Dodge Emissions Control Service Manual

DR EMISSIONS CONTROL 25 - 1
EMISSIONS CONTROL
TABLE OF CONTENTS
page page
EMISSIONS CONTROL
DESCRIPTION
DESCRIPTION - STATE DISPLAY TEST
MODE ...............................1
DESCRIPTION - CIRCUIT ACTUATION TEST
MODE ...............................1
CODES ..............................1
DESCRIPTION - TASK MANAGER ..........1
EMISSIONS CONTROL
DESCRIPTION
DESCRIPTION - STATE DISPLAY TEST MODE
The switch inputs to the Powertrain Control Mod­ule (PCM) have two recognized states; HIGH and LOW. For this reason, the PCM cannot recognize the difference between a selected switch position versus an open circuit, a short circuit, or a defective switch. If the State Display screen shows the change from HIGH to LOW or LOW to HIGH, assume the entire switch circuit to the PCM functions properly. Connect the DRB scan tool to the data link connector and access the state display screen. Then access either State Display Inputs and Outputs or State Display Sensors.
DESCRIPTION - CIRCUIT ACTUATION TEST MODE
The Circuit Actuation Test Mode checks for proper operation of output circuits or devices the Powertrain Control Module (PCM) may not internally recognize. The PCM attempts to activate these outputs and allow an observer to verify proper operation. Most of the tests provide an audible or visual indication of device operation (click of relay contacts, fuel spray, etc.). Except for intermittent conditions, if a device functions properly during testing, assume the device, its associated wiring, and driver circuit work cor­rectly. Connect the DRB scan tool to the data link connector and access the Actuators screen.
DESCRIPTION - DIAGNOSTIC TROUBLE CODES
A Diagnostic Trouble Code (DTC) indicates the PCM has recognized an abnormal condition in the system.
DESCRIPTION - MONITORED SYSTEMS ....1
DESCRIPTION - TRIP DEFINITION .........4
DESCRIPTION - COMPONENT MONITORS . . 4
OPERATION
OPERATION ..........................4
OPERATION - TASK MANAGER ...........5
OPERATION - NON-MONITORED CIRCUITS . . 8
EVAPORATIVE EMISSIONS ................10
Remember that DTC’s are the results of a sys­tem or circuit failure, but do not directly iden­tify the failed component or components.
BULB CHECK
Each time the ignition key is turned to the ON position, the malfunction indicator (check engine) lamp on the instrument panel should illuminate for approximately 2 seconds then go out. This is done for a bulb check.
OBTAINING DTC’S USING DRB SCAN TOOL
(1) Obtain the applicable Powertrain Diagnostic Manual.
(2) Obtain the DRB Scan Tool.
(3) Connect the DRB Scan Tool to the data link (diagnostic) connector. This connector is located in the passenger compartment; at the lower edge of instrument panel; near the steering column.
(4) Turn the ignition switch on and access the “Read Fault” screen.
(5) Record all the DTC’s and “freeze frame” infor­mation shown on the DRB scan tool.
(6) To erase DTC’s, use the “Erase Trouble Code” data screen on the DRB scan tool. Do not erase any
DTC’s until problems have been investigated and repairs have been performed.
DESCRIPTION - TASK MANAGER
The PCM is responsible for efficiently coordinating the operation of all the emissions-related compo­nents. The PCM is also responsible for determining if the diagnostic systems are operating properly. The software designed to carry out these responsibilities is call the ’Task Manager’.
DESCRIPTION - MONITORED SYSTEMS
There are new electronic circuit monitors that check fuel, emission, engine and ignition perfor-
25 - 2 EMISSIONS CONTROL DR
EMISSIONS CONTROL (Continued)
mance. These monitors use information from various sensor circuits to indicate the overall operation of the fuel, engine, ignition and emission systems and thus the emissions performance of the vehicle.
The fuel, engine, ignition and emission systems monitors do not indicate a specific component prob­lem. They do indicate that there is an implied prob­lem within one of the systems and that a specific problem must be diagnosed.
If any of these monitors detect a problem affecting vehicle emissions, the Malfunction Indicator Lamp (MIL) will be illuminated. These monitors generate Diagnostic Trouble Codes that can be displayed with the MIL or a scan tool.
The following is a list of the system monitors:
Misfire Monitor
Fuel System Monitor
Oxygen Sensor Monitor
Oxygen Sensor Heater Monitor
Catalyst Monitor
Leak Detection Pump Monitor (if equipped)
All these system monitors require two consecutive trips with the malfunction present to set a fault.
Refer to the appropriate Powertrain Diagnos­tics Procedures manual for diagnostic proce­dures.
The following is an operation and description of each system monitor :
OXYGEN SENSOR (O2S) MONITOR
Effective control of exhaust emissions is achieved by an oxygen feedback system. The most important element of the feedback system is the O2S. The O2S is located in the exhaust path. Once it reaches oper­ating temperature 300° to 350°C (572° to 662°F), the sensor generates a voltage that is inversely propor­tional to the amount of oxygen in the exhaust. The information obtained by the sensor is used to calcu­late the fuel injector pulse width. This maintains a
14.7 to 1 Air Fuel (A/F) ratio. At this mixture ratio, the catalyst works best to remove hydrocarbons (HC), carbon monoxide (CO) and nitrogen oxide (NOx) from the exhaust.
The O2S is also the main sensing element for the Catalyst and Fuel Monitors.
The O2S can fail in any or all of the following manners:
slow response rate
reduced output voltage
dynamic shift
shorted or open circuits
Response rate is the time required for the sensor to switch from lean to rich once it is exposed to a richer than optimum A/F mixture or vice versa. As the sen­sor starts malfunctioning, it could take longer to
detect the changes in the oxygen content of the exhaust gas.
The output voltage of the O2S ranges from 0 to 1 volt. A good sensor can easily generate any output voltage in this range as it is exposed to different con­centrations of oxygen. To detect a shift in the A/F mixture (lean or rich), the output voltage has to change beyond a threshold value. A malfunctioning sensor could have difficulty changing beyond the threshold value.
OXYGEN SENSOR HEATER MONITOR
If there is an oxygen sensor (O2S) shorted to volt­age DTC, as well as a O2S heater DTC, the O2S fault MUST be repaired first. Before checking the O2S fault, verify that the heater circuit is operating correctly.
Effective control of exhaust emissions is achieved by an oxygen feedback system. The most important element of the feedback system is the O2S. The O2S is located in the exhaust path. Once it reaches oper­ating temperature 300° to 350°C (572 ° to 662°F), the sensor generates a voltage that is inversely propor­tional to the amount of oxygen in the exhaust. The information obtained by the sensor is used to calcu­late the fuel injector pulse width. This maintains a
14.7 to 1 Air Fuel (A/F) ratio. At this mixture ratio, the catalyst works best to remove hydrocarbons (HC), carbon monoxide (CO) and nitrogen oxide (NOx) from the exhaust.
The voltage readings taken from the O2S sensor are very temperature sensitive. The readings are not accurate below 300°C. Heating of the O2S sensor is done to allow the engine controller to shift to closed loop control as soon as possible. The heating element used to heat the O2S sensor must be tested to ensure that it is heating the sensor properly.
The O2S sensor circuit is monitored for a drop in voltage. The sensor output is used to test the heater by isolating the effect of the heater element on the O2S sensor output voltage from the other effects.
LEAK DETECTION PUMP MONITOR (IF EQUIPPED)
The leak detection assembly incorporates two pri­mary functions: it must detect a leak in the evapora­tive system and seal the evaporative system so the leak detection test can be run.
The primary components within the assembly are: A three port solenoid that activates both of the func­tions listed above; a pump which contains a switch, two check valves and a spring/diaphragm, a canister vent valve (CVV) seal which contains a spring loaded vent seal valve.
Immediately after a cold start, between predeter­mined temperature thresholds limits, the three port solenoid is briefly energized. This initializes the
DR EMISSIONS CONTROL 25 - 3
EMISSIONS CONTROL (Continued)
pump by drawing air into the pump cavity and also closes the vent seal. During non test conditions the vent seal is held open by the pump diaphragm assembly which pushes it open at the full travel posi­tion. The vent seal will remain closed while the pump is cycling due to the reed switch triggering of the three port solenoid that prevents the diaphragm assembly from reaching full travel. After the brief initialization period, the solenoid is de-energized allowing atmospheric pressure to enter the pump cavity, thus permitting the spring to drive the dia­phragm which forces air out of the pump cavity and into the vent system. When the solenoid is energized and de energized, the cycle is repeated creating flow in typical diaphragm pump fashion. The pump is con­trolled in 2 modes:
Pump Mode: The pump is cycled at a fixed rate to achieve a rapid pressure build in order to shorten the overall test length.
Test Mode: The solenoid is energized with a fixed duration pulse. Subsequent fixed pulses occur when the diaphragm reaches the Switch closure point.
The spring in the pump is set so that the system will achieve an equalized pressure of about 7.5” H20. The cycle rate of pump strokes is quite rapid as the system begins to pump up to this pressure. As the pressure increases, the cycle rate starts to drop off. If there is no leak in the system, the pump would even­tually stop pumping at the equalized pressure. If there is a leak, it will continue to pump at a rate rep­resentative of the flow characteristic of the size of the leak. From this information we can determine if the leak is larger than the required detection limit (cur­rently set at .040” orifice by CARB). If a leak is revealed during the leak test portion of the test, the test is terminated at the end of the test mode and no further system checks will be performed.
After passing the leak detection phase of the test, system pressure is maintained by turning on the LDP’s solenoid until the purge system is activated. Purge activation in effect creates a leak. The cycle rate is again interrogated and when it increases due to the flow through the purge system, the leak check portion of the diagnostic is complete.
The canister vent valve will unseal the system after completion of the test sequence as the pump diaphragm assembly moves to the full travel position.
Evaporative system functionality will be verified by using the stricter evap purge flow monitor. At an appropriate warm idle the LDP will be energized to seal the canister vent. The purge flow will be clocked up from some small value in an attempt to see a shift in the 02 control system. If fuel vapor, indicated by a shift in the 02 control, is present the test is passed. If not, it is assumed that the purge system is
not functioning in some respect. The LDP is again turned off and the test is ended.
MISFIRE MONITOR
Excessive engine misfire results in increased cata­lyst temperature and causes an increase in HC emis­sions. Severe misfires could cause catalyst damage. To prevent catalytic convertor damage, the PCM monitors engine misfire.
The Powertrain Control Module (PCM) monitors for misfire during most engine operating conditions (positive torque) by looking at changes in the crank­shaft speed. If a misfire occurs the speed of the crankshaft will vary more than normal.
FUEL SYSTEM MONITOR
To comply with clean air regulations, vehicles are equipped with catalytic converters. These converters reduce the emission of hydrocarbons, oxides of nitro­gen and carbon monoxide. The catalyst works best when the Air Fuel (A/F) ratio is at or near the opti­mum of 14.7 to 1.
The PCM is programmed to maintain the optimum air/fuel ratio of 14.7 to 1. This is done by making short term corrections in the fuel injector pulse width based on the O2S sensor output. The programmed memory acts as a self calibration tool that the engine controller uses to compensate for variations in engine specifications, sensor tolerances and engine fatigue over the life span of the engine. By monitoring the actual fuel-air ratio with the O2S sensor (short term) and multiplying that with the program long-term (adaptive) memory and comparing that to the limit, it can be determined whether it will pass an emis­sions test. If a malfunction occurs such that the PCM cannot maintain the optimum A/F ratio, then the MIL will be illuminated.
CATALYST MONITOR
To comply with clean air regulations, vehicles are equipped with catalytic converters. These converters reduce the emission of hydrocarbons, oxides of nitro­gen and carbon monoxide.
Normal vehicle miles or engine misfire can cause a catalyst to decay. This can increase vehicle emissions and deteriorate engine performance, driveability and fuel economy.
The catalyst monitor uses dual oxygen sensors (O2S’s) to monitor the efficiency of the converter. The dual O2S’s sensor strategy is based on the fact that as a catalyst deteriorates, its oxygen storage capacity and its efficiency are both reduced. By monitoring the oxygen storage capacity of a catalyst, its effi­ciency can be indirectly calculated. The upstream O2S is used to detect the amount of oxygen in the exhaust gas before the gas enters the catalytic con-
25 - 4 EMISSIONS CONTROL DR
EMISSIONS CONTROL (Continued)
verter. The PCM calculates the A/F mixture from the output of the O2S. A low voltage indicates high oxy­gen content (lean mixture). A high voltage indicates a low content of oxygen (rich mixture).
When the upstream O2S detects a lean condition, there is an abundance of oxygen in the exhaust gas. A functioning converter would store this oxygen so it can use it for the oxidation of HC and CO. As the converter absorbs the oxygen, there will be a lack of oxygen downstream of the converter. The output of the downstream O2S will indicate limited activity in this condition.
As the converter loses the ability to store oxygen, the condition can be detected from the behavior of the downstream O2S. When the efficiency drops, no chemical reaction takes place. This means the con­centration of oxygen will be the same downstream as upstream. The output voltage of the downstream O2S copies the voltage of the upstream sensor. The only difference is a time lag (seen by the PCM) between the switching of the O2S’s.
To monitor the system, the number of lean-to-rich switches of upstream and downstream O2S’s is counted. The ratio of downstream switches to upstream switches is used to determine whether the catalyst is operating properly. An effective catalyst will have fewer downstream switches than it has upstream switches i.e., a ratio closer to zero. For a totally ineffective catalyst, this ratio will be one-to­one, indicating that no oxidation occurs in the device.
The system must be monitored so that when cata­lyst efficiency deteriorates and exhaust emissions increase to over the legal limit, the MIL will be illu­minated.
DESCRIPTION - TRIP DEFINITION
The term “Trip” has different meanings depending on what the circumstances are. If the MIL (Malfunc­tion Indicator Lamp) is OFF, a Trip is defined as when the Oxygen Sensor Monitor and the Catalyst Monitor have been completed in the same drive cycle.
When any Emission DTC is set, the MIL on the dash is turned ON. When the MIL is ON, it takes 3 good trips to turn the MIL OFF. In this case, it depends on what type of DTC is set to know what a “Trip” is.
For the Fuel Monitor or Mis-Fire Monitor (contin­uous monitor), the vehicle must be operated in the “Similar Condition Window” for a specified amount of time to be considered a Good Trip.
If a Non-Contiuous OBDII Monitor fails twice in a row and turns ON the MIL, re-running that monitor which previously failed, on the next start-up and passing the monitor, is considered to be a Good Trip. These will include the following:
Oxygen Sensor
Catalyst Monitor
Purge Flow Monitor
Leak Detection Pump Monitor (if equipped)
EGR Monitor (if equipped)
Oxygen Sensor Heater Monitor
If any other Emission DTC is set (not an OBDII Monitor), a Good Trip is considered to be when the Oxygen Sensor Monitor and Catalyst Monitor have been completed; or 2 Minutes of engine run time if the Oxygen Sensor Monitor or Catalyst Monitor have been stopped from running.
It can take up to 2 Failures in a row to turn on the MIL. After the MIL is ON, it takes 3 Good Trips to turn the MIL OFF. After the MIL is OFF, the PCM will self-erase the DTC after 40 Warm-up cycles. A Warm-up cycle is counted when the ECT (Engine Coolant Temperature Sensor) has crossed 160°F and has risen by at least 40°F since the engine has been started.
DESCRIPTION - COMPONENT MONITORS
There are several components that will affect vehi­cle emissions if they malfunction. If one of these com­ponents malfunctions the Malfunction Indicator Lamp (MIL) will illuminate.
Some of the component monitors are checking for proper operation of the part. Electrically operated components now have input (rationality) and output (functionality) checks. Previously, a component like the Throttle Position sensor (TPS) was checked by the PCM for an open or shorted circuit. If one of these conditions occurred, a DTC was set. Now there is a check to ensure that the component is working. This is done by watching for a TPS indication of a greater or lesser throttle opening than MAP and engine rpm indicate. In the case of the TPS, if engine vacuum is high and engine rpm is 1600 or greater, and the TPS indicates a large throttle opening, a DTC will be set. The same applies to low vacuum if the TPS indicates a small throttle opening.
All open/short circuit checks, or any component that has an associated limp-in, will set a fault after 1 trip with the malfunction present. Components with­out an associated limp-in will take two trips to illu­minate the MIL.
OPERATION
OPERATION
The Powertrain Control Module (PCM) monitors many different circuits in the fuel injection, ignition, emission and engine systems. If the PCM senses a problem with a monitored circuit often enough to indicate an actual problem, it stores a Diagnostic Trouble Code (DTC) in the PCM’s memory. If the
DR EMISSIONS CONTROL 25 - 5
EMISSIONS CONTROL (Continued)
problem is repaired or ceases to exist, the PCM can­cels the code after 40 warm-up cycles. Diagnostic trouble codes that affect vehicle emissions illuminate the Malfunction Indicator Lamp (MIL). The MIL is displayed as an engine icon (graphic) on the instru­ment panel. Refer to Malfunction Indicator Lamp in this section.
Certain criteria must be met before the PCM stores a DTC in memory. The criteria may be a spe­cific range of engine RPM, engine temperature, and/or input voltage to the PCM.
The PCM might not store a DTC for a monitored circuit even though a malfunction has occurred. This may happen because one of the DTC criteria for the circuit has not been met. For example, assume the diagnostic trouble code criteria requires the PCM to monitor the circuit only when the engine operates between 750 and 2000 RPM. Suppose the sensor’s output circuit shorts to ground when engine operates above 2400 RPM (resulting in 0 volt input to the PCM). Because the condition happens at an engine speed above the maximum threshold (2000 rpm), the PCM will not store a DTC.
There are several operating conditions for which the PCM monitors and sets DTC’s. Refer to Moni­tored Systems, Components, and Non-Monitored Cir­cuits in this section.
Technicians must retrieve stored DTC’s by connect­ing the DRB scan tool (or an equivalent scan tool) to the 16–way data link connector. The connector is located on the bottom edge of the instrument panel near the steering column (Fig. 1).
NOTE: Various diagnostic procedures may actually cause a diagnostic monitor to set a DTC. For instance, pulling a spark plug wire to perform a spark test may set the misfire code. When a repair is completed and verified, connect the DRB scan tool to the 16–way data link connector to erase all DTC’s and extinguish the MIL.
OPERATION - TASK MANAGER
The Task Manager determines which tests happen when and which functions occur when. Many of the diagnostic steps required by OBD II must be per­formed under specific operating conditions. The Task Manager software organizes and prioritizes the diag­nostic procedures. The job of the Task Manager is to determine if conditions are appropriate for tests to be run, monitor the parameters for a trip for each test, and record the results of the test. Following are the responsibilities of the Task Manager software:
Test Sequence
MIL Illumination
Diagnostic Trouble Codes (DTCs)
Trip Indicator
Fig. 1 DATA LINK CONNECTOR LOCATION -
TYPICAL
1 - 16-WAY DATA LINK CONNECTOR
Freeze Frame Data Storage
Similar Conditions Window
Test Sequence
In many instances, emissions systems must fail diagnostic tests more than once before the PCM illu­minates the MIL. These tests are know as ’two trip monitors.’ Other tests that turn the MIL lamp on after a single failure are known as ’one trip moni­tors.’ A trip is defined as ’start the vehicle and oper­ate it to meet the criteria necessary to run the given monitor.’
Many of the diagnostic tests must be performed under certain operating conditions. However, there are times when tests cannot be run because another test is in progress (conflict), another test has failed (pending) or the Task Manager has set a fault that may cause a failure of the test (suspend).
Pending Under some situations the Task Manager will not run a monitor if the MIL is illuminated and a fault is stored from another monitor. In these situations, the Task Manager postpones monitors pending resolu­tion of the original fault. The Task Manager does not run the test until the problem is remedied. For example, when the MIL is illuminated for an Oxygen Sensor fault, the Task Manager does not run the Catalyst Monitor until the Oxygen Sensor fault is remedied. Since the Catalyst Monitor is based on sig­nals from the Oxygen Sensor, running the test would produce inaccurate results.
Conflict There are situations when the Task Manager does not run a test if another monitor is in progress. In
25 - 6 EMISSIONS CONTROL DR
EMISSIONS CONTROL (Continued)
these situations, the effects of another monitor run­ning could result in an erroneous failure. If this con- flict is present, the monitor is not run until the conflicting condition passes. Most likely the monitor will run later after the conflicting monitor has passed. For example, if the Fuel System Monitor is in progress, the Task Manager does not run the EGR Monitor. Since both tests monitor changes in air/fuel ratio and adaptive fuel compensation, the monitors will conflict with each other.
Suspend Occasionally the Task Manager may not allow a two trip fault to mature. The Task Manager will sus- pend the maturing of a fault if a condition exists that may induce an erroneous failure. This prevents illuminating the MIL for the wrong fault and allows more precis diagnosis. For example, if the PCM is storing a one trip fault for the Oxygen Sensor and the EGR monitor, the Task Manager may still run the EGR Monitor but will suspend the results until the Oxygen Sensor Monitor either passes or fails. At that point the Task Manager can determine if the EGR system is actu­ally failing or if an Oxygen Sensor is failing.
MIL Illumination
The PCM Task Manager carries out the illumina­tion of the MIL. The Task Manager triggers MIL illu­mination upon test failure, depending on monitor failure criteria.
The Task Manager Screen shows both a Requested MIL state and an Actual MIL state. When the MIL is illuminated upon completion of a test for a third trip, the Requested MIL state changes to OFF. However, the MIL remains illuminated until the next key cycle. (On some vehicles, the MIL will actually turn OFF during the third key cycle) During the key cycle for the third good trip, the Requested MIL state is OFF, while the Actual MILL state is ON. After the next key cycle, the MIL is not illuminated and both MIL states read OFF.
Diagnostic Trouble Codes (DTCs)
With OBD II, different DTC faults have different priorities according to regulations. As a result, the priorities determine MIL illumination and DTC era­sure. DTCs are entered according to individual prior­ity. DTCs with a higher priority overwrite lower priority DTCs.
Priorities
Priority 0 —Non-emissions related trouble codes
Priority 1 — One trip failure of a two trip fault
for non-fuel system and non-misfire.
Priority 2 — One trip failure of a two trip fault
for fuel system (rich/lean) or misfire.
Priority3—Twotrip failure for a non-fuel sys­tem and non-misfire or matured one trip comprehen­sive component fault.
Priority4—Twotrip failure or matured fault for fuel system (rich/lean) and misfire or one trip cat­alyst damaging misfire.
Non-emissions related failures have no priority. One trip failures of two trip faults have low priority. Two trip failures or matured faults have higher pri­ority. One and two trip failures of fuel system and misfire monitor take precedence over non-fuel system and non-misfire failures.
DTC Self Erasure
With one trip components or systems, the MIL is illuminated upon test failure and DTCs are stored.
Two trip monitors are components requiring failure in two consecutive trips for MIL illumination. Upon failure of the first test, the Task Manager enters a maturing code. If the component fails the test for a second time the code matures and a DTC is set.
After three good trips the MIL is extinguished and the Task Manager automatically switches the trip counter to a warm-up cycle counter. DTCs are auto­matically erased following 40 warm-up cycles if the component does not fail again.
For misfire and fuel system monitors, the compo­nent must pass the test under a Similar Conditions Window in order to record a good trip. A Similar Con­ditions Window is when engine RPM is within ±375 RPM and load is within ±10% of when the fault occurred.
NOTE: It is important to understand that a compo­nent does not have to fail under a similar window of operation to mature. It must pass the test under a Similar Conditions Window when it failed to record a Good Trip for DTC erasure for misfire and fuel system monitors.
DTCs can be erased anytime with a DRB III. Eras­ing the DTC with the DRB III erases all OBD II information. The DRB III automatically displays a warning that erasing the DTC will also erase all OBD II monitor data. This includes all counter infor­mation for warm-up cycles, trips and Freeze Frame.
Trip Indicator
The Trip is essential for running monitors and extinguishing the MIL. In OBD II terms, a trip is a set of vehicle operating conditions that must be met for a specific monitor to run. All trips begin with a key cycle.
Good Trip
The Good Trip counters are as follows:
DR EMISSIONS CONTROL 25 - 7
EMISSIONS CONTROL (Continued)
Specific Good Trip
Fuel System Good Trip
Misfire Good Trip
Alternate Good Trip (appears as a Global Good
Trip on DRB III)
Comprehensive Components
Major Monitor
Warm-Up Cycles
Specific Good Trip
The term Good Trip has different meanings
depending on the circumstances:
If the MIL is OFF, a trip is defined as when the Oxygen Sensor Monitor and the Catalyst Monitor have been completed in the same drive cycle.
If the MIL is ON and a DTC was set by the Fuel Monitor or Misfire Monitor (both continuous moni­tors), the vehicle must be operated in the Similar Condition Window for a specified amount of time.
If the MIL is ON and a DTC was set by a Task Manager commanded once-per-trip monitor (such as the Oxygen Sensor Monitor, Catalyst Monitor, Purge Flow Monitor, Leak Detection Pump Monitor, EGR Monitor or Oxygen Sensor Heater Monitor), a good trip is when the monitor is passed on the next start­up.
If the MIL is ON and any other emissions DTC was set (not an OBD II monitor), a good trip occurs when the Oxygen Sensor Monitor and Catalyst Mon­itor have been completed, or two minutes of engine run time if the Oxygen Sensor Monitor and Catalyst Monitor have been stopped from running.
Fuel System Good Trip
To count a good trip (three required) and turn off
the MIL, the following conditions must occur:
Engine in closed loop
Operating in Similar Conditions Window
Short Term multiplied by Long Term less than
threshold
Less than threshold for a predetermined time
If all of the previous criteria are met, the PCM will count a good trip (three required) and turn off the MIL.
Misfire Good Trip
If the following conditions are met the PCM will count one good trip (three required) in order to turn off the MIL:
Operating in Similar Condition Window
1000 engine revolutions with no misfire
Warm-Up Cycles
Once the MIL has been extinguished by the Good Trip Counter, the PCM automatically switches to a Warm-Up Cycle Counter that can be viewed on the DRB III. Warm-Up Cycles are used to erase DTCs and Freeze Frames. Forty Warm-Up cycles must occur in order for the PCM to self-erase a DTC and
Freeze Frame. A Warm-Up Cycle is defined as fol­lows:
Engine coolant temperature must start below
and rise above 160° F
Engine coolant temperature must rise by 40° F
No further faults occur
Freeze Frame Data Storage
Once a failure occurs, the Task Manager records several engine operating conditions and stores it in a Freeze Frame. The Freeze Frame is considered one frame of information taken by an on-board data recorder. When a fault occurs, the PCM stores the input data from various sensors so that technicians can determine under what vehicle operating condi­tions the failure occurred.
The data stored in Freeze Frame is usually recorded when a system fails the first time for two trip faults. Freeze Frame data will only be overwrit­ten by a different fault with a higher priority.
CAUTION: Erasing DTCs, either with the DRB III or by disconnecting the battery, also clears all Freeze Frame data.
Similar Conditions Window
The Similar Conditions Window displays informa­tion about engine operation during a monitor. Abso­lute MAP (engine load) and Engine RPM are stored in this window when a failure occurs. There are two different Similar conditions Windows: Fuel System and Misfire.
FUEL SYSTEM
Fuel System Similar Conditions Window — An indicator that ’Absolute MAP When Fuel Sys Fail’ and ’RPM When Fuel Sys Failed’ are all in the same range when the failure occurred. Indicated by switch­ing from ’NO’ to ’YES’.
Absolute MAP When Fuel Sys Fail — The stored MAP reading at the time of failure. Informs the user at what engine load the failure occurred.
Absolute MAP — A live reading of engine load to aid the user in accessing the Similar Conditions Window.
RPM When Fuel Sys Fail — The stored RPM reading at the time of failure. Informs the user at what engine RPM the failure occurred.
Engine RPM — A live reading of engine RPM to aid the user in accessing the Similar Conditions Window.
Adaptive Memory Factor — The PCM utilizes both Short Term Compensation and Long Term Adap­tive to calculate the Adaptive Memory Factor for total fuel correction.
25 - 8 EMISSIONS CONTROL DR
EMISSIONS CONTROL (Continued)
Upstream O2S Volts — A live reading of the Oxygen Sensor to indicate its performance. For example, stuck lean, stuck rich, etc.
SCW Time in Window (Similar Conditions Window Time in Window) — A timer used by the
PCM that indicates that, after all Similar Conditions have been met, if there has been enough good engine running time in the SCW without failure detected. This timer is used to increment a Good Trip.
Fuel System Good Trip Counter —ATrip Counter used to turn OFF the MIL for Fuel System DTCs. To increment a Fuel System Good Trip, the engine must be in the Similar Conditions Window, Adaptive Memory Factor must be less than cali­brated threshold and the Adaptive Memory Factor must stay below that threshold for a calibrated amount of time.
Test Done This Trip — Indicates that the monitor has already been run and completed during the current trip.
MISFIRE
Same Misfire Warm-Up State — Indicates if the misfire occurred when the engine was warmed up (above 160° F).
In Similar Misfire Window — An indicator that ’Absolute MAP When Misfire Occurred’ and ’RPM When Misfire Occurred’ are all in the same range when the failure occurred. Indicated by switch­ing from ’NO’ to ’YES’.
Absolute MAP When Misfire Occurred — The stored MAP reading at the time of failure. Informs the user at what engine load the failure occurred.
Absolute MAP — A live reading of engine load to aid the user in accessing the Similar Conditions Window.
RPM When Misfire Occurred — The stored RPM reading at the time of failure. Informs the user at what engine RPM the failure occurred.
Engine RPM — A live reading of engine RPM to aid the user in accessing the Similar Conditions Window.
Adaptive Memory Factor — The PCM utilizes both Short Term Compensation and Long Term Adap­tive to calculate the Adaptive Memory Factor for total fuel correction.
200 Rev Counter — Counts 0–100 720 degree cycles.
SCW Cat 200 Rev Counter — Counts when in similar conditions.
SCW FTP 1000 Rev Counter — Counts 0–4 when in similar conditions.
Misfire Good Trip Counter — Counts up to three to turn OFF the MIL.
Misfire Data— Data collected during test.
Test Done This Trip— Indicates YES when the
test is done.
OPERATION - NON-MONITORED CIRCUITS
The PCM does not monitor the following circuits, systems and conditions that could have malfunctions causing driveability problems. The PCM might not store diagnostic trouble codes for these conditions. However, problems with these systems may cause the PCM to store diagnostic trouble codes for other sys­tems or components. EXAMPLE: a fuel pressure problem will not register a fault directly, but could cause a rich/lean condition or misfire. This could cause the PCM to store an oxygen sensor or misfire diagnostic trouble code
FUEL PRESSURE
The fuel pressure regulator controls fuel system pressure. The PCM cannot detect a clogged fuel pump inlet filter, clogged in-line fuel filter, or a pinched fuel supply or return line. However, these could result in a rich or lean condition causing the PCM to store an oxygen sensor or fuel system diag­nostic trouble code.
SECONDARY IGNITION CIRCUIT
The PCM cannot detect an inoperative ignition coil, fouled or worn spark plugs, ignition cross firing, or open spark plug cables.
CYLINDER COMPRESSION
The PCM cannot detect uneven, low, or high engine cylinder compression.
EXHAUST SYSTEM
The PCM cannot detect a plugged, restricted or leaking exhaust system, although it may set a fuel system fault.
FUEL INJECTOR MECHANICAL MALFUNCTIONS
The PCM cannot determine if a fuel injector is clogged, the needle is sticking or if the wrong injector is installed. However, these could result in a rich or lean condition causing the PCM to store a diagnostic trouble code for either misfire, an oxygen sensor, or the fuel system.
EXCESSIVE OIL CONSUMPTION
Although the PCM monitors engine exhaust oxygen content when the system is in closed loop, it cannot determine excessive oil consumption.
THROTTLE BODY AIR FLOW
The PCM cannot detect a clogged or restricted air cleaner inlet or filter element.
Loading...
+ 17 hidden pages