGD) exchanges.
For CPE100/CPE115, the embedded Ethernet permits the CPU to support LAN1 and LAN2 with:
Up to 16 simultaneous SRTP Server connections, and Up to 8 simultaneous Modbus/TCP Server connections Up to 8 Clients are permitted; each may be SRTP or Modbus/TCP Up to 8 simultaneous Class 1 Ethernet Global Data (EGD) exchanges.
Station Manager
Access remote UDP Refer to the PACSystems TCP/IP Ethernet Communications Station Manager User Manual, GFK-2225J or later for supported commands.

1.3.4 Ethernet interface Ports

The PACSystems Ethernet interface use auto-sensing 10Base-T/100Base-TX/1000Base-T RJ45 shielded twisted pair Ethernet ports for connection to either a 10BaseT, 100BaseTX or 1000Base-T IEEE 802.3 network.
The RX3i CPE330, CPE400 and CPL410 embedded Ethernet interface additionally supports 1000Base-T IEEE 802.3 connections.
The RX3i Controllers with embedded Ethernet provide one such port; dedicated Ethernet interface Modules provide two.
The port automatically senses the speed (10 Mbps, 100 Mbps or 1000Mbps), duplex mode (half-duplex or full-duplex) and cable configuration (straight-through or crossover) attached to it with no intervention required.
PACSystems™ RX3i and RSTi-EP TCP/IP Ethernet Communications User Manual Section 1
GFK-2224Y August 2019
Introduction 11
1.3.4.1 Ethernet Media
The Ethernet interface can operate directly on 10Base-T/100Base-TX/1000Base-T media via its network ports.
10Base-T: 10Base-T uses a twisted pair cable of up to 100 meters in length between each node and a switch, hub, or repeater. Typical switches, hubs, or repeaters support connections in a start topology.
100Base-TX: 100Base-TX uses a cable of up to 100 meters in length between each node and a switch, hub, or repeater. The cable should be data grade Category 5 unshielded twisted pair (UTP) or shielded twisted pair (STP) cable. Two pairs of wire are used, one for transmission, and the other for collision detection and receive. Typical switches, hubs, or repeaters support 6 to 12 nodes connected in a star wiring topology.
1000Base-T: 1000Base-T uses a cable of up to 100 meters in length between each node and a switch, hub, or repeater. The cable should be data grade Category 6 unshielded twisted pair (UTP) or shielded twisted pair (STP) cable or better. Four pairs of wire are used which are designed to operate over 4-pair UTP cable and supports full-duplex data transfer at 1000Mbps. Typical switches, hubs, or repeaters support 6 to 12 nodes connected in a star wiring topology.

1.3.5 Station Manager

The built-in Station Manager function of the Ethernet interface provides on-line supervisory access to the Ethernet interface, through the Station Manager port or over the Ethernet cable. Station Manager services include:
An interactive set of commands for interrogating and controlling the station. Unrestricted access to observe internal statistics, an exception log, and
configuration parameters.
Password security for commands that change station parameters or operation.
For remote Station Manager operation over the Ethernet network, the Ethernet interface uses IP addressing. A PACSystems Ethernet interface cannot send or receive remote Station Manager messages sent to a MAC address.
Refer to the PACSystems TCP/IP Ethernet Communications Station Manager User Manual, GFK-2225 for complete information on the Station Manager.
PACSystems™ RX3i and RSTi-EP TCP/IP Ethernet Communications User Manual Section 1
GFK-2224Y August 2019
Introduction 12

1.3.6 Firmware Upgrades

PACSystems Ethernet interfaces receive their firmware upgrades indirectly from the RX3i CPU using the WinLoader software utility. WinLoader is supplied with any updates to the Ethernet interface software. The user connects WinLoader to the PLC CPU serial port and specifies the target module by its Rack/Slot location.
For the CPU module, the embedded Ethernet interface firmware is upgraded along with the rest of the CPU firmware. WinLoader seamlessly upgrades first the CPU firmware and then the embedded Ethernet firmware without user intervention. Each Ethernet interface
module’s firmware must be explicitly upgraded by specifying the rack and slot location of
the module to the WinLoader utility.
Firmware upgrades for the CPE330, CPE400, CPL410 and CPE100/CPE115 are performed over Ethernet using a web browser. This method provides enhanced security features. Instructions for the procedure are included in the corresponding upgrade kit documentation. The WinLoader utility will not work with the CPE330, CPE400, CPL410 or CPE100/CPE115 CPUs.

1.3.7 SRTP Client (Channels)

SRTP Client allows the PACSystems PLC to initiate data transfer with other SRTP-capable devices on the network. SRTP channels can be set up in the PLC application program. SRTP supports COMMREQ-driven channel commands to establish new channels, abort existing channels, transfer data on an existing channel, and retrieve the status of an existing channel.
Any given channel can be assigned to only one protocol at a time. For the number and combinations of channels supported, refer to Section 1.3.3 Ethernet Interfaces for PACSystems Controllers.

1.3.8 Modbus TCP Client (Channels)

Modbus TCP Client allows the PACSystems PLC to initiate data transfer with other Modbus TCP server devices on the network. Modbus TCP channels can be set up in the application program. The Modbus TCP Client supports COMMREQ-driven channel commands to open new channels, close existing channels, and transfer data on an existing channel.
Any given channel can be assigned to only one protocol at a time. For the number and combinations of channels supported, refer to Section 1.3 Ethernet Interfaces for PACSystems Controllers.
PACSystems™ RX3i and RSTi-EP TCP/IP Ethernet Communications User Manual Section 1
GFK-2224Y August 2019
Introduction 13

1.3.9 Ethernet Global Data (EGD)

EGD Classes:
EGD Class 1 is configured exchanges with no logic control of EGD operation.
o Supported in
CPE302/CPE305/CPE310/CPE330/CPE400/CPL410/CPE100/CPE115
EGD Class 2 is EGD Commands which are logic-driven EGD exchanges using COMMREQs.
o Supported on IC695ETM001
o Not supported on embedded Ethernet ports of
CPE302/CPE305/CPE310/CPE330/CPE400/CPL410/CPE100/CPE115 at time of publication
Each PACSystems RX3i CPU supports up to 255 Class 1 simultaneous EGD exchanges and RSTi-EP CPU CPE100/CPE115 supports up to eight Class 1 simultaneous EGD exchanges. EGD exchanges are configured using the programmer and stored into the PLC. Both Produced and Consumed exchanges can be configured. PACSystems Ethernet interfaces support both selective consumption of EGD exchanges and EGD exchange production and consumption to the broadcast IP address of the local subnet.
Note: For Broadcast addressing a Subnet value of 0.0.0.0 is NOT supported.
1.3.9.1 Synchronizing EGD Timestamps with SNTP
Both the ETM001-Jx and -Kxxx Ethernet interfaces can be configured to use Simple Network Time Protocol (SNTP) to synchronize the timestamps of produced EGD exchanges.
With an appropriate PME Hardware Configuration, the embedded Ethernet interface on the CPE302, CPE305, CPE310, CPE330, CPE400 and CPL410 will also support SNTP. For more information on PME Hardware Configuration, please refer to Section 4.1.3,
Configuring the Ethernet Interface Parameters.
Note: The RSTi-EP CPE100/CPE115 does not support SNTP.
Ethernet interface module
SNTP Support
ETM001-Jx
Yes, with PME Hardware Configuration (default configuration without using AUP file)
ETM001-Kxxx
Yes, with PME Hardware Configuration
CPU
SNTP Support
CPL410
Yes, with PME Hardware Configuration
PACSystems™ RX3i and RSTi-EP TCP/IP Ethernet Communications User Manual Section 1
GFK-2224Y August 2019
Introduction 14
CPE400
Yes, with PME Hardware Configuration
CPE330
Yes, with PME Hardware Configuration
CPE302/CPE305/ CPE310
Yes, with PME Hardware Configuration CPE100/CPE115
Not supported

1.3.10 SRTP Inactivity Timeout

Starting with Release 6.00, the PACSystems Ethernet interface supports inactivity timeout checking on Secure Real-Time Transport Protocol (SRTP) server connections with any PAC Machine Edition (PME) PLC programmer. Until the server connection is removed, other programmers cannot switch from Monitor to Programmer mode. With inactivity timeout checking, the Ethernet interface removes an abandoned SRTP server connection and all its resources when there is no activity on the connection for the specified timeout interval. Without the SRTP inactivity timeout, an abandoned SRTP server connection persists until the underlying TCP connection times out (typically 7 minutes). All network PME programmer connections initially use an SRTP inactivity timeout value of 30 seconds (as set by the "vconn_tout" AUP parameter).
PME programmers can override the initial timeout value on a specified server connection. Typically, the PME programmer sets the SRTP inactivity timeout to 20 seconds. An inactivity timeout value of zero disables SRTP inactivity timeout checking.
The SRTP server uses an internal inactivity timeout resolution of 5 seconds. This has two effects. First, any non-zero inactivity timeout value (either set by AUP parameter or overridden on the programmer connection) is rounded up to the next multiple of 5 seconds. Additionally, the actual SRTP inactivity timeout detection for any individual connection may vary up to an additional 5 seconds. The actual inactivity detection time will never be less than the specified value.
Note: The SRTP inactivity timeout applies only to programmer connections over SRTP. It does not affect HMI or SRTP channels.

1.4 Ethernet Redundancy Operation

The Redundant IP feature allows a single IP address to be assigned to two Ethernet modules, where the two modules are in two different PLCs configured as a redundant system. This functionality has been integrated into the product line, as follows:
CPU
Embedded Ethernet Redundancy Support
Support via Ethernet Module (ETM001-Jx or ETM001-Kxxx)
CPL410
All firmware versions
Not supported
CPE400
Embedded Ethernet requires CPU Firmware Version 9.30
Not supported
PACSystems™ RX3i and RSTi-EP TCP/IP Ethernet Communications User Manual Section 1
GFK-2224Y August 2019
Introduction 15
CPE330
Embedded Ethernet requires CPU Firmware Version 8.70
Supported
CPE302/CPE305/ CPE310
Not supported
Not supported CPE100/CPE115
Not supported
Not supported
CRU320
Not supported
Supported
The Redundant IP Address is configured in addition to the normal unique (direct) IP address of each interface.
Only one of the two Ethernet interfaces that share the Redundant IP address may use the Redundant IP address at any time; this is the “active” unit. When commanded by its PLC CPU, this Ethernet interface activates the Redundant IP address and starts responding to the Redundant IP address in addition to its direct IP address. The active unit continues responding to the Redundant IP address until it is commanded to deactivate the Redundant IP or until the Ethernet interface determines that it has lost communications with the PLC CPU.
The backup unit does not initiate communications or respond on the network using the Redundant IP address. It can only use the Redundant IP address if it is commanded by its CPU to become the active unit.
Both the active and backup unit may continue to use their individual direct IP addresses, permitting programmer connection to the active or backup PLC at any time.
PLC A
PLC B
Redundant System
Programmer
Remote host
(HMI, PLC, etc.)
Redundant
IP Address
Direct IP
Addresses
Figure 2: Ethernet Operation in Redundancy Mode
Note: The Redundant IP feature is supported by Hot Standby (HSB) CPUs and non-HSB CPUs. To use this feature, be sure to toggle Enable Redundancy for the target CPU.

1.4.1 Hot Standby (HSB) CPU Redundancy

An HSB system uses redundant CPUs to provide the coordination between the PLC units in the system and determine which is the active unit and which is the backup unit. HSB redundancy requires dedicated links to provide communications between the units in a redundancy system. For information about HSB architectures, refer to the PACSystems Hot
Standby CPU Redundancy User’s Guide, GFK-2308.
PACSystems™ RX3i and RSTi-EP TCP/IP Ethernet Communications User Manual Section 1
GFK-2224Y August 2019
Introduction 16

1.4.2 Non-HSB Redundancy

Non-HSB redundancy systems use RX3i CPUs that do not have specialized firmware for
controlling redundancy operations. (These CPUs have a “CPE” or “CPU” designation.) In
these systems, the application logic coordinates between CPUs that act as redundant partners, and determines which CPU is the active unit and which are backup units. Figure 3 illustrates the use of the redundant IP feature in a non-HSB redundancy system. Two non-HSB CPUs (designated primary and secondary) are linked by a communications connection. An Ethernet interface in each controller is configured with Redundant IP enabled so that they share a Redundant IP address. As in an HSB system, only the active Ethernet interface can communicate through the Redundant IP address to produce EGD exchanges or to initiate Channel operations.
The application logic must monitor the status of the Ethernet modules in the system to manage the active/backup status of each controller.
C
P
U
Primary Controller
C
P
U
Secondary Controller
Ethernet
E
T
M
E T M
Remote Device
L
I
N
K
L
I
N
K
Figure 3: Basic Non-HSB System with Redundant IP

1.4.3 Effect of Redundancy Role Switching on Ethernet Communications

When a redundancy role-switch occurs, Ethernet communications switch to the backup unit, which has no knowledge of any communication state at the previously-active unit. The application must include logic to detect loss of communication during a redundancy role switch and to then reinitiate communication.
Remote hosts on the network view redundant systems as a single PLC with high reliability; the remote host only prioritizes the active unit. By using the Redundant IP address, the remote host always communicates with the active unit. When a redundancy role switch occurs, the formerly-active PLC gives up ownership of the Redundant IP address and takes down all connection-oriented communications currently using the Redundant IP address. The applications in the redundant system and remote hosts must reestablish any such communications; the new Redundant IP connections will use the newly active PLC.
PACSystems™ RX3i and RSTi-EP TCP/IP Ethernet Communications User Manual Section 1
GFK-2224Y August 2019
Introduction 17
The programmer can still communicate directly with each PLC in the redundant system (for example, to store new logic or configuration) using the direct IP address of each Ethernet interface.
1.4.3.1 Role Switching in HSB Redundancy Systems
In HSB redundancy systems, a role switch is initiated automatically by the redundant CPU when one of the following occurs:
An active unit detects a fatal fault An active unit is placed in Stop mode An active unit is powered off An HSB role switch is initiated manually or by the application logic
To perform a role switch manually in redundant systems which employ RMX modules, toggle the Role Switch button located on the front panel of the RMX module.
CPE400/CPL410 permits the operator to manually perform a role switch via the OLED display menu, using the RDN Command feature.
For additional information about role switches in HSB systems, refer to the PACSystems Hot Standby CPU Redundancy User’s Guide, GFK-2308.
1.4.3.2 Role Switching in Non-HSB Redundancy Systems
When redundant IP is enabled for an Ethernet module in a non-HSB CPU system, it is the responsibility of application logic to set the redundancy mode of the Ethernet module. The Set Application Redundancy Mode Service Request (SVC_REQ 55) instruction is used to inform the Ethernet module of the current redundancy role of the host CPU. This SVC_REQ should be used to provide redundancy role switch notification to all Ethernet interfaces in the controller that are configured for redundant IP operation.
After commanding a role switch for an Ethernet interface, the application logic can
monitor the module’s LAN interface Status (LIS) block to determine when it has activated
the Redundancy IP address. For details about the LIS, refer to Section 12.6, Monitoring the Ethernet Interface Status Bits.
Note: The application must allow sufficient time for Redundant IP activation (at least 120 ms) before commanding another redundancy role switch.
When an Ethernet interface recognizes that a redundant IP address has been configured for it, the module sends a mail message to the CPU to register for redundancy role switch notification. In non-HSB systems, the Ethernet interface is initially put into backup mode. After power-up, the application logic must use a SVC_REQ to set the redundancy state to the desired value. Once running, the CPU remembers the last commanded redundancy role sent to that Ethernet interface. When an Ethernet interface is restarted, the CPU automatically commands the Ethernet interface to its last redundancy state without explicit action by the application logic.
1.4.3.3 Going to Stop Mode
When a non-HSB CPU goes to Stop mode, Ethernet interfaces that are configured for redundant IP are automatically set to backup mode. When the CPU is subsequently returned to Run mode, the Ethernet interfaces remain in backup mode until the application logic sets the redundancy mode to active.
Loading...
+ 298 hidden pages