Delta Tau GEO MACRO DRIVE User Manual

^1 USER MANUAL & REFERENCE
^2 Geo MACRO Drive
^3 Direct PWM Amplifier over MACRO
^4 500-603701-xUxx
^5 April 27, 2010
21314 Lassen Street Chatsworth, CA 91311 // Tel. (818) 998-2095 Fax. (818) 998-7807 // www.deltatau.com
Copyright Information
© 2010 Delta Tau Data Systems, Inc. All rights reserved.
This document is furnished for the customers of Delta Tau Data Systems, Inc. Other uses are unauthorized without written permission of Delta Tau Data Systems, Inc. Information contained in this manual may be updated from time-to-time due to product improvements, etc., and may not conform in every respect to former issues.
To report errors or inconsistencies, call or email:
Delta Tau Data Systems, Inc. Technical Support
Phone: (818) 717-5656 Fax: (818) 998-7807 Email: support@deltatau.com Website: http://www.deltatau.com
Operating Conditions
All Delta Tau Data Systems, Inc. motion controller products, accessories, and amplifiers contain static sensitive components that can be damaged by incorrect handling. When installing or handling Delta Tau Data Systems, Inc. products, avoid contact with highly insulated materials. Only qualified personnel should be allowed to handle this equipment.
In the case of industrial applications, we expect our products to be protected from hazardous or conductive materials and/or environments that could cause harm to the controller by damaging components or causing electrical shorts. When our products are used in an industrial environment, install them into an industrial electrical cabinet or industrial PC to protect them from excessive or corrosive moisture, abnormal ambient temperatures, and conductive materials. If Delta Tau Data Systems, Inc. products are directly exposed to hazardous or conductive materials and/or environments, we cannot guarantee their operation.
Safety Instructions
Qualified personnel must transport, assemble, install, and maintain this equipment. Properly qualified personnel are persons who are familiar with the transport, assembly, installation, and operation of equipment. The qualified personnel must know and observe the following standards and regulations:
IEC 364 resp. CENELEC HD 384 or DIN VDE 0100 IEC report 664 or DIN VDE 0110 National regulations for safety and accident prevention or VBG 4
Incorrect handling of products can result in injury and damage to persons and machinery. Strictly adhere to the installation instructions. Electrical safety is provided through a low-resistance earth connection. It is vital to ensure that all system components are connected to earth ground.
This product contains components that are sensitive to static electricity and can be damaged by incorrect handling. Avoid contact with high insulating materials (artificial fabrics, plastic film, etc.). Place the product on a conductive surface. Discharge any possible static electricity build-up by touching an unpainted, metal, grounded surface before touching the equipment.
Keep all covers and cabinet doors shut during operation. Be aware that during operation, the product has electrically charged components and hot surfaces. Control and power cables can carry a high voltage, even when the motor is not rotating. Never disconnect or connect the product while the power source is energized to avoid electric arcing.
After removing the power source from the equipment, wait at least 10 minutes before touching or disconnecting sections of the equipment that normally carry electrical charges (e.g., capacitors, contacts, screw connections). To be safe, measure the electrical contact points with a meter before touching the equipment.
The following text formats are used in this manual to indicate a potential for personal injury or equipment damage. Read the safety notices in this manual before attempting installation, operation, or maintenance to avoid serious bodily injury, damage to the equipment, or operational difficulty.
WARNING
A Warning identifies hazards that could result in personal injury or death. It precedes the discussion of interest.
Caution
A Caution identifies hazards that could result in equipment damage. It precedes the discussion of interest
Note
A Note identifies information critical to the user’s understanding or use of the equipment. It follows the discussion of interest.
REVISION HISTORY
REV. DESCRIPTION DATE CHG APPVD
1 UPDATED ENDAT SETUP INFO, P. 82 07/18/06 CP P.SHANTZ
2 UPDATED ERROR CODE EF GATE DRIVE INFO 09/21/06 CP P.SHANTZ
3 CORRECTED GP OUT INPUT FUNCTIONS, P. 39 06/11/08 CP K.ZHAO
4 CORRECTED RESET COMMAND, P. 138 10/30/08 CP S. MILICI
5 CORRECTED M-VARIABLE DEFINITIONS, P. 87
6 CORRECTED ERRORS PPS. 85-87 02/25/10 CP S. MILICI
7 CORRECTED COVER PAGE FORMATTING 03/01/10 CP C. PERRY
8 ADDED SAFETY RELAY PN INFO, P. 108 04/27/10 CP S. MILICI
12/08/09 CP S. MILICI
Geo MACRO Drive User and Reference Manual
Table of Contents
Copyright Information................................................................................................................................................i
Operating Conditions .................................................................................................................................................i
Safety Instructions......................................................................................................................................................i
INTRODUCTION .......................................................................................................................................................1
User Interface ............................................................................................................................................................1
Geo MACRO Drives .............................................................................................................................................1
Geo PMAC Drives ................................................................................................................................................2
Geo Direct-PWM Drives.......................................................................................................................................2
MACRO Defined ......................................................................................................................................................2
Feedback Devices......................................................................................................................................................3
Compatible Motors....................................................................................................................................................3
Maximum Speed....................................................................................................................................................3
Torque...................................................................................................................................................................3
Motor Poles ..........................................................................................................................................................4
Motor Inductance..................................................................................................................................................4
Motor Resistance ..................................................................................................................................................4
Motor Back EMF ..................................................................................................................................................4
Motor Torque Constant.........................................................................................................................................5
Motor Inertia ........................................................................................................................................................5
Motor Cabling.......................................................................................................................................................5
SPECIFICATIONS .....................................................................................................................................................7
Part Number ..............................................................................................................................................................7
Geo MACRO Feedback Options...............................................................................................................................8
Package Types...........................................................................................................................................................8
Electrical Specifications............................................................................................................................................9
230VAC Input Drives...........................................................................................................................................9
480VAC Input Drives..........................................................................................................................................11
Environmental Specifications..................................................................................................................................13
Recommended Fusing and Wire Gauge..................................................................................................................13
RECEIVING AND UNPACKING...........................................................................................................................15
Use of Equipment....................................................................................................................................................15
MOUNTING ..............................................................................................................................................................17
Low Profile..............................................................................................................................................................18
Single Width............................................................................................................................................................19
Double Width ..........................................................................................................................................................20
CONNECTIONS .......................................................................................................................................................21
System (Power) Wiring...........................................................................................................................................21
Wiring AC Input, J1 ............................................................................................................................................23
Wiring Earth-Ground .........................................................................................................................................23
Wiring 24 V Logic Control, J4............................................................................................................................24
Wiring the Motors ...................................................................................................................................................24
J2: Motor 1 Output Connector Pinout...............................................................................................................24
J3: Motor 2 Output Connector Pinout...............................................................................................................24
Wiring the Motor Thermostats................................................................................................................................25
Wiring the Regen (Shunt) Resistor, J5....................................................................................................................25
J5: External Shunt Connector Pinout ................................................................................................................26
Shunt Regulation.................................................................................................................................................27
Minimum Resistance Value.................................................................................................................................27
Maximum Resistance Value................................................................................................................................27
Energy Transfer Equations.................................................................................................................................27
Bonding...................................................................................................................................................................29
Filtering...................................................................................................................................................................30
Table of Contents i
Geo MACRO Drive User Manual
CE Filtering ........................................................................................................................................................30
Input Power Filtering .........................................................................................................................................31
Motor Line Filtering ...........................................................................................................................................31
I/O Filtering........................................................................................................................................................31
Connecting Main Feedback Sensors (X1 & X2).....................................................................................................32
Digital Quadrature Encoders .............................................................................................................................32
Digital Hall Commutation Sensors.....................................................................................................................33
SSI Encoders.......................................................................................................................................................33
Sinusoidal Encoders ...........................................................................................................................................34
Hiperface® Interface..........................................................................................................................................35
EnDat Interface...................................................................................................................................................36
Resolvers.............................................................................................................................................................37
Connecting Secondary Quad. Encoders (X8 & X9)................................................................................................38
Connecting General Purpose I/O & Flags (X3).......................................................................................................39
Sample wiring the I/O .........................................................................................................................................39
Sample Wiring the Flags.....................................................................................................................................40
Connecting MACRO Ring ......................................................................................................................................41
Fiber Optic MACRO connections (X5)...............................................................................................................41
RJ-45 Copper MACRO connections (X10 &X11)...............................................................................................41
Connecting optional Analog Inputs (X6 & X7) ......................................................................................................42
SOFTWARE SETUP FOR GEO MACRO DRIVES.............................................................................................43
Introduction .............................................................................................................................................................43
Establishing MACRO Communications with Turbo PMAC ..................................................................................43
MACRO Ring Frequency Control Variables ......................................................................................................43
I7: Phase Cycle Extension ..................................................................................................................................43
I6840: MACRO IC 0 Master Configuration .......................................................................................................44
I6890/I6940/I6990: MACRO IC 1/2/3 Master Configuration ............................................................................44
I6841/I6891/I6941/I6991: MACRO IC 0/1/2/3 Node Activation Control...........................................................44
I70/I72/I74/I76: MACRO IC 0/1/2/3 Node Auxiliary Function Enable..............................................................45
I71/I73/I75/I77: MACRO IC 0/1/2/3 Node Protocol Type Control ....................................................................46
I78: MACRO Master/Slave Auxiliary Communications Timeout .......................................................................46
I79: MACRO Master/Master Auxiliary Communications Timeout.....................................................................46
I80, I81, I82: MACRO Ring Check Period and Limits .......................................................................................46
MACRO Node Addresses ....................................................................................................................................47
Using the Turbo PMAC Setup Program .............................................................................................................51
Using the PEWIN32PRO 2 MACRO Ring ASCII Feature..................................................................................58
PEWIN32PRO Suite 2 MACRO Status window..................................................................................................62
Ring Order Communications Method.................................................................................................................63
MACRO ASCII Communications........................................................................................................................64
How to Enable and Disable MACRO ASCII Communication Mode ..................................................................64
SETTING UP PRIMARY FEEDBACK..................................................................................................................67
Device Selection Control.........................................................................................................................................67
Setting up Digital Quadrature Encoders.................................................................................................................67
Setting up SSI Encoders..........................................................................................................................................67
Setting up Sinusoidal Encoders...............................................................................................................................69
Principle of PMAC Interpolation Operation ......................................................................................................69
Setting up Endat ......................................................................................................................................................72
Setting up Resolvers................................................................................................................................................72
Setting up the Phase Shift (MI941) Manually.....................................................................................................73
Setting up the Resolver for Power-On Absolute Position ...................................................................................73
Scaling the Feedback Units ................................................................................................................................74
SETTING UP SECONDARY ENCODERS............................................................................................................75
SETTING UP THE TURBO PMAC CONVERSION TABLE .............................................................................77
ii Table of Contents
Geo MACRO Drive User and Reference Manual
SETTING UP TURBO MOTOR OPERATION ....................................................................................................79
Turbo PMAC Basic Setup for Brushless Servo or Induction Motor .......................................................................79
Turbo PMAC Basic Setup for DC Brush Motors................................................................................................80
Instructions for Direct-PWM Control of Brush Motors ..........................................................................................85
PWM/ADC Phase Match ....................................................................................................................................85
Synchronous Motor Stepper Action ....................................................................................................................85
Current Loop Polarity Check..............................................................................................................................85
Troubleshooting..................................................................................................................................................86
Testing PWM and Current Feedback Operation .....................................................................................................86
Purpose...............................................................................................................................................................86
Preparation.........................................................................................................................................................87
Position Feedback and Polarity Test..................................................................................................................87
Setting Up Hall Commutation Sensors....................................................................................................................88
Signal Format .....................................................................................................................................................88
Using Hall Effect Sensors for Phase Reference..................................................................................................89
Determining the Commutation Phase Angle.......................................................................................................89
Finding the Hall Effect Transition Points...........................................................................................................89
Calculating the Hall Effect Zero Point (HEZ)....................................................................................................90
Determining the Polarity of the Hall Effects – Standard or Reversed................................................................92
Software Settings for Hall Effect Phasing...........................................................................................................92
Setting I2T Protection ..............................................................................................................................................96
Calculating Minimum PWM Frequency .................................................................................................................97
SETTING UP DISCRETE INPUTS AND OUTPUTS...........................................................................................99
Inputs and Outputs ..................................................................................................................................................99
Ring Break Output indicator MS{node},MI13 .....................................................................................................100
Setting up the Analog Inputs (X6 and X7)............................................................................................................100
Limit and Flag Circuit Wiring...............................................................................................................................102
Connecting Limits/Flags to the Geo Drive .......................................................................................................102
Setting up Position Compare (EQU) Outputs........................................................................................................103
Setting up for a Single Pulse Output.................................................................................................................103
Setting up for Multiple Pulse Outputs...............................................................................................................104
CONNECTORS.......................................................................................................................................................105
Connector Pinouts .................................................................................................................................................105
X1: Encoder Input 1.........................................................................................................................................105
X2: Encoder Input 2.........................................................................................................................................106
X3: General Purpose I/O..................................................................................................................................107
X4: Safety Relay (Optional).............................................................................................................................108
X6: Analog IN 1 (Optional 3/4/5) ....................................................................................................................108
X7: Analog IN 2 (Optional 3/4/5) ....................................................................................................................108
X8: S. Encoder 1 ..............................................................................................................................................109
X9: S. Encoder 2 ..............................................................................................................................................109
X13: Discrete I/O.............................................................................................................................................109
J1: AC Input Connector Pinout .......................................................................................................................110
J2: Motor 1 Output Connector Pinout.............................................................................................................110
J3: Motor 2 Output Connector Pinout (Optional) ...........................................................................................110
J4: 24VDC Input Logic Supply Connector .......................................................................................................110
J5: External Shunt Connector Pinout ..............................................................................................................110
MACRO Link Connectors.....................................................................................................................................111
X5: MACRO I/O, MACRO Fiber Optic Transceiver (Optional).......................................................................111
X10 and X11 MACRO RJ-45 Copper Connectors ............................................................................................111
USB Connector .....................................................................................................................................................111
X12: USB Universal Serial Bus Port...............................................................................................................112
TROUBLESHOOTING..........................................................................................................................................113
Error Codes ...........................................................................................................................................................113
Table of Contents iii
Geo MACRO Drive User Manual
D1: Geo MACRO Drive Status Display Codes.................................................................................................113
MACRO Network Errors...................................................................................................................................114
Status LEDs ......................................................................................................................................................115
Geo MACRO Drive Ring Status Error Codes.......................................................................................................116
MS{node},MI4 Geo MACRO Status Word (Read Only) ...............................................................................116
MS{node},MI6 Status Word Control.............................................................................................................117
Status Word.......................................................................................................................................................117
TURBO PMAC2 RELATED I-VARIABLE REFERENCE ...............................................................................119
Ixx10: Motor xx Power-On Servo Position Address............................................................................................119
Ixx25, Ixx24: Flag Address and Mode..................................................................................................................121
Ixx70, Ixx71: Commutation Cycle Size ...............................................................................................................123
Ixx72: Commutation Phase Angle.........................................................................................................................123
Ixx75: Absolute Phase Position Offset.................................................................................................................123
Ixx81: Motor xx Power-On Phase Position Address and Mode...........................................................................124
Ixx82: Current Loop Feedback Address................................................................................................................125
Ixx83: Commutation Feedback Address ..............................................................................................................126
Ixx91: Motor xx Power-On Phase Position Format .............................................................................................126
Ixx95: Motor xx Power-On Servo Position Format .............................................................................................129
Ixx97 Motor xx Position Capture and Trigger Mode ...........................................................................................131
GEO MACRO DRIVE MI-VARIABLE REFERENCE......................................................................................133
Global MI-Variables .............................................................................................................................................133
MS{node},MI0 Geo MACRO drive Firmware Version (Read Only)............................................................133
MS{node},MI1 Geo MACRO drive Firmware Date (Read Only)................................................................133
MS{node},MI2 and MI3 (Reserved for future use).......................................................................................133
MS{node},MI4 Geo MACRO drive Status Word (Read Only) ......................................................................134
MS{node},MI5 Ring Error Counter .............................................................................................................134
MS{node},MI6 Status Word Control............................................................................................................135
MS{node},MI7 Geo MACRO Error Counter ...............................................................................................135
MS{node},MI8 Geo MACRO Ring Check Period ........................................................................................135
MS{node},MI9 Geo MACRO Ring Error Shutdown Count..........................................................................135
MS{node},MI10 Geo MACRO Sync Packet Shutdown Count......................................................................136
MS{node},MI11 Station Order Number.......................................................................................................136
MS{node},MI12 Card Identification (Read Only)........................................................................................137
MS{node},MI13 Ring Break Output indicator .............................................................................................137
MS{node},MI100 Motor Activation Control word.......................................................................................138
MS{node},MI101-102 Primary Feedback Selection .....................................................................................138
MS{node},MI103 Sin Encoder/ Resolver #1 bias..........................................................................................139
MS{node},MI104 Sin Encoder/ Resolver #2 bias..........................................................................................139
MS{node},MI105 Cosine Encoder/ Resolver #1 bias....................................................................................139
MS{node},MI106 Cosine Encoder/ Resolver #2 bias....................................................................................139
MS{node},MI107 Motor 1 Encoder-Loss Mask ............................................................................................140
MS{node},MI108 Motor 2 Encoder-Loss Mask ............................................................................................140
Primary Channel Node-Specific Gate Array MI-variables....................................................................................142
MS{node},MI910 Primary Encoder/Timer n Decode Control......................................................................142
MS{node},MI911 Primary Enc. Position Compare n Channel Select ..........................................................143
MS{node},MI912 Primary Encoder n Capture Control................................................................................143
MS{node},MI913 Primary Encoder Capture n Flag Select Control.............................................................144
MS{node},MI914 Primary Encoder n Gated Index Select ............................................................................144
MS{node},MI915 Primary Encoder Index Gate State/Demux Control.........................................................145
MS{node},MI910 Secondary Encoder Decode Control................................................................................146
MS{node},MI911 Secondary Encoder counter Direction .............................................................................146
MS{node},MI912 Secondary Encoder Index Capture Control ....................................................................147
MS{node},MI913 Secondary Encoder Home Flag Capture Control...........................................................147
MS{node},MI914 Secondary Encoder Filter Control ...................................................................................147
MS{node},MI915 Secondary Encoder Capture Flag Select Control ............................................................148
iv Table of Contents
Geo MACRO Drive User and Reference Manual
MS{node},MI916 Output n Mode Select .......................................................................................................148
MS{node},MI917 Output n Invert Control....................................................................................................148
MS{node},MI918 Output n PFM Direction Signal Invert Control ...............................................................149
MS{node},MI919 Hardware 1/T ...................................................................................................................149
MS{node},MI921 Flag Capture Position (Read Only)..................................................................................150
MS{node},MI922 ADC A Input Value (Read Only) ......................................................................................150
MS{node},MI923 Compare Auto-Increment Value.......................................................................................150
MS{node},MI924 ADC B Input Value (Read Only) ......................................................................................150
MS{node},MI925 Compare A Position Value...............................................................................................151
MS{node},MI926 Compare B Position Value...............................................................................................151
MS{node},MI927 (Reserved for future use)......................................................................................................151
MS{node},MI928 Compare-State Write Enable............................................................................................151
MS{node},MI929 Compare-Output Initial State...........................................................................................151
General Hardware Setup MI-variables..................................................................................................................152
MS{anynode}, MI930 SSI Channel 1 Control Word .....................................................................................152
MS{anynode}, MI931 SSI Channel 2 Control Word ....................................................................................152
MS{anynode}, MI932 Resolver Excitation Frequency Divider....................................................................153
MS{anynode}, MI933 SSI Clock Frequency Divider ...................................................................................153
MS{anynode},MI934-MI939 (Reserved for future use)................................................................................153
MS{anynode}, MI940 Resolver Excitation Gain .........................................................................................153
MS{anynode}, MI941 Resolver Excitation Phase Offset.............................................................................154
MS{anynode},MI942 ADC Strobe Word Channel 1* & 2* ..........................................................................154
MS{node},MI943 Encoder Power control bit ...............................................................................................154
MS{node},MI944-MI949 (Reserved for future use) .....................................................................................154
Global & 2-Axis Board I-Variables ......................................................................................................................155
MS{node},MI992 MaxPhase Frequency Control..........................................................................................155
MS{node},MI993 Hardware Clock Control Handwheel Channels...............................................................155
MS{node},MI994 PWM Deadtime ...............................................................................................................157
MS{node},MI995 MACRO Ring Configuration/Status .................................................................................157
MS{node},MI996 MACRO Node Activate Control .......................................................................................158
MS{node},MI997 Phase Clock Frequency Control ......................................................................................160
MS{node},MI998 Servo Clock Frequency Control.......................................................................................160
ABSOLUTE POWER ON ONLINE COMMANDS.............................................................................................161
$$*.........................................................................................................................................................................161
$*...........................................................................................................................................................................161
APPENDIX A...........................................................................................................................................................166
Fiber Optic Cable Ordering Information...............................................................................................................166
Mating Connector and Cable Kits.........................................................................................................................166
Mating Connector and Cable Kits ....................................................................................................................166
Connector and pins Part numbers ....................................................................................................................168
Cable Drawings ................................................................................................................................................170
Regenerative Resistor: GAR78/48 .......................................................................................................................176
Type of Cable for Encoder Wiring........................................................................................................................177
APPENDIX B...........................................................................................................................................................180
Schematics.............................................................................................................................................................180
X3: Discrete I/O...............................................................................................................................................180
X6 and X7: Analog Inputs................................................................................................................................182
X8 and X9 Secondary Encoders (3 and 4)........................................................................................................183
APPENDIX C...........................................................................................................................................................184
Communication to the Geo MACRO via the USB Port........................................................................................184
APPENDIX D...........................................................................................................................................................186
MACRO Flag Transfer Location...........................................................................................................................186
Turbo PMAC2 Node Addresses............................................................................................................................187
Table of Contents v
Geo MACRO Drive User Manual
ADC Register Table ..............................................................................................................................................189
Stepping through an Electrical Cycle....................................................................................................................190
Manually Stepping through an Electrical Cycle at 30 degree increments........................................................190
Example 1 of Hall Effect Values .......................................................................................................................191
Example 2 of Hall Effect Values .......................................................................................................................192
USEFUL NOTES.....................................................................................................................................................193
vi Table of Contents
Geo MACRO Drive User and Reference Manual
INTRODUCTION
The Geo Drive family of “bookcase”-style servo amplifiers provides many new capabilities for users. This family of 1- and 2-axis 3-phase amplifiers, built around a common core of highly integrated IGBT­based power circuitry, supports a wide variety of motors, power ranges, and interfaces. The 2-axis configurations share common power input, bus, and shunt for a very economical implementation.
Three command interfaces are provided: direct-PWM, MACRO-ring, and integrated PMAC controller, each described in following sections. In all three cases, fully digital “direct PWM” control is used. Direct PWM control eliminates D-to-A and A-to-D conversion delays and noise, allowing higher gains for more robust and responsive tuning without sacrificing stability.
All configurations provide these power-stage features:
Direct operation off AC power mains (100 – 240 or 300 – 480 VAC, 50/60 Hz) or optional DC
power input (24 – 350 or 24 – 700 VDC)
Integrated bus power supply including soft start and shunt regulator (external resistor required)
Separate 24VDC input to power logic circuitry
Complete protection: over voltage, under voltage, over temperature, PWM frequency limit,
minimum dead time, motor over temperature, short circuit, over current, input line monitor
Ability to drive brushed and brushless permanent-magnet servo motors, or AC induction motors
Single-digit LED display and six discrete LEDs for status information
Optional safety relay circuitry. Please contact factory for more details and pricing.
Easy setup with Turbo PMAC and UMAC controllers.
User Interface
The Geo Drive family is available in different versions distinguished by their user interface styles.
Geo MACRO Drives
The Geo MACRO Drive interfaces to the controller through the 125 Mbit/sec MACRO ring, with either a fiber-optic or Ethernet electrical medium, accepting numerical command values for direct PWM voltages and returning numerical feedback values for phase current, motor position, and status. It accepts many types of position feedback to the master controller, as well as axis flags (limits, home, and user) and general-purpose analog and digital I/O. Typically, the Geo MACRO Drives are commanded by either a PMAC2 Ultralite bus-expansion board, or a UMAC rack-mounted controller with a MACRO-interface card. This provides a highly distributed hardware solution, greatly simplifying system wiring, while maintaining a highly centralized software solution, keeping system programming simple.
Choices for main feedback for each axis: A/B quadrature encoder, sinusoidal encoder with
Secondary A/B quadrature encoder for each axis
General-purpose isolated digital I/O: 4 in, 4 out at 24VDC
EnDat
TM
or HiperfaceTM, SSI encoder, resolver
2 optional A/D converters, 12- or 16-bit resolution
Note:
Geo MACRO is not using the regular 8-axis or 16-axis MACRO station CPU.
A new MACRO CPU was developed for the Geo MACRO drive.
Introduction 1
Geo MACRO Drive User Manual
Geo PMAC Drives
The Geo PMAC Drive is a standalone-capable integrated controller/amplifier with a built-in full PMAC2 controller having stored-program capability. It can be operated standalone, or commanded from a host computer through USB2.0 or 100 Mbps Ethernet ports. The controller has the full software capabilities of a PMAC (see descriptions), with an internal fully-digital connection to the advanced Geo power-stage , providing a convenient, compact, and cost-effective installation for one and two-axis systems, with easy synchronization to other drives and controls.
Choices for main feedback for each axis: A/B quadrature encoder, sinusoidal encoder with
Secondary A/B quadrature encoder for each axis
General-purpose isolated digital I/O: 8 in, 6 out at 24VDC
2 optional A/D converters 12- or 16-bit resolution
EnDat
TM
or HiperfaceTM, SSI encoder, resolver
Geo Direct-PWM Drives
The direct-PWM interface versions accept the actual power-transistor on/off signals from the PMAC2 controller, while providing digital phase-current feedback and drive status to the controller for closed­loop operation. Interface to the direct-PWM amplifier is through a standard 36-pin Mini-D style cable. The drive performs no control functions but has protection features. Drive installation, maintenance, and replacement are simplified because there is less wiring (position feedback and I/O are not connected to the drive) and there are no variables to set or programs to install in the drive.
Fully centralized control means that all gains and settings are made in the PMAC; no software
setup of drive is required
No position feedback or axis flags required at the drive
MACRO Defined
MACRO defined is a digital interface for connection of multi–axis motion controllers, amplifiers and other I/O devices on a fiber optic or twisted pair copper (RJ45 connector) ring.
MACRO operates in a ring topology. Data is transmitted serially. Each station on the ring has an in port for receiving data and an out port for transmitting data. Nodes, residing at a station can be amplifier axes, I/O banks, or communication interfaces to other devices. A station can have one or several nodes allowing for multi-axis amplifiers with a single in and single out port. Data packets, (groups of 96 bits of serial data) from the motion controller or master node are addressed to a specific amplifier or slave node. If the data packet is not for an amplifier, it is passed on unchanged. If it is for the node, it copies the contents of the data packet (typically commands), places feedback data into a packet, and transmits the data packet.
MACRO’s Advantages are:
Single–plug connections between controls and amplifiers: A single fiber optic strand can provide a
controller with: position feedback, flag status (limits, home flag), amplifier status and machine input status. This same strand can communicate to the amplifier and other devices on the MACRO network (Amplifier enable and amplifier command signals, machine outputs, commands to D/A converters; all can be implemented with a single plug connection).
Noise Immunity: Fiber–optic cable transmits light, not electricity. Unlike electricity light is immune
to electromagnetic noise, capacitive coupling, ground loops, and other wiring problems.
Speed: MACRO’s operation is 125 Mbits/second. This is at least 25 times faster than other digital
motion control interfaces.
2 Introduction
Geo MACRO Drive User and Reference Manual
One ring, multiple masters: In a ring network, several motion controllers (masters) can be on one
ring. Each controller controls several axes (up to 32 ea.).
Simplicity: Transmission within the MACRO ring requires no software intervention. The
information sent to all nodes is written to a memory location and the MACRO hardware takes care of the rest.
Feedback Devices
Many motors incorporate a position feedback device. Devices are incremental encoders, resolvers, and sine encoder systems. The macro version of the Geo drive accepts feedback. In its standard form, it is set up to accept incremental encoder feedback. With the appropriate feedback option, it is possible to use either resolver or sinusoidal encoder feedback. Historically, the choice of a feedback device has been guided largely by cost and robustness. Today, feedbacks are relatively constant for the cost and picked by features such as size and feedback data. More feedback data or resolution provides the opportunity to have higher gains in a servo system.
Geo MACRO drives have standard secondary quadrature encoder feedback. One secondary encoder (X8) for one axis drive and two secondary encoders (X8 and X9) for dual axis drives (603542 rev-10A and above). Earlier versions of the Geo MACRO drive cannot use the secondary encoders.
Compatible Motors
The Geo drive product line is capable of interfacing to a wide variety of motors. The Geo drive can control almost any type of three-phase brushless motor, including DC brushless rotary, AC brushless rotary, induction, and brushless linear motors. Permanent magnet DC brush motors can also be controlled using two of the amplifiers three phases. Motor selection for an application is a science in itself and cannot be covered in this manual. However, some basic considerations and guidelines are offered. Motor manufacturers include a host of parameters to describe their motor.
Some basic equations can help guide an applications engineer to mate a proper drive with a motor. A typical application accelerates a load to a speed, running the speed for a while and then decelerating the load back into position.
Maximum Speed
The motor’s maximum rated speed is given. This speed may or may not be achievable in a given system. The speed could be achieved if enough voltage and enough current loop gain are available. Also consider the motor’s feedback adding limitations to achievable speeds. The load attached to the motor also limits the maximum achievable speed. In addition, some manufacturers will provide motor data with their drive controller, which is tweaked to extend the operation range that other controllers may be able to provide. In general, the maximum speed can be determined by input voltage line-to-line divided by Kb (the motor’s back EMF constant). It is wise to de-rate this a little for proper servo applications.
Torque
The torque required for the application can be viewed as both instantaneous and average. Typically, the instantaneous or peak torque is calculated as a sum of machining forces or frictional forces plus the forces required to accelerate the load inertia. The machining or frictional forces on a machine must be determined by the actual application. The energy required to accelerate the inertia follows the equation: T = JA, where T is the torque in Newton-meters or pound-feet required for the acceleration, J is the inertia in kilogram-meters-squared or pound-feet-second squared, and A is in radians per second per second. The required torque can be calculated if the desired acceleration rate and the load inertia reflected back to the motor are known. The T=JA equation requires that the motor’s inertia be considered as part of the inertia-requiring torque to accelerate.
Once the torque is determined, the motors specification sheet can be reviewed for its torque constant parameter (Kt). The torque required at the application divided by the Kt of the motor provides the peak current required by the amplifier. A little extra room should be given to this parameter to allow for good
Introduction 3
Geo MACRO Drive User Manual
servo control.
Most applications have a duty cycle in which the acceleration profile occurs repetitively over time. Calculating the average value of this profile gives the continuous rating required by the amplifier. Applications also concern themselves with the ability to achieve a speed. The requirements can be reviewed by either defining what the input voltage is to the drive, or defining what the voltage requirements are at the motor. Typically, a system is designed at a 230 or 480V input line. The motor must be able to achieve the desired speed with this voltage limitation. This can be determined by using the voltage constant of the motor (Kb), usually specified in volts-per-thousand rpm. The application speed is divided by 1000 and multiplied by the motor's Kb. This is the required voltage to drive the motor to the desired velocity. Headroom of 20% is suggested to allow for good servo control.

Peak Torque

The peak torque rating of a motor is the maximum achievable output torque. It requires that the amplifier driving it be able to output enough current to achieve this. Many drive systems offer a 3:1 peak-to­continuous rating on the motor, while the amplifier has a 2:1 rating. To achieve the peak torque, the drive must be sized to be able to deliver the current to the motor. The required current is often stated on the datasheet as the peak current through the motor. In some sense, it can also be determined by dividing the peak amplifier's output rating by the motor's torque constant (Kt).

Continuous Torque

The continuous torque rating of the motor is defined by a thermal limit. If more torque is consumed from the motor than this on average, the motor overheats. Again, the continuous torque output of the motor is subject to the drive amplifier’s ability to deliver that current. The current is determined by the manufacturer’s datasheets stating the continuous RMS current rating of the motor and can also be determined by using the motor’s Kt parameter, usually specified in torque output per amp of input current.
Motor Poles
Usually, the number of poles in the motor is not a concern to the actual application. However, it should be noted that each pole-pair of the motor requires an electrical cycle. High-speed motors with high motor pole counts can require high fundamental drive frequencies that a drive amplifier may or may not be able to output. In general, drive manufacturers with PWM switching frequencies (16kHz or below) would like to see commutation frequencies less than 400 Hz. The commutation frequency is directly related to the number of poles in the motor.
Motor Inductance
PWM outputs require significant motor inductance to turn the on-off voltage signals into relatively smooth current flow with small ripple. Typically, motor inductance of servomotors is 1 to 15 mH. The Geo drive product series can drive this range easily. On lower-inductance motors (below 1mH), problems occur due to PWM switching where large ripple currents flow through the motor, causing excessive energy waste and heating. If an application requires a motor of less than 1mH, external inductors are recommended to increase that inductance. Motors with inductance in excess of 15mH can still be driven, but are slow to react and typically are out of the range of high performance servomotors.
Motor Resistance
Motor resistance is not really a factor in determining the drive performance, but rather, comes into play more with the achievable torque or output horsepower from the motor. The basic resistance shows up in the manufacturer's motor horsepower curve.
Motor Back EMF
The back EMF of the motor is the voltage that it generates as it rotates. This voltage subtracts from the bus voltage of the drive and reduces the ability to push current through the motor. Typical back EMF
4 Introduction
Geo MACRO Drive User and Reference Manual
ratings for servomotors are in the area of 8 to 200 volts-per-thousand rpm. The Geo drive product series can drive any range of back EMF motor, but the back EMF is highly related to the other parameters of the motor such as the motor inductance and the motor Kt. It is the back EMF of the motor that limits the maximum achievable speed and the maximum horsepower capability of the motor.
Motor Torque Constant
Motor torque constant is referred to as Kt and usually it is specified in torque-per-amp. It is this number that is most important for motor sizing. When the load that the motor will see and knowing the motor’s torque constant is known, the drive amplifier requirements can be calculated to effectively size a drive amplifier for a given motor. Some motor designs allow Kt to be non-linear, in which Kt will actually produce less torque per unit of current at higher output speeds. It is wise to de-rate the systems torque producing capability by 20% to allow headroom for servo control.
Motor Inertia
Motor inertia comes into play with motor sizing because torque to accelerate the inertia of the motor is effectively wasted energy. Low inertia motors allow for quicker acceleration. However, consider the reflected inertia from the load back to the motor shaft when choosing the motor’s inertia. A high ratio of load-to-motor inertia can limit the achievable gains in an application if there is compliance in the transmission system such as belt-drive systems or rubber-based couplings to the systems. The closer the rotor inertia matches the load’s reflected inertia to the motor shaft, the higher the achievable gains will be for a given system. In general, the higher the motor inertia, the more stable the system will be inherently. Mechanical gearing is often placed between the load and the motor simply to reduce the reflected inertia back to the motor shaft.
Motor Cabling
Motor cables are an integral part of a motor drive system. Several factors should be considered when selecting motor cables. First, the PWM frequency of the drive emits electrical noise. Motor cables must have a good-quality shield around them. The motor frame must also have a separate conductor to bring back to the drive amplifier to help quench current flows from the motor due to the PWM switching noise. Both motor drain wire and the cable shield should be tied at both ends to the motor and to the drive amplifier.
Another consideration in selecting motor cables is the conductor-to-conductor capacitance rating of the cable. Small capacitance is desirable. Longer runs of motor cable can add motor capacitance loading to the drive amplifier causing undesired spikes of current. It can also cause couplings of the PWM noise into the earth grounds, causing excessive noise as well. Typical motor cable ratings would be 50 pf per foot maximum cable capacitance.
Another factor in picking motor cables is the actual conductor cross-sectional area. This refers to the conductors ability to carry the required current to and from the motor. When calculating the required cable dimensions, consider agency requirements, safety requirements, maximum temperature that the cable will be exposed to, the continuous current flow through the motor, and the peak current flow through the motor. Typically, it is not suggested that any motor cable be less than 14 AWG.
The motor cable’s length must be considered as part of the application. Motor cable length affects the system in two ways. First, additional length results in additional capacitive loading to the drive. The drive’s capacitive loading should be kept to no more than 1000pf. Additionally, the length sets up standing waves in the cable, which can cause excessive voltage at the motor terminals. Typical motor cable length runs of up to 60 meters (200 feet) for 230V systems and 15 meters (50 feet) for 480V systems are acceptable. Exceeding these lengths may put other system requirements in place for either a snubber at the motor end or a series inductor at the drive end. The series inductor at the drive end provides capacitance loading isolation from the drive and slows the rise time of the PWM signal into the cable, resulting in less voltage overshoot at the motor.
Introduction 5
Geo MACRO Drive User Manual
6 Introduction
Geo MACRO Drive User and Reference Manual
SPECIFICATIONS
Part Number
Geo MACRO Drive
Model Number Definition
GL03 1 0
Voltage Rating (Direct M ains ) L = 110 - 240 VAC H = 300 - 480 VAC
Continuous/Peak Current Rating (Sinusoidal RMS)
φ
01 = 1.5/4.5 Amp (one or 3 03 = 3/9 Amp (one or 3 05 = 5/10 Amp (3 10 = 10/20 Amp (3 15 = 15/30 Amp (3 20 = 20/40 Amp (3 30 = 30/60 Amp (3 *For single phase input, need to derate 30%
Product Width According to Ratings Single -Width U nits :
1.5/4.5 Dual Axis 10/20 Dual Axis (480VAC) 3/9 Dual Axis 15/30 Dual Axis 5/10 Single and Dual Axis 20/40 Single Axis 10/20 Single Axis and Dual Axis (240VAC) 30/60 Single Axis 15/30 Single Axis
φ
φ φ φ φ
operation )
φ
operation )
input, for single φ need to derate 20%)
input*) input*) input*) input*)
Number of Axes 1 = Single Axis 2 = Dual Axis
Double-Width Units:
RM
Feedback Options 0 = No options, Default; Standard feedback
per axis is quadrature differential encoder with hall effect inputs or SSI absolute encoder .
1 = Analog Feedback including:
Option 0 Standard Feedback
• 4096x Sin/Cos interpolator
Resolver Interface
2 = Absolute Feedback including :
Option 1 Analog Feedback
Endat™
Hiperface™
3, 4, 5 = Same as Options 0, 1 and 2 described above but with two 16-bit analog-to-digital converter inputs
Note: Any available method can be used for feedback but only one method can be used at any time . Feedback method is selected by wiring.
MACRO Link Options: F = Fiber Optic R = RJ/45 (Default)
GMx012xx
GMx051xx
GMx101xx
GMx151xx
GMx032xx
GMx052xx
GML102xx
GMx201xx
GMx301xx
GMH102xx
GMx152xx
Single axis
Dual Axis
Single Width
Size Axis
Double width
√ √
√ √ √ √
√*
* Low Profile Unit, No heatsink, no Fan
Specifications 7
Geo MACRO Drive User Manual
Geo MACRO Feedback Options
Model Default Configuration:
Quadrature Encoders Or SSI Absolute Encoders And Hall Effect inputs
GMxxxxx0 GMxxxxx1 GMxxxxx2 GMxxxxx3 GMxxxxx4 GMxxxxx5
Analog (Sin/Cos) Encoders: x4096 Interpolator Resolver to Digital Converters
Absolute Encoder Interfaces: EnDat Hiperface
Addition of two channels of 16-bit A/D converters with each feedback option
Package Types
Geo package types provide various power levels and one or two axis capability with three different package types.
The Geo Drive has a basic package size of 3.3"W x 11"H x 8.0"D(84mm W x 280mm H x 203mm D). This size includes the heat sink and fan. In this package size, Single Width, the Geo can handle one or two low-to-medium power axes or only a single axis for medium to high power.
The mechanical design of the Geo drive is such that it allows two heat sinks to be easily attached together to provide two high power axes in a double width configuration. This double package size is 6.5" W x 11" H x 8.0" D (165 mm W x 280 mm H x 203 mm D). It provides a highly efficient package size containing two axes of up to about 10kW each thus driving nearly 24kW of power, but using a single interface card. This results in a highly cost effective package.
There is also one more package type only for the low power (1.5A/4.5A) single width Geo drive, model Gxx012xx. This package substitutes the heatsink and the fan with a smaller plate which has the same mounting pattern as the regular single width drive, making the units depth 2.2inches (56mm) less than the single width drive, 5.8" D (148mm D).
Low Profile: GMx012xx (only)
3.3" wide (84 mm) (no heatsink, no fan), Maximum Power Handling ~1200 watts Package Dimensions: 3.3" W x 11" H x 5.8" D (84 mm W x 280 mm H x 148 mm D) Weight: 4.3 lbs. (1.95kgs)
Single Width: GMx051xx, GMx101xx, GMx151xx, GMH032xx, GMx052xx and GML102xx.
3.3" wide (84 mm)(with heatsink and fan), Maximum Power Handling ~12000 watts GML032xx Single Width, with heatsink, no Fan (Weight 5.4lbs/2.45kgs) Package Dimensions: 3.3" W x 11" H x 8.0" D (84 mm W x 280 mm H x 203 mm D) Weight: 5.5 lbs. (2.50kgs)
Double Width: GMx201xx, GMx301xx, GMH102xx and GMx152xx.
6.5” wide (164mm)(with heatsink and fan), Maximum Power Handling ~24,000 watts Package Dimensions: 6.5" W x 11" H x 8.0" D (164 mm W x 280 mm H x 203 mm D) Weight: 11.6lbs (5.3kgs)
8 Specifications
Geo MACRO Drive User and Reference Manual
g
g
Electrical Specifications
230VAC Input Drives
Main Input
Power
Output
Power
Bus
Protection
Shunt
Re
ulator
Ratings
Control
Lo
Power
Current
Feedback
Transistor
Control
GxL051 GxL101 GxL151 GxL201 GxL301
Nominal Input Voltage (VAC) Rated Input Voltage (VAC) Rated Continuous Input Current (A
AC
)
RMS
Rated Input Power (Watts) Frequency (Hz) Phase Requirements Charge Peak Inrush Current (A) Main Bus Capacitance (µf) Rated Output Voltage (V) Rated Cont. Output Current per Axis Peak Output Current (A) for 2 seconds Rated Output Power per Axis (Watts) Nominal DC Bus Over-voltage Trip Level (VDC) Under-voltage Lockout Level (VDC) Turn-On Voltage (VDC) Turn-Off Voltage (VDC) 372 Delta Tau Recommended Load Resistor
(300 W Max.) Input Voltage (VDC)
Input Current (A)
ic
Inrush Current (A) Resolution (bits) Full-scale Signed Reading (±A) Delta Tau Recommended PWM
Frequency (kHz) @rated current
Minimum Dead Time (µs) Charge Pump Time (% of PWM period.)
230
97-265
3.3 6.6 9.9 13.2 19.8
1315 2629 3944 5259 7888
50/60
1Φ or 3Φ 3Φ
3380 5020 6800
138
5 10 15 20 30
10 20 30 40 60
1195 2390 3585 4780 7171
325
410
10
392
GAR78 GAR48 GAR48-3
20-27
2A
4A
12
16.26 32.53
12 10 8
48.79 65.05 97.58
1
5
Note:
All values at ambient temperature of 0-45°C (113F) unless otherwise stated.
Specifications 9
Geo MACRO Drive User Manual
g
g
Main Input
Power
Output
Power
Bus
Protection
Shunt
Re
ulator
Ratings
Control
Lo
ic
Power
Current
Feedback
Transistor
Control
GxL012 GxL032 GxL052 GxL102 GxL152
Output Circuits (axes)
Nominal Input Voltage (VAC) Rated Input Voltage (VAC) Rated Continuous Input Current (A
AC
)
RMS
Rated Input Power (Watts) Frequency (Hz) Phase Requirements
Charge Peak Inrush Current (A) Main Bus Capacitance (µf)
Rated Output Voltage (V) Rated Cont. Output Current per Axis Peak Output Current (A) for 2 seconds Rated Output Power per Axis (Watts)
Nominal DC Bus Over-voltage Trip Level (VDC) Under-voltage Lockout Level (VDC)
Turn-On Voltage (VDC) Turn-Off Voltage (VDC) Delta Tau Recommended Load Resistor
(300 W Max.) Input Voltage (VDC)
Input Current (A) Inrush Current (A)
Resolution (bits) Full-scale Signed Reading (±A)
Delta Tau Recommended Maximum PWM Frequency (kHz) Minimum Dead Time (µs)
Charge Pump Time (% of PWM period.)
1.98 3.96 6.6 13.2 19.8
789 1578 2629 5259 7888
1Φ or 3Φ 1Φ or 3Φ 3Φ
1.5 3 5 10 15
4.5 9 10 20 30
359 717 1195 2390 3585
GAR78 GAR48
7.32 14.64
16 12 10
2
230
97-265
50/60
3380 5020
138
325
410
10
392
372
20-27
2A
4A
12
16.26 32.53
1
5
48.79
Note:
All values at ambient temperature of 0-45°C (113F) unless otherwise stated.
10 Specifications
Geo MACRO Drive User and Reference Manual
g
g
480VAC Input Drives
Main Input
Power
Bus
Protection
Shunt
Re
ulator
Ratings
Control
Lo
Power
Current
Feedback
Transistor
Control
GxH051 GxH101 GxH151 GxH201 GxH301
Output Circuits (axes) Nominal Input Voltage (VAC) Rated Input Voltage (VAC) Rated Continuous Input Current (A
AC
)
RMS
Rated Input Power (Watts) Frequency (Hz) Phase Requirements Charge Peak Inrush Current (A) Main Bus Capacitance (µf) Rated Output Voltage (V) @ Rated
Current Rated Cont. Output Current per Axis
Peak Output Current (A) for 2 seconds Rated Output Power per Axis (Watts) Nominal DC Bus Over-voltage Trip Level (VDC) Under-voltage Lockout Level (VDC) Turn-On Voltage (VDC) Turn-Off Voltage (VDC) 744 Delta Tau Recommended Load
Resistor (300 W Max.) Input Voltage (VDC)
Input Current (A)
ic
Inrush Current (A) Resolution (bits) Full-scale Signed Reading (±Amperes) Delta Tau Recommended PWM
Frequency (KHz) @ rated current Minimum Dead Time (µs)
Charge Pump Time (% of PWM period.)
1
480
300-525
3.3 6.6 9.9 13.2 19.8
2744 5487 8231 10974 16461
50/60
1Φ or 3Φ 3Φ
845 1255 1700
288
5 10 15 20 30
10 20 30 40 60
2494 4988 7482 9977 14965
678
828
20
784
GAR78 GAR48 GAR48-3
20-27
2A
4A
12
16.26 32.53 48.79 65.05 97.58
12 10 8
1.6
5
Note:
All values at ambient temperature of 0-45°C (113F) unless otherwise stated.
Specifications 11
Geo MACRO Drive User Manual
g
g
Main Input
Power
Bus
Protection
Shunt
Re
ulator
Ratings
Control
Lo
ic
Power
Current
Feedback
Transistor
Control
GxH012 GxH032 GxH052 GxH102 GxH152
Output Circuits (axes)
Nominal Input Voltage (VAC) Rated Input Voltage (VAC) Rated Continuous Input Current (A
AC
)
RMS
Rated Input Power (Watts) Frequency (Hz) Phase Requirements Charge Peak Inrush Current (A) Main Bus Capacitance (µf)
Rated Output Voltage (V) @ Rated Current Rated Cont. Output Current per Axis
Peak Output Current (A) for 2 seconds Rated Output Power per Axis (Watts)
Nominal DC Bus Over-voltage Trip Level (VDC) Under-voltage Lockout Level (VDC)
Turn-On Voltage (VDC)
1.98 3.96 6.6 13.2 19.8
1646 3292 5487 10974 16461
1Φ or 3Φ 3Φ
1.5 3 5 10 15
4.5 9 10 20 30
748 1496 2494 4988 7482
2
480
300-525
50/60
845 1255
288
678
828
20
784
Turn-Off Voltage (VDC) 744 Delta Tau Recommended Load Resistor
(300 W Max.) Input Voltage (VDC)
Input Current (A) Inrush Current (A)
Resolution (bits) Full-scale Signed Reading (±Amperes)
Delta Tau Recommended PWM Frequency (KHz) @ rated current
Minimum Dead Time (µs) Charge Pump Time (% of PWM period.)
7.32 14.64 16.26 32.53 48.79
GAR78 GAR48
20-27
2A
4A
12
12 10 8
1.6
5
Note:
All values at ambient temperature of 0-45°C (113F) unless otherwise stated.
12 Specifications
Geo MACRO Drive User and Reference Manual
Environmental Specifications
Description Unit Specifications
Operating Temperature °C +0 to 45°C. Above 45°C, derate the continuous peak output current by
2.5% per °C above 45°C. Maximum Ambient is 55°C Rated Storage Temperature °C -25 to +70 Humidity % 10% to 90% non-condensing Shock Call Factory Vibration Call Factory Operating Altitude Feet
(Meters)
Air Flow Clearances in (mm) 3" (76.2mm) above and below unit for air flow
To 3300 feet (1000meters). Derate the continuous and peak output current by 1.1% for each 330 feet (100meters) above the 3300feet
Recommended Fusing and Wire Gauge
Model Recommended Fuse (FRN/LPN) Recommended Wire Gauge*
GxL012xx 15 14 AWG GxL032xx 20 12 AWG GxL051xx 20 12 AWG GxL052xx 20 12 AWG GxL101xx 20 12 AWG GxL102xx 20 12 AWG GxL151xx 25 10 AWG GxL152xx 25 10 AWG GxL201xx 25 10 AWG GxL301xx 30 8 AWG
GxH012xx 15 14 AWG GxH032xx 20 12 AWG GxH051xx 20 12 AWG GxH052xx 20 12 AWG GxH101xx 20 12 AWG GxH102xx 20 12 AWG GxH151xx 25 10 AWG GxH152xx 25 10 AWG GxH201xx 25 10 AWG GxH301xx 30 8 AWG
* See local and national code requirements

Wire Sizes

Geo Drive electronics create a DC bus by rectifying the incoming AC electricity. The current flow into the drive is not sinusoidal but rather a series of narrow, high-peak pulses. Keep the incoming impedance small so that these current pulses are not hindered. Conductor size, transformer size, and fuse size recommendations may seem larger than normally expected. All ground conductors should be 8AWG minimum using wires constructed of many strands of small gauge wire. This provides the lowest impedance to high-frequency noises.
Specifications 13
Geo MACRO Drive User Manual
14 Specifications
Geo MACRO Drive User and Reference Manual
RECEIVING AND UNPACKING
Delta Tau products are thoroughly tested at the factory and carefully packaged for shipment. When the Geo Drive is received, do the following immediately.
1. Observe the condition of the shipping container and report any damage immediately to the commercial carrier that delivered the drive.
2. Remove the drive from the shipping container and remove all packing materials. Check all shipping material for connector kits, documentation, diskettes, CD ROM, or other small pieces of equipment. Be aware that some connector kits and other equipment pieces may be quite small and can be discarded accidentally if care is not used when unpacking the equipment. The container and packing materials can be retained for future shipment.
3. Verify that the part number of the drive received is the same as the part number listed on the purchase order.
4. Inspect the control for external physical damage that may have been sustained during shipment and report any damage immediately to the commercial carrier that delivered the controller.
5. Electronic components in this amplifier are design-hardened to reduce static sensitivity. However, use proper procedures when handling the equipment.
6. If the Geo Drive is to be stored for several weeks before use, be sure that it is stored in a location that conforms to published storage humidity and temperature specifications stated in this manual.
Use of Equipment
The following guidelines describe the restrictions for proper use of the Geo Drive:
The components built into electrical equipment or machines can be used only as integral components
of such equipment.
The Geo Drives are to be used only on grounded three-phase industrial mains supply networks (TN-
system, TT-system with grounded neutral point).
The Geo Drives must not be operated on power supply networks without a ground or with an
asymmetrical ground.
If the Geo Drives are used in residential areas, or in business or commercial premises, implement
additional filter measures.
The Geo Drives may be operated only in a closed switchgear cabinet, taking into account the ambient
conditions defined in the environmental specifications.
Delta Tau guarantees the conformance of the Geo Drives with the standards for industrial areas stated in this manual, only if Delta Tau components (cables, controllers, etc.) are used.
Receiving and Unpacking 15
Geo MACRO Drive User Manual
16 Receiving and Unpacking
Geo MACRO Drive User and Reference Manual
MOUNTING
The location of the controller is important. Installation should be in an area that is protected from direct sunlight, corrosives, harmful gases or liquids, dust, metallic particles, and other contaminants. Exposure to these can reduce the operating life and degrade the performance of the controller.
Several other factors should be evaluated carefully when selecting a location for installation:
For effective cooling and maintenance, the controller should be mounted on a smooth, non-flammable
vertical surface.
At least 3 inches (76mm) top and bottom clearance must be provided for airflow. At least 0.4 inches
(10mm) clearance is required between controls (each side).
Temperature, humidity and vibration specifications should also be considered.
The Geo Drives can be mounted with a traditional 4-hole panel mount, two U shape/notches on the bottom and two pear shaped holes on top. This keeps the heat sink and fan (single width and double width drives), inside the mounting enclosure. On the low profile units (low power), the heat sink and fan are replaced with a flat plate and the mounting enclosure itself is used as a heat sink. This reduces the depth of the Geo amplifier by about 2.2 inches (~56 mm) to a slim 5.8 inch D (150 mm D). Mounting is also identical to the single and double width drives through the 4-hole panel mount.
If multiple Geo drives are used, they can be mounted side-by-side, leaving at least to of a 0.4 inch clearance between drives. This means a 3.7 inch center-to-center distance (94 mm) with the single width and low profile Geo drives. Double width Geo amplifiers can be mounted side by side at 6.9 inch center­to-center distance (175 mm).
It is extremely important that the airflow is not obstructed by the placement of conduit tracks or other devices in the enclosure.
The drive is mounted to a back panel. The back panel should be unpainted and electrically conductive to allow for reduced electrical noise interference. The back panel should be machined to accept the mounting bolt pattern of the drive. Make sure that all metal chips are cleaned up before the drive is mounted so there is no risk of getting metal chips inside the drive.
The drive is mounted to the back panel with four M4 screws and internal-tooth lock washers. It is important that the teeth break through any anodization on the drive’s mounting gears to provide a good electrically conductive path in as many places as possible. Mount the drive on the back panel so there is airflow at both the top and bottom areas of the drive (at least three inches).
Caution:
Units must be installed in an enclosure that meets the environmental IP rating of the end product (ventilation or cooling may be necessary to prevent enclosure ambient from exceeding 45° C [113° F]).
Note:
For more detail drawings (SolidWorks, eDrawings, DXF) visit our website under
the product that you are looking for.
Mounting 17
Geo MACRO Drive User Manual
Low Profile
Gxx012xx
Mounting dimensions 3.30in./ 84mm 11.00in./ 280mm 5.79in./ 147.1mm 4.3lbs/ 1.95kgs
Width Height Depth Weight
MACRO Version, No Heatsink, No Fan
(5.79)
(2.70)
(11.00)
(10.625)
(3.30)
18 Mounting
Loading...
+ 175 hidden pages