Datasheet UPC8120T-E3, UPC8120T, UPC8119T-E3, UPC8119T Datasheet (NEC)

Page 1
DATA SHEET
BIPOLAR ANALOG INTEGRATED CI RCUITS
µµµµ
PC8119T,
µµµµ
VARIABLE GAIN AMPLIFIER SILICON MMIC
FOR TRANSMITTER AGC OF DIGITAL CELLULAR TELEPHONE
DESCRIPTION
The µPC8119T and µPC8120T are silicon monolithic integrated circuits designed as variable gain amplifier. Due to 100 MHz to 1.9 GHz operation, these ICs are suitable for RF transmitter AGC stage of digital cellular telephone. Two types of gain control let users choose in accordance with system design. 3 V supply voltage and mini mold package contribute to make system lower voltage, decreased space and fewer components.
The µPC8119T and µPC8120T are manufactured using NEC’s 20 GHz fT NESATTM III silicon bipolar process. This process uses silicon nitride passivation film and gold electrodes. These materials can protect chip surface from external pollution and prevent corrosion / migration. Thus, this IC has excellent performance, uniformity and reliability.
FEATURES
• Recommended operating frequency : f = 100 MHz to 1.92 GHz
• Supply voltage : VCC = 2.7 to 3.3 V
• Low current consumption : ICC = 11 mA
• Gain control voltage : V
• Two types of gain control :µPC8119T = V
• AGC control can be constructed by external control circuit.
• High-density surface mounting
AGC
= 0.6 to 2.4 V (recommended)
PC8120T = V
µ
TYP
. @ VCC = 3.0 V
AGC
up vs. Gain down (Forward control)
AGC
up vs. Gain up (Reverse control)
APPLICATIONS
• 1.9 GHz cordless telephone (PHS base-station and so on)
• 800 MHz to 900 MHz or 1.5 GHz Digital cellular telephone (PDC800M, PDC1.5G and so on)
ORDERING INFORMATION
Part Number Package Marking Supplying Form Gain Cont rol Type
µ
PC8119T-E3 C2M Forward control
µ
PC8120T-E3
Remark
Document No. P11027EJ2V0DS00 (2nd edition) Date Published October 1998 N CP(K) Printed in Japan
6-pin minimold
To order evaluation samples, please contact your local NEC sales office. (Part number for sample order:
The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.
Embossed tape 8 mm wide. 1, 2, 3 pins face to perforat i on side of the tape.
C2N
Caution Electro-static sensitive devices
The mark shows major revised points.
Qty 3 kp/reel.
PC8119T, µPC8120T)
µ
Reverse control
1996©
Page 2
PIN CONNECTIONS
µµµµ
PC8119T,
µµµµ
PC8120T
(Top View)
3
2
1
Marking is a example for PC8119T.
4
5
6
C2M
µ
(Bottom View)
4
5
6
Pin No. Pin Name
3
2
1
1 INPUT 2GND 3GND 4OUTPUT 5V 6V
VARIABLE GAIN AMPLIFIER PRODUCT LINE-UP
Part No. VCC (V) ICC (mA) V
PC2723T 4.5 to 5.5 15 3.3 to 5.0 down up to 1.1 –4
µ
PC8119T 2.7 to 3.3 11 0.6 to 2.4 down 0.1 t o 1.92 +3 Excellent VCC fluctuation
µ
PC8120T 2.7 to 3.3 11 0.6 to 2.4 up 0.1 to 1.92 +3
µ
PC8130TA 2.7 to 3.3 11 0.6 to 2.4 up 0.8 to 1.5 +5 Low distortion
µ
PC8131TA 2.7 to 3.3 11 0 to 2.4 down 0.8 to 1.5 +5 Low distor tion
µ
Remark
Typical performance. Please refer to ELECTRICAL CHARACTERISTICS in detail.
AGC
(V) V
AGC
up vs.Gain f (GHz) P
O (1 dB)
Features
To know the associated product, please refer to each latest data sheet.
CC
AGC
SYSTEM APPLICATION EXAMPLE
LNA
RX
SW
µ µ
TX
PA
PC8119T
or
PC8120T
÷N PLL
DEMO
PLL
0°
φ
90°
I
Q
I
Q
2
Page 3
PIN EXPLANATION
µµµµ
PC8119T,
µµµµ
PC8120T
Pin
Pin Name
No.
1 IN 1.2 RF input pin. This pin should be
2 3
4 OUT Voltage
5VCC2.7 to 3.3 Supply voltage pin. This pin must
6V
GND 0 Ground pin. This pin should be
AGC
Applied Voltage
V
as same
CC
as V through external inductor
0 to 3.3
Pin Voltage
Note
V
Function and Applications Internal Equivalent Circ ui t
coupled with capacitor (eg 1000 pF) for DC cut. This pin can be input from 50 Ω impedance signal source without matching circuit.
connected to system ground with minimum inductance. Ground pattern on the board should be formed as wide as possible.
RF output pin. This pin is designed as open collector of high impedance. This pin must be externall y equipped with matching circ ui t s.
be externally equipped with low pass filter (eg π type) in order to suppress leakage from input pi n. This pin also must be equipped with bypass capacit or (eg 1000 pF) to minimize ground impedance.
Gain control pin. The relation between product number and control performance is s hown below;
Part No. V PC8119T
µ
PC8120T
µ
AGC
up vs. Gain
down
up
Control
circuit
6
5 4
1
Bias circuit
2 3
5
Control circuit
2 3
Pin voltage is measured at V
Note
CC
= 3.0 V.
3
Page 4
ABSOLUTE MAXIMUM RATINGS
Parameter Symbol Conditions Ratings Unit
µµµµ
PC8119T,
µµµµ
PC8120T
AGC
T
CC
TA = +25°C 3.6 V TA = +25°C 3.6 mA
A
40 to +85 °C
Supply Voltage V Gain Control Voltage V Operating Ambient
Temperature Storage Temperature T Power Dissipation of
Package
stg
D
P
Mounted on double-sided copper-clad 50 × 50 × 1.6
–55 to +150 °C
mm epoxy glass PWB
A
= +85°C
T
RECOMMENDED OPERATING CONDITIONS
Parameter Symbol MIN. TYP. MAX. Unit Notice
AGC
T
AGC
CC
2.7 3.0 3.3 V Same voltage should be applied to 4 and 5 pins.
0.6–2.4VI
in
–18
dBm
–10
A
–40 +25 +85 °C
0.5 mA V
AGC
≤ 0.1 mA
adj
P
≤ –60 dBc @ ∆f = ±50 kHz
adj
P
≤ –60 dBc @ ∆f = ±600 kHz
AGC
≤ 3.3 V
Supply Voltage V
Gain Control Voltage V Input Level P
Operating Ambient Temperature
Operating Frequency f 100 1920 MHz With external output-matching AGC Pin Drive Current I
280 mW
Note 1
Note 2
Notes 1.
Adjacent Channel Interference (P
adj
) wave form condition: f = 950 MHz or 1440 MHz, π/4QPSK modulation signal, data rate = 42 kbps, rolloff ratio = 0.5, PN9 bits (pseudo random pattern) Adjacent Channel Interference (P
2.
adj
) wave form condition: f = 1900 MHz, π/4QPSK modulation signal,
data rate = 384 kbps, rolloff ratio = 0.5, PN9 bits (pseudo random pattern)
4
Page 5
ELECTRICAL CHARACTERISTICS (Unless otherwise specified, TA = +25°C, VCC = V
out
= 3.0 V, ZS = ZL = 50
µµµµ
PC8119T,
, External matched output port)
ΩΩΩΩ
µµµµ
PC8120T
Parameter Symbol Test Conditions
Circuit Current I Maximum Power Gain G
CC
PMAX
No signal, ICC = I f = 950 MHz, Pin = –30 dBm
f = 1440 MHz, P
Gain Control Range
Note
GCR f = 950 MHz, P i n = –30 dB m
f = 1440 MHz, Pin = –30 dBm
Noise Figure NF f = 950 MHz, G
f = 1440 MHz, G
Isolation ISL f = 950 MHz, G
f = 1440 MHz, G
Input Return Loss RL
in
f = 950 MHz, G f = 1440 MHz, G
1 dB Compression Output Power
Gain Control Range (GCR) specification: GCR = G
Note
ConditionsµPC8119T: G
PC8120T: G
µ
O (1 dB)
P
PMAX PMAX
@ V @ V
f = 950 MHz, G f = 1440 MHz, G
AGC
= 0 V, G
AGC
= VCC, G
VCC
+ I
in
= –30 dBm
PMAX
PMAX
PMAX
PMAX
PMAX
PMAX
PMAX
PMAX
PMAX
PMIN
@ V
PMIN
@ V
PC8119T
µ
PC8120T
µ
Unit
MIN. TYP. MAX. MIN. TYP. MAX.
out
7.5 11 15 7.5 11 15 mA
101012.513151610.5
10.51313.5
15.5
16.5
dB
40355045––40355045–dB
––8.5
7.5
11.5
10.5––
9.0
7.51210.5
dB
27313236––26303135––dB
3
6
3
6
––dB
3
6
3
6
0
+0.50+3.5+3––dBm
+1.0+3+4––
PMIN
– G
AGC
AGC
= V
= 0 V
(dB)
CC
Remark
Measured on TEST CIRCUIT 1 and 2
STANDARD CHARACTERISTICS FOR REFERENCE
A
(Unless otherwise specified, T
= +25°C, VCC = V
Parameter Symbol Test Conditions
Maximum Power Gain G Gain Control Range
Note
PMAX
f = 1900 MHz, Pin = –30 dBm 12.5 13 dB
GCR f = 1900 MHz, Pin = –30 dBm 22 22 dB Noise Figure NF f = 1900 MHz, G 1 dB Compression Output Power P
Gain Control Range (GCR) specification: GCR = G
Note
ConditionsµPC8119T: G
PC8120T: G
µ
Remark
Measured on APPLICATION CIRCUIT EXAMPLE
O (1 dB)
PMAX PMAX
f = 1900 MHz, G
@ V @ V
AGC
= 0 V, G
AGC
= VCC, G
out
= 3.0 V, ZS = ZL = 50
PMAX
PMAX
PMIN
PMIN
PMAX
@ V
@ V
– G
AGC
AGC
PMIN
= V
= 0 V
(dB)
CC
, External matched output port)
ΩΩΩΩ
Reference Value
PC8119T
µ
PC8120T
µ
7.2 7.3 dB
+3.0 +2.5 dBm
Unit
5
Page 6
TEST CIRCUIT1 (f = 950 MHz, both products in common)
Vcc line low pass filter
C6
Jumper wire
V
AGC
IN
1000 pF
1000 pF
C4
C1
1
1000 pF
6
C3
5
2, 3
4
C5
1000 pF
L 5 nH
Output matching circuit
1000 pF
C2
1 pF
ILLUSTRATION OF TEST CIRCUIT1 ASSEMBLED ON EVALUATION BOARD
TYPE1
PC8119/20T
µ
µµµµ
PC8119T,
C7 1000 pF
OUT
OUT
µµµµ
PC8120T
V
CC
C1
IN
IN
COMPONENT LIST
Form Symbol Value
C1, C3 to C7 1000 pFChip capacitor
C2 Chip inductor L Jumper wire Jumper wire 5 nH
5 nH (10 nH × 2 pcs parallel)
1 pF
C3
Note 1
C4
L
C5
VAGC
Note 2
C2
C6
Jumper wire
V
AGC
C7
OUT
V
CC
Notes 1.
6
1 pF : Murata Mfg. Co., Ltd. GR40CK010C 10 nH: Murata Mfg. Co., Ltd. LQP31A10NG04
2.
Page 7
µµµµ
PC8119T,
TEST CIRCUIT2 (f = 1440 MHz, both products in common)
Vcc line low pass filter
C6
Pattern L
V
AGC
IN
1000 pF
1000 pF
C4
C1
1
1000 pF
6
C3
5
2, 3
4
C5
1000 pF
L 2 nH
Output matching circuit
1000 pF
C2
1 pF
ILLUSTRATION OF TEST CIRCUIT2 ASSEMBLED ON EVALUATION BOARD
TYPE2
PC8119/20T
µ
C7 1000 pF
OUT
OUT
µµµµ
PC8120T
V
CC
VAGC
1
VAGC
IN
C1
IN
COMPONENT LIST
Form Symbol Value
C1, C3 to C7 1000 pFChip capacitor
C2 Chip inductor L Printed on board Pat t ern L 5 nH
2 nH (4.7 nH + 6.8 nH × 2 pcs parallel)
1 pF
C4
C3
Note 1
Pattern L
C4
C5
(5 nH)
C2
L
C6
C7
C7
Vcc
Note 2
GND
OUT
CC
V
(Monitor of Vcc pin)
Notes 1.
1 pF : Murata Mfg. Co., Ltd. GR40CK010C
4.7 nH: Murata Mfg. Co., Ltd. LQP31A4N7J04
2.
6.8 nH: Murata Mfg. Co., Ltd. LQP31A6N8J04
7
Page 8
µµµµ
PC8119T,
APPLICATION CIRCUIT EXAMPLE (f = 1900 MHz, both products in common)
Vcc line low pass filter
C6
Jumper wire
V
AGC
IN
1000 pF
1000 pF
C4
C1
1
1000 pF
6
C3
2, 3
C5
1000 pF
L 100 nH
5
4
1000 pF
1000 pF
C2
Output matching circuit
C8
2 to 2.5 pF
C7 1000 pF
OUT
ILLUSTRATION OF APPLICATION CIRCUIT EXAMPLE ASSEMBLED ON EVALUATION BOARD
TYPE1
PC8119/20T
µ
OUT
µµµµ
PC8120T
V
CC
C1
IN
IN
COMPONENT LIST
Form Symbol Value
C1 to C7 1000 pFChip capacitor
C8 2 to 2.5 pF Chip inductor L Printed on board Jumper wire 5 nH
100 nH
Note
C4
L
C5
VAGC
C8
C2
C6
Jumper wire
V
AGC
C7
GND
OUT
CC
V
8
100 nH: Murata Mfg. Co., Ltd. LQP31A10NG04
Note
Page 9
LLUSTRATION AND EXPLANATIONS OF EVALUATION BOARD
TYPE2
PC8119/20T
µ
VAGC
1
µµµµ
PC8119T,
OUT
OUT
µµµµ
PC8120T
IN
IN
Vcc
V
AGC
V
CC
EXPLANATION
<1> This board prints the pattern inductor which inductance is as same as jumper wire in TEST CIRCUITs
(inductance: approx. 5 nH to 6 nH).
<2> Input leakage to V
type low pass filter attached to VCC pin. The filter performance depends on parallel capacitors.
<3> After adjusted low pass filter, monitor line should be removed before output matching circuit is attached.
EVALUATION BOARD CHARACTERS
(1) 35 µm thick double-sided copper clad 35 × 42 × 0.4 mm polyimide board (2) Back side: GND pattern (3) Solder plated patterns (4) : Through holes
ATTENTION
Test circuit or print pattern in this sheet is for testing IC characteristics. In the case of actual system application, external circuits including print pattern and matching circuit constant of output port should be designed in accordance with IC’s S parameters and environmental components.
CC
pin can be monitored through ‘VCC monitor line’. This leakage can be suppressed with
Vcc monitor line
π
9
Page 10
µµµµ
PC8119T,
µµµµ
PC8120T
APPLICATION for
1. TO GET MINIMUM GAIN
–1. VCC line filtering
A low pass filter must be attached to V filter: for example π type.) This filter must be inserted between VCC pin and matching inductor. If the low pass filter is not attached to this point, minimum output level would not go down under the leakage level. For example, µPC8119T’s RF input leakage level to VCC shows –30 dBm at 950 MHz and –17 dBm at 1440 dBm.
type low pass filter constant example
π
Pattern L = 5 to 6 nH, C5 = C6 = 1000 pF (Refer to TEST CIRCUIT1, 2 and APPLICATION CIRCUIT EXAMPLE) In the case of testing on ‘µPC8119/20T TYPE2’ board, monitor the input leakage to VCC pin through ‘V monitor line’ and adjust parallel capacitors to suppress leakage.
–2. Capacitor feed-back between V
Feed-back capacitor between V impedance difference.
PC8119T,
µµµµ
µµµµ
PC8120T
CC
line in order to suppress RF input leakage to VCC. (The low pass
AGC
and VCC pins
AGC
and VCC pins must be externally attached in order to decrease
CC
2. TO GET MAXIMUM GAIN
–1. Output matching
As for external matching circuit, only output port should be equipped in order to get maximum gain. Output port matching in accordance with impedance of these ICs and next stage must keep the points as follows; <1> AC points
• IC output impedance at maximum gain must be used.
• Inductance of L must be chosen to get S22 ~ –20 dBm at maximum gain.
<2> DC point
• On LC matching, L of low DC resistance must be chosen to apply voltage as same as VCC to output pin.
3. OTHERS
–1. Input connection
Input port does not need to match externally. These ICs can be connected to front stage through coupling capacitor (eg 1000 pF) for DC cut.
CC
–2. V
ON/OFF while voltage applied to V
Due to internal transistor’s voltage rating, ON/OFF can be controlled with VCC voltage while 3.0 V or less is applied to V
AGC
.
AGC
10
For the usage and application of µPC8119T and µPC8120T, please refer to the application note (Document No. P12763E).
Page 11
TYPICAL CHARACTERISTICS (TA = +25°C)
PC8119T
µµµµ
µµµµ
PC8119T,
µµµµ
PC8120T
CIRCUIT CURRENT vs. SUPPLY VOLTAGE
14
no signals
V
cc
= V
12
10
(mA)
CC
8
out
6
4
Circuit Current I
2
0
01234
Supply Voltage VCC (V)
CIRCUIT CURRENT vs. OPERATING AMBIENT TEMPERATURE
18
no signals
16
V
cc
= V
out
14
(mA)
12
CC
Vcc = 3.3 V
10
8 6
Circuit Current I
4
Vcc = 2.7 V
Vcc = 3.0 V
2 0
–50 –25 0 +25 +50 +5 +100
Operating Ambient Temperature TA (°C)
GAIN CONTROL CURRENT vs. GAIN CONTROL VOLTAGE
150
no signals
V
cc
= V
125
µ
( A)
AGC
100
75
50
25
Gain Control Current I
0
0 0.5 1 1.5 2 2.5 3 3.5
out
Vcc = 3.0 V
Vcc = 3.3 V
Gain Control Voltage V
Vcc = 2.7 V
AGC
(V)
CURRENT INTO OUTPUT PIN AND CURRENT INTO V vs. GAIN CONTROL VOLTAGE
14
(mA)
(mA)
out
CC
pin IV
CC
12
10
8
no signals V
cc
= V
out
Vcc = 3.3 V Vcc = 3.0 V
Vcc = 2.7 V
Vcc = 3.3 V
Vcc = 3.0 V
Vcc = 2.7 V
IV
CC
6
I
out
4
Current into V
Current into Output pin I
2
0
0 0.5 1 1.5 2 2.5 3 3.5
Gain Control Voltage V
AGC
(V)
CC
PIN
S11 vs. FREQUENCY
cc
= V
out
= 3.0 V, V
V
: 900 MHz
1
52.545 – 39.801 : 1500 MHz
2
33.402 – 32.457 : 1900 MHz
3
27.989 – 24.408
AGC
= 0 V (GPMAX), Pin = –30 dBm
S
22
vs. FREQUENCY
cc
= V
out
= 3.0 V, V
V
AGC
= 0 V (GPMAX)
: 900 MHz
1
36.039 – 190.09 : 1500 MHz
2
39.668 – 125.84 : 1900 MHz
3
34.668 – 106.88
2
1
3
2
1
3
START 100.000 000 MHz STOP 3 100.000 000 MHz START 100.000 000 MHz STOP 3 100.000 000 MHz
11
Page 12
PC8119T
µµµµ
Output port matching at f = 950 MHz
Vcc = V
out
= 3.0 V, V
S
11 vs. FREQUENCY
AGC
= 0 V (GPMAX), Pin = –30 dBm
1; 39.367 –52.375 3.1987 pF
950.000 000 MHz
S
22 vs. FREQUENCY
µµµµ
PC8119T,
1; 59.756 –11.957 14.011 pF
µµµµ
PC8120T
950.000 000 MHz
MARKER 1
950 MHz
1
START 100.000 000 MHz STOP 3 100.000 000 MHz
S11 vs. FREQUENCY
AGC = 0 V (GPMAX), Pin = –30 dBm
V
10
0
–10
–20
S11log MAG
5 dB/ REF 0 dB 1: –6.1221 dB
950.000 000 MHz
1
Vcc = 2.7 V
Vcc = 3.0 V
Vcc = 3.3 V
MARKER 1
950 MHz
1
START 100.000 000 MHz STOP 3 100.000 000 MHz
S11 vs. FREQUENCY
cc = 3.0 V, VAGC = 0 V (GPMAX), Pin = –30 dBm
V
S11log MAG
10
0
5 dB/ REF 0 dB 1: –5.8713 dB
TA = +85 °C
950.000 000 MHz
TA = +25 °C
1
–10
–20
TA = –40 °C
–30
–40
START 100.000 000 MHz STOP 3 100.000 000 MHz
S
22 vs. FREQUENCY AGC = 0 V (GPMAX), Pin = –30 dBm
V
S22log MAG
10
5 dB/ REF 0 dB 1: –15.889 dB
950.000 000 MHz
0
–10
–20
–30
–40
START 100.000 000 MHz STOP 3 100.000 000 MHz
Vcc = 2.7 V Vcc = 3.0 V Vcc = 3.3 V
12
–30
–40
START 100.000 000 MHz STOP 3 100.000 000 MHz
22 vs. FREQUENCY
S
cc = 3.0 V, VAGC = 0 V (GPMAX), Pin = –30 dBm
V
S22log MAG 5 dB/ REF 0 dB 1: –15.858 dB
10
950.000 000 MHz
0
–10
TA = +85 °C TA = +25 °C
–20
TA = –40 °C
–30
–40
START 100.000 000 MHz STOP 3 100.000 000 MHz
Page 13
PC8119T
µµµµ
Output port matching at f = 950 MHz
µµµµ
PC8119T,
µµµµ
PC8120T
S
21
vs. FREQUENCY
AGC
= 0 V (GPMAX), Pin = –30 dBm
V
S21log MAG
16
14
12
10
8
6
START 100.000 000 MHz STOP 3 100.000 000 MHz
S12 vs. FREQUENCY
AGC
V
S12log MAG
0
–10
–20
–30
1 dB/ REF 6 dB 1: 12.738 dB
950.000 000 MHz
Vcc = 3.3 V Vcc = 3.0 V
Vcc = 2.7 V
= 0 V (GPMAX), Pin = –30 dBm
5 dB/ REF 0 dB 1: –31.911 dB
950.000 000 MHz
Vcc = 3.3 V
1
Vcc = 3.0 V
S
21
vs. FREQUENCY
cc
= 3.0 V, V
V
S21log MAG
16
14
12
10
8
6
START 100.000 000 MHz STOP 3 100.000 000 MHz
S12 vs. FREQUENCY
cc
= 3.0 V, V
V
S12log MAG
0
–10
–20
–30
AGC
= 0 V (GPMAX), Pin = –30 dBm
1 dB/ REF 6 dB 1: 12.854 dB
950.000 000 MHz
TA = –40 °C TA = +25 °C TA = +85 °C
AGC
= 0 V (GPMAX), Pin = –30 dBm
5 dB/ REF 0 dB 1: –32.053 dB
950.000 000 MHz
TA = –40 °C TA = –25 °C
1
TA = –85 °C
–40
–50
START 100.000 000 MHz STOP 3 100.000 000 MHz
Vcc = 2.7 V
–40
–50
START 100.000 000 MHz STOP 3 100.000 000 MHz
13
Page 14
PC8119T
µµµµ
Output port matching at f = 950 MHz
µµµµ
PC8119T,
µµµµ
PC8120T
POWER GAIN vs. GAIN CONTROL VOLTAGE
20 10
0
(dB)
P
–10 –20
–30
Power Gain G
–40
Vcc = 2.7 V
Vcc = 3.3 V
Vcc = 3.0 V
–50 –60
0 0.5 1 1.5 2 2.5 3 3.5
Gain Control Voltage V
AGC
(V)
S21 vs. FREQUENCY DEPENDENCE OF GAIN CONTROL VOLTAGE
cc
= 3.0 V, Pin = –30 dBm
V
S21log MAG
V
AGC
V
AGC
10
V
AGC
V
AGC
V
AGC
V
AGC
0
= 1.2 V = 1.4 V = 1.6 V = 1.7 V = 1.8 V = 1.9 V
5 dB/ REF 0 dB 1:12.926 dB
1
V
AGC
= 0 V = 0.9 V = 1.0 V
950.000 000 MHz
V
AGC
V
AGC
–10
–20
V
AGC
= 2.0 V
V
AGC
–30
= 2.1 V
START 100.000 000 MHz STOP 3 100.000 000 MHz
POWER GAIN vs. GAIN CONTROL VOLTAGE
20 10
(dB)
P
0
TA = +75 °C
TA = +25 °C TA = –25 °C
–10 –20
TA = –25 °C
–30
Power Gain G
–40 –50 –60
0 0.5 1 1.5 2 2.5 3 3.5
TA = +25 °C
Gain Control Voltage V
AGC
TA = +75 °C
(V)
S12 vs. FREQUENCY DEPENDENCE OF GAIN CONTROL VOLTAGE
cc
= 3.0 V, Pin = –30 dBm
V
S12log MAG
0
5 dB/ REF 0 dB 1: –32.063 dB
950.000 000 MHz
–10
–20
V
AGC
= 0 V
–30
1
V
AGC
= 3.0 V
–40
–50
START 100.000 000 MHz STOP 3 100.000 000 MHz
S
11
vs. FREQUENCY DEPENDENCE OF GAIN
CONTROL VOLTAGE
cc
= 3.0 V, Pin = –30 dBm
V
S11log MAG
10
0
5 dB/ REF 0 dB 1: –5.7199 dB
950.000 000 MHz
V
AGC
= 3.0 to 2.0 V
V
AGC
= 1.8 V
V
AGC
1
= 1.6 V
–10
V
AGC
= 1.4 V
–20
V
AGC
V
AGC
= 1.2 V = 1.0 V
V
–30
START 100.000 000 MHz STOP 3 100.000 000 MHz
14
AGC
= 0 to 0.7 V
S
22
vs. FREQUENCY DEPENDENCE OF GAIN
CONTROL VOLTAGE
cc
= 3.0 V, Pin = –30 dBm
V
10
S22log
MAG
5 dB/ REF 0 dB 1: –15.219 dB
950.000 000 MHz
0
V
AGC
–10
–20
= 1.4 V
V
AGC
= 0 to 0.7 V
V
AGC
= 3.0 to 2.4 V
–30
START 100.000 000 MHz STOP 3 100.000 000 MHz
Page 15
PC8119T
µµµµ
Output port matching at f = 950 MHz
OUTPUT POWER vs. INPUT POWER OUTPUT POWER vs. INPUT POWER
+10
f = 950 MHz V
AGC
= 0 V
+5
0
(dBm)
out
–5
–10
Output Power P
–15
–20
Input Power P
Vcc = 3.3 V
Vcc = 3.0 V
in
(dBm)
Vcc = 2.7 V
+10
f = 950 MHz V
CC
= 3.0 V
0
–10
(dBm)
out
–20 –30 –40 –50
Output Power P
–60 –70
–30 –25 –20 –15 –10 –5 0 +5 +10–30 –25 –20 –15 –10 –5 0 +5 +10
µµµµ
PC8119T,
V
AGC
= 2.00 V
V
AGC
= 2.15 V
Input Power Pin (dBm)
V
AGC
V
AGC
µµµµ
PC8120T
= 0 V
V
AGC
= 1.60 V
= 1.85 V
OUTPUT POWER vs. INPUT POWER
+10
f = 950 MHz V
CC
= 3.3 V
0
–10
(dBm)
out
–20
V
V
AGC
AGC
= 0 V
= 1.6 V
V
AGC
= 1.9 V
V
AGC
= 2.05 V
–30 –40
V
AGC
–50
Output Power P
= 2.2 V
–60
V
AGC
–70
–30 –25 –20 –15 –10 –5 0 +5 +10
= 3.3 V
Input Power Pin (dBm)
OUTPUT POWER vs. INPUT POWER
+10
f = 950 MHz
V
CC
= 2.7 V
0
V
AGC
= 0 V
–10
(dBm)
out
–20 –30
V
AGC
V
AGC
V
AGC
= 1.55 V = 1.8 V
= 1.95 V
–40
V
AGC
= 2.1 V
–50
Output Power P
–60 –70
–30 –25 –20 –15 –10 –5 0 +5 +10
Input Power Pin (dBm)
15
Page 16
PC8119T
µµµµ
Output port matching at f = 950 MHz
µµµµ
PC8119T,
µµµµ
PC8120T
OUTPUT POWER AND IM3 vs. INPUT POWER
+10
P
IM
out
3
(dBm)
3
(dBm)
out
0 –10 –20 –30
2f2 – f1 (952 MHz)
–40 –50 –60 –70
Third Order Intermodulation Distortion IM
Output Power of each tone P
2f1 – f2 (949 MHz)
cc
= 3.0 V
V V
AGC
= 0 V (GPMAX) f1 = 950 MHz f2 = 951 MHz
–30 –25 –20 –15 –10 –5 0
in
(dBm)
3
vs. INPUT POWER
P
out
(dBm)
3
(dBm)
out
OUTPUT POWER AND IM
+10
cc
= 3.0 V
V
AGC
= 1.85 V
V
0
~
P
10 dB)
(G
~
1
= 950 MHz
f
–10
2
= 951 MHz
f
–20
Input Power P
–30
IM
–40 –50
2f2 – f1 (952 MHz)
3
2f1 - f2 (949 MHz)
–60 –70
Third Order Intermodulation Distortion IM
Output Power of each tone P
–30 –25 –20 –15 –10 –5 0
Input Power P
in
(dBm)
3
OUTPUT POWER AND IM
vs. INPUT POWER
+10
(dBm)
3
0
P
IM
out
3
(dBm)
out
–10 –20 –30
2f2 – f1 (952 MHz)
–40 –50 –60
Third Order Intermodulation Distortion IM
Output Power of each tone P
–70
2f1 – f2 (949 MHz)
Vcc = 3.0 V V
AGC
= 1.6 V (GP dB) f1 = 950 MHz f2 = 951 MHz
–30 –25 –20 –15 –10 –5 0
in
(dBm)
3
vs. INPUT POWER
P
out
IM
3
(dBm)
3
(dBm)
out
OUTPUT POWER AND IM
+10
Vcc = 3.0 V
AGC
= 2.0 V
V
~
0
P
–20 dB)
(G
~
1
= 950 MHz
f
2
= 951 MHz
f
–10 –20 –30 –40 –50
2f2 – f1 (952 MHz)
Input Power P
–60
Third Order Intermodulation Distortion IM
Output Power of each tone P
–70
2f1 – f2 (949 MHz)
–30 –25 –20 –15 –10 –5 0
Input Power P
in
(dBm)
~
~
OUTPUT POWER AND IM
+10
0 –10 –20
Vcc = 3.0 V V
AGC
= 2.15 V
~
(G
P
–30 dB)
~
f1 = 950 MHz f2 = 951 MHz
(dBm)
3
(dBm)
out
–30 –40 –50 –60
Third Order Intermodulation Distortion IM
Output Power of each tone P
–70
2f2 – f1 (952 MHz)
–30 –25 –20 –15 –10 –5 0
Input Power P
16
3
vs. INPUT POWER
P
out
IM
3
2f1 – f2 (949 MHz)
in
(dBm)
(dBm)
3
(dBm)
out
OUTPUT POWER AND IM
+10
V
cc
= 3.0 V
V
AGC
0
–10
= 2.3 V
~
(GP –40 dB)
~
f1 = 950 MHz f2 = 951 MHz
–20
3
vs. INPUT POWER
–30 –40
P
IM
out
3
–50
2f2 – f1 (952 MHz)
–60
Third Order Intermodulation Distortion IM
Output Power of each tone P
–70
–30 –25 –20 –15 –10 –5 0
Input Power P
in
(dBm)
2f1 – f
2
(949 MHz)
Page 17
PC8119T
µµµµ
Output port matching at f = 950 MHz
OUTPUT POWER AND IM3 vs. INPUT POWER OUTPUT POWER AND IM3 vs. INPUT POWER
+10
P
(dBm)
3
0
out
+10
(dBm)
3
0
µµµµ
PC8119T,
µµµµ
PC8120T
P
out
–10
IM
(dBm)
out
–20
3
–30 –40 –50
–60
Third Order Intermodulation Distortion IM
Output Power of each tone P
–70
–30 –25 –20 –15 –10 –5 0
Input Power P
2f1 – f2 (949 MHz)
Vcc = 3.3 V
AGC
V
1
= 950 MHz
f
2
= 951 MHz
f
in
(dBm)
ADJACENT CHANNEL INTERFERENCE vs. INPUT POWER
–20
f = 950 MHz
AGC
= 0 V (GPMAX)
–30
–40
–50
V
V V Vcc = 3.3 V
V
cc
= 2.7 V
V
cc
= 3.0 V
Vcc = 3.3 V
cc
= 2.7 V
cc
= 3.0 V
±100
±100
±100
±50
±50
±50
kHz
kHz
kHz
kHz kHz kHz
(dBc)
adj
–60
–70
= 0 V (GPMAX)
–10
IM
(dBm)
out
–20 –30
2f2 – f1 (952 MHz)2f2 – f1 (952 MHz)
–40 –50
–60
Third Order Intermodulation Distortion IM
Output Power of each tone P
–70
–30 –25 –20 –15 –10 –5 0
3
2f1 – f2 (949 MHz)
Vcc = 2.7 V
AGC
= 0 V (GPMAX)
V
1
= 950 MHz
f
2
= 951 MHz
f
Input Power Pin (dBm)
ADJACENT CHANNEL INTERFERENCE vs. GAIN CONTROL VOLTAGE
–45
(dBc)
adj
f = 950 MHz V
cc
–50
–55
–60
= 3.0 V
Pin = –17.4 dBm ±50 kHz Pin = –19.4 dBm ±50 kHz
–65
–70
∆ ∆
Pin = –17.4 dBm ±100 kHz Pin = –19.4 dBm ±100 kHz
∆ ∆
Adjacent Channel Interference P
–80
–30 –25 –20 –15 –10 –5 0
in
Input Power P
(dBm)
Adjacent Channel Interference P
–75
0 0.5 1 1.5 2 2.5 3
Gain Control Voltage V
AGC
(V)
17
Page 18
PC8119T
µµµµ
Output port matching at f = 1440 MHz
µµµµ
PC8119T,
µµµµ
PC8120T
Vcc = 3.0 V, V
S
11 vs. FREQUENCY
AGC
= 0 V (GPMAX), Pin = –30 dBm
1; 36.172 –45.977 2.4039 pF
1 440.000 000 MHz
MARKER 1
1.44 MHz
1
START 100.000 000 MHz STOP 3 100.000 000 MHz
S11 vs. FREQUENCY V
AGC
= 0 V (GPMAX), Pin = –30 dBm
S11log MAG
10
MARKER 1
1.44 GHz
0
5 dB/ REF 0 dB 1: –6.1588 dB
1 440.000 000 MHz
Vcc = 2.7 V
Vcc = 3.0 V
1
S
22 vs. FREQUENCY
1; 48.932 –13.582 8.1375 pF
1 440.000 000 MHz
MARKER 1
1.44 MHz
1
START 100.000 000 MHz STOP 3 100.000 000 MHz
11
vs. FREQUENCY
S V
cc
= 3.0 V, V
S11log MAG
10
AGC
= 0 V (GPMAX) , Pin = –30 dBm
5 dB/ REF 0 dB 1: –6.2593 dB
1 440.000 000 MHz
MARKER 1
1.44 GHz
0
TA = +85 °C
TA = +25 °C
1
–10
Vcc = 3.3 V
–20
–30
START 100.000 000 MHz STOP 3 100.000 000 MHz
22
vs. FREQUENCY
S V
AGC
= 0 V (GPMAX), Pin = –30 dBm
5 dB/ REF 0 dB 1: –17.51 dB
10
MARKER 1
1 440.000 000 MHz
1.44 GHz
0
–10
Vcc = 3.3 V Vcc = 3.0 V
–20
Vcc = 2.7 V
–30
START 100.000 000 MHz STOP 3 100.000 000 MHz
–10
TA = –40 °C
–20
–30
START 100.000 000 MHz STOP 3 100.000 000 MHz
22
vs. FREQUENCY
S V
cc
10
= 3.0 V, V
S22log
MARKER 1
AGC
= 0 V (GPMAX), Pin = –30 dBm
MAG
5 dB/ REF 0 dB 1: –16.978 dBS22log MAG
1 440.000 000 MHz
1.44 GHz
0
–10
–20
TA = +85 °C
TA = +25 °C TA = –40 °C
–30
START 100.000 000 MHz STOP 3 100.000 000 MHz
18
Page 19
PC8119T
µµµµ
Output port matching at f = 1440 MHz
µµµµ
PC8119T,
µµµµ
PC8120T
S21 vs. FREQUENCY
AGC
= 0 V (GPMAX), Pin = –30 dBm
V
S21log MAG
16
MARKER 1
14
1.44 GHz
12
10
8
6
START 100.000 000 MHz STOP 3 100.000 000 MHz
12
vs. FREQUENCY
S V
AGC
= 0 V (GPMAX), Pin = –30 dBm
S12log MAG
0
MARKER 1
–10
1.44 GHz
1 dB/ REF 6 dB 1:13.355 dB
1 440.000 000 MHz
1
Vcc = 3.3 V Vcc = 3.0 V
Vcc = 2.7 V
5 dB/ REF 0 dB 1: –35.55 dB
1 440.000 000 MHz 1 440.000 000 MHz
21
vs. FREQUENCY
S
cc
= 3.0 V, V
V
S21log MAG
16
MARKER 1
14
1.44 GHz
12
10
8
6
START 100.000 000 MHz STOP 3 100.000 000 MHz
S
12
vs. FREQUENCY
cc
= 3.0 V, V
V
S12log
0
MARKER 1
–10
1.44 GHz
AGC
= 0 V (GPMAX), Pin = –30 dBm
1 dB/ REF 6 dB 1: –13.23 dB
TA = –40 °C
1
TA = +25 °C
TA = +85 °C
AGC
= 0 V (GPMAX), Pin = –30 dBm
MAG
5 dB/ REF 0 dB 1: –36.039 dB
1 440.000 000 MHz
–20
Vcc = 3.3 V
–30
–40
–50
START 100.000 000 MHz STOP 3 100.000 000 MHz
1
Vcc = 3.0 V Vcc = 2.7 V
–20
TA = +85 °C
–30
–40
–50
TA = –40 °C
START 100.000 000 MHz STOP 3 100.000 000 MHz
1
TA = +25 °C
19
Page 20
PC8119T
µµµµ
Output port matching at f = 1440 MHz
µµµµ
PC8119T,
µµµµ
PC8120T
POWER GAIN vs. GAIN CONTROL VOLTAGE
+20 +10
0
(dB)
P
–10 –20 –30
Power Gain G
–40
Vcc = 3.3 V
Vcc = 3.0 V
Vcc = 2.7 V
–50 –60
0 0.5 1 1.5 2 2.5 3 3.5
Gain Control Voltage V
21
vs. FREQUENCY DEPENDENCE OF GAIN
S
AGC
(V)
CONTROL VOLTAGE V
cc
= 3.0 V, Pin = –30 dBm
10
0
–10
–20
–30
S21log MAG
V
AGC
= 0 to 0.6 V
V
AGC
= 0.9 V
AGC
= 1.0 V
V
V
AGC
= 1.2 V
AGC
= 1.4 V
V V
AGC
= 1.6 V
V
AGC
= 1.8 V
AGC
= 1.9 V
V
AGC
= 2.0 V
V
5 dB/ REF 0 dB 1: 13.362 dB
1
1 440.000 000 MHz 1 440.000 000 MHz
V
AGC
= 2.1 V
V
AGC
= 2.2 V
START 100.000 000 MHz STOP 3 100.000 000 MHz
S
11
vs. FREQUENCY DEPENDENCE OF GAIN
CONTROL VOLTAGE
cc
= 3.0 V, Pin = –30 dBm
V
S11log MAG
10
0
5 dB/ REF 0 dB 1: –6.1536 dB
1 440.000 000 MHz
V
AGC
= 3.0 to 2.0 V
V
AGC
= 1.8 V
V
AGC
= 1.6 V
1
AGC
= 1.4 V
V
POWER GAIN vs. GAIN CONTROL VOLTAGE
+20
TA = –25 °C
+10
0
TA = +25 °C
(dB)
P
–10 –20
TA = +5 °C
TA = –25 °C
–30
Power Gain G
–40
TA = +75 °C
TA = +25 °C
–50 –60
0 0.5 1 1.5 2 2.5 3 3.5
Gain Control Voltage V
AGC
(V)
S12 vs. FREQUENCY DEPENDENCE OF GAIN CONTROL VOLTAGE
cc
= 3.0 V, Pin = –30 dBm
V
0
S12log
MAG
5 dB/ REF 0 dB 1: –35.661 dB
–10
–20
V
AGC
–30
1
–40
–50
START 100.000 000 MHz STOP 3 100.000 000 MHz
= 0 V
V
AGC
S22 vs. FREQUENCY DEPENDENCE OF GAIN CONTROL VOLTAGE
cc
= 3.0 V, Pin = –30 dBm
V
S22log MAG
10
5 dB/ REF 0 dB 1: –17.471 dB
1 440.000 000 MHz
0
= 3.0 V
–10
V
AGC
= 1.2 V
V
AGC
–20
V
AGC
= 0 to 0.7 V
= 1.0 V
–30
START 100.000 000 MHz STOP 3 100.000 000 MHz
20
–10
–20
V
AGC
= 1.4 V
V
AGC
= 0 to 0.7 V
V
AGC
= 1.8 V
–30
START 100.000 000 MHz STOP 3 100.000 000 MHz
Page 21
PC8119T
µµµµ
Output port matching at f = 1440 MHz
OUTPUT POWER vs. INPUT POWER OUTPUT POWER vs. INPUT POWER
+10
f = 1440 MHz V
AGC
+5
0
(dBm)
out
–5
–10
Output Power P
–15
= 0 V
Vcc = 3.3 V
Vcc = 3.0 V
Vcc = 2.7 V
+10
f = 1440 MHz Vcc = 3.0 V
0
–10
(dBm)
–20
out
–30
–40
Output Power P
–50
–60
µµµµ
PC8119T,
V
AGC
V
AGC
V
AGC
V
AGC
µµµµ
= 0 V
= 1.6 V = 1.85 V
V
V
AGC
= 2.75 V
= 3.0 V
PC8120T
AGC
= 2.0 V
–20
–30 –25 –20 –15 –10 +10–5 +50
Input Power P
OUTPUT POWER vs. INPUT POWER
+10
f = 1440 MHz Vcc = 3.3 V
0
–10
(dBm)
–20
out
–30
–40
Output Power P
–50
–60
–70
–30 –25 –20 –15 –10 +10–5 +50
Input Power P
V
V V
V
V
AGC
AGC
in
AGC
AGC
AGC
in
(dBm)
(dBm)
= 0 V
= 1.7 V
= 1.9 V = 2.05 V
V
AGC
= 3.3 V
= 2.2 V
–70
–30 –25 –20 –15 –10 +10–5 +50
Input Power Pin (dBm)
OUTPUT POWER vs. INPUT POWER
+10
f = 1440 MHz Vcc = 2.7 V
0
–10
(dBm)
–20
out
–30
–40
Output Power P
–50
–60
–70
–30 –25 –20 –15 –10 +10–5 +50
Input Power Pin (dBm)
V
V
AGC
V
AGC
V
AGC
AGC
= 0 V
= 1.6 V
= 1.8 V = 1.95 V
V
AGC
= 2.1 V
V
AGC
= 2.7 V
21
Page 22
PC8119T
µµµµ
Output port matching at f = 1440 MHz
OUTPUT POWER AND IM3 vs. INPUT POWER OUTPUT POWER AND IM3 vs. INPUT POWER
10
(dBm)
0
3
µµµµ
PC8119T,
µµµµ
PC8120T
10
P
out
(dBm)
3
0
(dBm)
out
–10
–20
IM
3
(dBm)
out
–10
–20
P
out
2f2 – f1 (1442 MHz)
–30
–40
–30
–40
2f2 – f1 (1442 MHz)
2f1 – f2 (1439 MHz)
–50
–60
Third Order Intermodulation Distortion IM
Output Power of each tone P
–70
–30 –25 –20 –15 –10 –5 0
Input Power P
in
(dBm)
VCC = 3.0 V V
AGC
= 0 V (GPMAX) f1 = 1440 MHz f2 = 1441 MHz
–50
–60
Output Power of each tone P
Third Order Intermodulation Distortion IM
–70
–30 –25 –20 –15 –10 –5 0
Input Power Pin (dBm)
OUTPUT POWER AND IM3 vs. INPUT POWER OUTPUT POWER AND IM3 vs. INPUT POWER
10
(dBm)
0
3
–10
(dBm)
–20
out
–30
–40
2f2 – f1 (1442 MHz)
–50
–60
Third Order Intermodulation Distortion IM
Output Power of each tone P
–70
–30 –25 –20 –15 –10 –5 0 –30 –25 –20 –15 –10 –5 0
P
out
IM
3
2f1 – f2 (1439 MHz)
VCC = 3.0 V V
AGC
= 1.85 V
~
(G
P
–10 dB)
~
f1 = 1440 MHz f2 = 1441 MHz
10
VCC = 3.0 V V
AGC
(dBm)
3
(dBm)
out
–10
–20
= 2.0 V
~
0
–20 dB)
(G
P
~
f1 = 1440 MHz f2 = 1441 MHz
–30
2f2 – f1 (1442 MHz)
–40
IM
–50
–60
Third Order Intermodulation Distortion IM
Output Power of each tone P
–70
Input Power Pin (dBm) Input Power Pin (dBm)
OUTPUT POWER AND IM3 vs. INPUT POWER
10
VCC = 3.0 V V
AGC
(dBm)
3
(dBm)
out
–10
–20
= 2.0 V
~
0
–30 dB)
(G
P
~
f1 = 1440 MHz f2 = 1441 MHz
IM
3
2f1 – f2 (1439 MHz)
VCC = 3.0 V V
AGC
= 1.65 V
~
0 dB)
(G
P
~
f1 = 1440 MHz f2 = 1441 MHz
P
out
3
2f1 – f2(1439 MHz)
22
–30
–40
–50
2f2 – f1 (1442 MHz)
–60
Third Order Intermodulation Distortion IM
Output Power of each tone P
–70
–30 –25 –20 –15 –10 –5 0
2f1 – f2 (1439 MHz)
Input Power Pin (dBm)
out
P
IM
3
Page 23
PC8119T
µµµµ
Output port matching at f = 1440 MHz
µµµµ
PC8119T,
µµµµ
PC8120T
OUTPUT POWER AND IM3 vs. INPUT POWER
10
out
0
3 (dBm)
–10
–20
–30
–40
–50
–60
Output Power of each tone Pout (dBm)
Third Order Intermodulation Distortion IM
–70
–30 –25 –20 –15 –10 –5 0
–20
f = 1440 MHz VAGC = 0 V (GPMAX)
–30
–40
–50
2f2 – f1
(1442 MHz)
Input Power Pin (dBm)
ADJACENT CHANNEL INTERFERENCE vs. INPUT POWER
VCC = 2.7 V ±50 kHz VCC = 3.0 V ±50 kHz VCC = 3.3 V ±50 kHz
P
IM3
2f1 – f2 (1439 MHz)
∆ ∆ ∆
VCC = 3.3 V VAGC = 0 V (GPMAX) f1 = 1440 MHz f2 = 1441 MHz
OUTPUT POWER AND IM3 vs. INPUT POWER
10
P
0
3 (dBm)
–10
–20
out (dBm)
–30
–40
–50
–60
Output Power of each tone P
Third Order Intermodulation Distortion IM
–70
–30 –25 –20 –15 –10 –5 0
–45
–50
adj (dBc)
–55
–60
2f2 – f1
(1442 MHz)
Input Power P
ADJACENT CHANNEL INTERFERENCE vs. GAIN CONTROL VOLTAGE
f = 1440 MHz VCC = 3.0 V
Pin = –19.4 dBm ±50 kHz
out
IM3
2f1 – f2 (1439 MHz)
in (dBm)
P
VCC = 2.7 V VAGC = 0 V (GPMAX) f1 = 1440 MHz f2 = 1441 MHz
in = –17.4 dBm ±50 kHz
–60
–70
Adjacent Channel Interference Padj (dBc)
–80
VCC = 3.0 V ±100 kHz
VCC = 3.3 V ±100 kHz
–25–30 –20 –15 –10 –5 0
Input Power Pin (dBm)
VCC = 2.7 V
±100
kHz
–65
–70
Adjacent Channel Interference P
–75
0 0.5 1 1.5 2 2.5 3
P
in = –17.4 dBm ±100 kHz
Gain Control Voltage V
Pin = –19.4
dBm ±100 kHz
AGC (V)
23
Page 24
PC8119T
µµµµ
Output port matching at f = 1900 MHz
Vcc = V
out
S
11
vs. FREQUENCY
= 3.0 V, V
AGC
= 0 V (GPMAX), Pin = –30 dBm
1; 25.644 ––28.377 2.9519 pF
1 900.000 000 MHz
22
vs. FREQUENCY
S
µµµµ
PC8119T,
1; 43.631 8.0605 675.2 pH
1 900.000 000 MHz
µµµµ
PC8120T
MARKER 1
1.9 GHz
1
START 100.000 000 MHz STOP 3 100.000 000 MHz
S11 vs. FREQUENCY
AGC
= 0 V (GPMAX), Pin = –30 dBm
V
S11log MAG 5 dB/ REF 0 dB 1: 6.8063 dB
10
0
VCC = 2.7 V
1 900.000 000 MHz
1
–10
CC
= 3.3 V
–20
V
CC
= 3.0 V
V
MARKER 1
1.9 GHz 1
START 100.000 000 MHz STOP 3 100.000 000 MHz
S
22
vs. FREQUENCY
AGC
= 0 V (GPMAX), Pin = –30 dBm
V
S22log MAG 5 dB/ REF 0 dB 1: –20.108 dB
10
1 900.000 000 MHz
0
–10
VCC = 3.3 V
1
–20
VCC = 3.0 V VCC = 2.7 V
24
–30
START 100.000 000 MHz STOP
21
vs. FREQUENCY
S V
AGC
= 0 V (GPMAX), Pin = –30 dBm
3 100.000 000 MHz
S21log MAG 1 dB/ REF 7 dB 1: 12.887 dB
1 900.000 000 MHz 1 900.000 000 MHz
15
VCC = 3.3 V
13
VCC = 2.7 V
VCC = 3.0 V
11
9
7
START 100.000 000 MHz STOP 3 100.000 000 MHz
–30
START 100.000 000 MHz STOP 3 100.000 000 MHz
12
vs. FREQUENCY
S V
AGC
= 0 V (GPMAX), Pin = –30 dBm
S12log MAG 5 dB/ REF 0 dB 1: –37.473 dB
0
–10
–20
–30
VCC = 3.0 V
VCC = 3.3 V
–40
VCC = 2.7 V
–50
START 100.000 000 MHz STOP 3 100.000 000 MHz
Page 25
PC8119T
µµµµ
Output port matching at f = 1900 MHz
µµµµ
PC8119T,
µµµµ
PC8120T
POWER GAIN vs. GAIN CONTROL VOLTAGE
20
10
(dB)
P
VCC = 3.0 V
0
CC
= 3.3 V
V
Power Gain G
–10
–20
0 0.5 1 1.5 2 2.5 3 3.5
VCC = 2.7 V
Gain Control Voltage V
AGC
(V)
S21 vs. FREQUENCY DEPENDENCE OF GAIN CONTROL VOLTAGE
cc
= 3.0 V, Pin = –30 dBm
V
S21log MAG REF –10.0 dB 5.0 dB/13.038 dB
1
V
AGC
AGC
V
AGC
V
10
MARKER 1
1.9 GHz
0
V
AGC
= 1.7 V
–10
AGC
= 2.0 V
–20
V
AGC
= 3.0 V
V
–30
START 0.100000000 GHz STOP 3.100000000 GHz
= 0 V
= 1.0 V
= 1.4 V
POWER GAIN vs. GAIN CONTROL VOLTAGE
20
TA = –25 °C
10
(dB)
P
TA = +75 °C
0
TA = +25 °C
TA = +75 °C
TA = +25 °C
Power Gain G
–10
–20
0 0.5 1 1.5 2 2.5 3 3.5
S
TA = –25 °C
Gain Control Voltage V
12
vs. FREQUENCY DEPENDENCE OF GAIN
AGC
(V)
CONTROL VOLTAGE
cc
= 3.0 V, Pin = –30 dBm
V
S12log MAG REF –25.0 dB 5.0 dB/–38.732 dB
0
MARKER 1
–10
1.9 GHz
–20
V
AGC
= 3.0 V
–30
1
–40
AGC
= 0 V
–50
START 0.100000000 GHz STOP 3.100000000 GHz
V
S
11
vs. FREQUENCY DEPENDENCE OF GAIN CONTROL VOLTAGE V
cc
= 3.0 V, Pin = –30 dBm
S11log MAG REF –10.0 dB 5.0 dB/–6.025 dB
MARKER 1
1.9 GHz
10
V
AGC
V
AGC
0
= 1.6 V
= 3.0 V
1
–10
V
AGC
= 1.4 V
V
AGC
–20
–30
START 0.100000000 GHz STOP 3.100000000 GHz
= 0 V
22
vs. FREQUENCY DEPENDENCE OF GAIN
S CONTROL VOLTAGE V
cc
= 3.0 V, Pin = –30 dBm
S22log MAG REF –10.0 dB 5.0 dB/–18.194 dB
MARKER 1
1.9 GHz
10
0
V
AGC
–10
–20
= 1.4 V
V
AGC
= 0 V
V
AGC
V
AGC
= 3.0 V
= 1.8 V
1
–30
START 0.100000000 GHz STOP 3.100000000 GHz
25
Page 26
PC8119T
µµµµ
Output port matching at f = 1900 MHz
OUTPUT POWER vs. INPUT POWER OUTPUT POWER vs. INPUT POWER
+10
f = 1900 MHz VAGC = 0 V
+5
0
–5
VCC = 3.3 V
VCC = 3.0 V
VCC = 2.7 V
+10
–10
out (dBm)
–20
f = 1900 MHz VCC = 3.0 V
0
µµµµ
PC8119T,
VAGC = 0 V
VAGC = 1.4 V
VAGC = 1.65 V
µµµµ
PC8120T
–10
Output Power Pout (dBm)
–15
–20
–30 –25 –20 –15 –10 –5 0 +5 +10
in (dBm)
VAGC = 1.7 V
VAGC = 1.85 V
VAGC = 2.0 V
VAGC = 3.3 V
+10
–10
–20
–30
Output Power Pout (dBm)
–40
Input Power P
OUTPUT POWER vs. INPUT POWER
f = 1900 MHz VCC = 3.3 V
VAGC = 0 V
0
VAGC = 1.4 V
–30
Output Power P
–40
–30 –25 –20 –15 –10 –5 0 +5 +10
Input Power P
OUTPUT POWER vs. INPUT POWER
+10
f = 1900 MHz VCC = 2.7 V
0
–10
–20
–30
Output Power Pout (dBm)
–40
VAGC = 1.8 V VAGC = 2.0 V
VAGC = 3.0 V
in (dBm)
VAGC = 0 V
VAGC = 1.4 V
VAGC = 1.6 V
VAGC = 1.75 V
VAGC = 1.9 V
VAGC = 2.7 V
26
Input Power Pin (dBm)
–30 –25 –20 –15 –10 –5 0 +5 +10–30 –25 –20 –15 –10 –5 0 +5 +10
Input Power P
in (dBm)
Page 27
PC8119T
µµµµ
Output port matching at f = 1900 MHz
OUTPUT POWER AND IM3 vs. INPUT POWER OUTPUT POWER AND IM3 vs. INPUT POWER
+10
(dBm)
3
(dBm)
out
–10
–20
–30
–40
0
2f2 – f
(1900.6 MHz)
P
IM
1
2f1 – f
(1899.7 MHz)
µµµµ
PC8119T,
+10
VCC = 3.0 V V
AGC
out
(dBm)
3
–10
3
(dBm)
out
–20
= 1.8 V
~
0
(GP –5 dB)
~
f1 = 1900 MHz f2 = 1900.3 MHz
–30
2
–40
2f2 – f
(1900.6 MHz)
µµµµ
PC8120T
P
out
IM
3
1
–50
–60
Output Power of each tone P
Third Order Intermodulation Distortion IM
–70
–30 –25 –20 –15 –10 –5 0
Input Power Pin (dBm)
OUTPUT POWER AND IM3 vs. INPUT POWER
+10
VCC = 3.0 V V
AGC
= 1.7 V
0
(dBm)
3
(dBm)
out
–10
–20
~
(GP –10 dB)
~
f1 = 1900 MHz f2 = 1900.3 MHz
P
out
–30
3
–40
–50
–60
2f2 – f
(1900.6 MHz)
IM
1
2f1 – f (1899.7 MHz)
Output Power of each tone P
Third Order Intermodulation Distortion IM
–70
–30 –25 –20 –15 –10 –5 0
VCC = 3.0 V V
AGC
= 0 V (GPMAX) f1 = 1900.0 MHz f2 = 1900.3 MHz
2
–50
–60
Output Power of each tone P
Third Order Intermodulation Distortion IM
–70
–30 –25 –20 –15 –10 –5 0
2f1 – f (1899.7 MHz)
Input Power Pin (dBm)
OUTPUT POWER AND IM3 vs. INPUT POWER
+10
VCC = 3.0 V V
AGC
= 3.0 V
0
(dBm)
(GPMIN)
3
f1 = 1900 MHz f2 = 1900.3 MHz
–10
(dBm)
–20
out
P
out
–30
3
–40
2f2 – f
–50
(1900.6 MHz)
–60
Output Power of each tone P
Third Order Intermodulation Distortion IM
–70
IM
1
2f1 – f (1899.7 MHz)
–30 –25 –20 –15 –10 –5 0
2
2
Input Power Pin (dBm)
Input Power Pin (dBm)
27
Page 28
PC8119T
µµµµ
Output port matching at f = 1900 MHz
µµµµ
PC8119T,
µµµµ
PC8120T
OUTPUT POWER AND IM3 vs. INPUT POWER
+10
3 (dBm)
0 –10 –20
2f2 – f1 (1900.6 MHz)
–30 –40 –50
–60
Output Power of each tone Pout (dBm)
Third Order Intermodulation Distortion IM
–70
–30 –25 –20 –15 –10 –5 0
Input Power P
ADJACENT CHANNEL INTERFERENCE vs. INPUT POWER
–20
f = 1900 MHz VAGC = 0 V (GPMAX)
–30
–40
–50
VCC = 3.0 V ±600 kHz
IM3
VCC = 2.7 V ±600 kHz
Pout
2f1 – f2 (1899.7 MHz)
VCC = 3.3 V VAGC = 0 V (GPMAX) f1 = 1900.0 MHz f2 = 1900.3 MHz
in (dBm)
OUTPUT POWER AND IM3 vs. INPUT POWER
+10
3 (dBm)
0 –10 –20
2f2 – f1 (1900.6 MHz)
–30 –40 –50
–60
Output Power of each tone Pout (dBm)
Third Order Intermodulation Distortion IM
–70
–30 –25 –20 –15 –10 –5 0
Input Power P
ADJACENT CHANNEL INTERFERENCE vs. GAIN CONTROL VOLTAGE
–45
f = 1900 MHz
CC = 3.0 V
V
–50
adj (dBc)
–55
Pin = –12 dBm, ±600 kHz
–60
IM3
2f1 – f2 (1899.7 MHz)
Pin = –10 dBm, 600 kHz
Pout
VCC = 2.7 V VAGC = 0 V (GPMAX) f1 = 1900.0 MHz f2 = 1900.3 MHz
in (dBm)
–60
–70
Adjacent Channel Interference Padj (dBc)
–80
–30 –25 –20 –15 –10 –5 0
Input Power P
VCC = 3.3 V ±600 kHz
in (dBm)
–65
–70
Adjacent Channel Interference P
–75
0 0.5 1.0 1.5 2.0 2.5 3.0
Gain Control Voltage V
Pin = –15 dBm, 600 kHz
AGC (V)
28
Page 29
PC8120T
µµµµ
µµµµ
PC8119T,
µµµµ
PC8120T
CIRCUIT CURRENT vs. SUPPLY VOLTAGE
14
no signals
12
10
(mA)
CC
8
GAIN CONTROL CURRENT vs. GAIN CONTROL VOLTAGE
200
no signals
175
µ
150
( A)
AGC
125
VCC = 2.7 V
100
6
VCC = 3.0 V
75
4
Circuit Current I
2
0
01234 00.511.522.533.5
Supply Voltage VCC (V)
CIRCUIT CURRENT vs. OPERATING AMBIENT TEMPERATURE
20
no signals
18 16
VCC = 3.3 V VCC = 3.0 V
14
(mA)
12
CC
10
8 6
Circuit Current I
VCC = 2.7 V
4 2 0
–40 –20 0 +20 +40 +60 +80 +100
Operating Ambient temperature TA (°C)
50
Gain Control Current I
VCC = 3.3 V
25
0
Gain Control Voltage V
CURRENT INTO OUTPUT PIN AND CURRENT INTO V
AGC
(V)
CC
vs. GAIN CONTROL VOLTAGE
12
(mA)
(mA)
out
CC
Pin IV
CC
11 10
9 8 7 6 5
VCC = 3.3 V VCC = 3.0 V
VCC = 2.7 V
IV
CC
I
out
VCC = 3.3 V VCC = 3.0 V
VCC = 2.7 V
4 3
Current into Output Pin I
Current into V
2 1 0
0 0.5 1 1.5 2 2.5 3 3.5
Gain Control Voltage V
no signals
AGC
(V)
PIN
S11 vs. FREQUENCY VCC = 3.0 V, V
: 950 MHz
1
49.6 – 43.49 : 1440 MHz
2
32.908 – 34.803 : 1900 MHz
3
26.389 – 24.797
AGC
= 3.0 V (GPMAX), Pin = –30 dBm
S
22
vs. FREQUENCY
VCC = 3.0 V, V
: 950 MHz
1
33.758 – 173.11 : 1440 MHz
2
35.742 – 123.63 : 1900 MHz
3
34.758 – 105.66
AGC
= 3.0 V (GPMAX), Pin = –30 dBm
2
1
3
2
1
3
START 100.000 000 MHz STOP 3 100.000 000 MHz START 100.000 000 MHz STOP 3 100.000 000 MHz
29
Page 30
PC8120T
µµµµ
Output port matching at f = 950 MHz
µµµµ
PC8119T,
µµµµ
PC8120T
VCC = 3.0 V, V
S11 vs. FREQUENCY
START 100.000 000 MHz STOP 3 100.000 000 MHz START 100.000 000 MHz STOP 3 100.000 000 MHz
S11 vs. FREQUENCY V
S11log MAG
10
0
AGC
= 3.0 V (GPMAX), Pin = –30 dBm
1; 42.344 –55.41 3.0235 pF
AGC
= 3.0 V (GPMAX), Pin = –30 dBm
5dB/ REF 0 dB 1: –5.6328 dB
VCC = 2.7 V
1
VCC = 3.0 V
950.000.000 MHz
1
950.000 000 MHz
S22 vs. FREQUENCY
S11 vs. FREQUENCY VCC = 3.0 V V
S11log MAG
10
0
AGC
TA = +85 °C
TA = –25 °C
1
1; 50.91 –5.9805 28.013 pF
950.000 000 MHz
1
= 3.0 V (GPMAX), Pin = –30 dBm
5dB/ REF 0 dB 1: –5.7196 dB
950.000 000 MHz
–10
–20
–30
START 100.000 000 MHz STOP 3 100.000 000 MHz
S
22
vs. FREQUENCY
V
AGC
= 3.0 V (GPMAX), Pin = –30 dBm
S22log MAG
10
0
–10
VCC = 2.7 V
–20
–30
START 100.000 000 MHz STOP 3 100.000 000 MHz
VCC = 3.3 V
5dB/ REF 0 dB 1: –19 .447 dB
950.000 000 MHz
VCC = 3.0 V VCC = 3.3 V
–10
–20
–30
10
0
–10
–20
–30
TA = –40 °C
START 100.000 000 MHz STOP 3 100.000 000 MHz
S
22
vs. FREQUENCY
V
CC
= 3.0 V, V
S22log MAG
TA = +85 °C
START 100.000 000 MHz STOP 3 100.000 000 MHz
AGC
= 3.0 V (GPMAX), Pin = –30 dBm
5dB/ REF 0 dB 1: –18.205 dB
950.000 000 MHz
TA = +25 °C TA = –40 °C
30
Page 31
PC8120T
µµµµ
Output port matching at f = 950 MHz
µµµµ
PC8119T,
µµµµ
PC8120T
S21 vs. FREQUENCY V
AGC
= 3.0 V (GPMAX), Pin = –30 dBm
S21log MAG
17
15
13
11
9
7
START 100.000 000 MHz STOP 3 100.000 000 MHz
S12 vs. FREQUENCY V
AGC
S12log MAG
0
–10
–20
–30
1 dB/ REF 7 dB 1:12.768 dB
950.000 000 MHz
1
VCC = 3.3 V
CC
= 3.0 V
V
CC
= 2.7 V
V
= 3.0 V (GPMAX), Pin = –30 dBm
5dB/ REF 0 dB 1: –31.551 dB
950.000 000 MHz
VCC = 3.3 V
1 1
V
CC
= 3.0 V
VCC = 2.7 V
S21 vs. FREQUENCY V
AGC
S21log MAG
17
15
13
11
9
7
START 100.000 000 MHz STOP 3 100.000 000 MHz
S12log MAG
0
–10
–20
–30
= 3.0 V (GPMAX), Pin = –30 dBm
1dB/ REF 7 dB 1: –12.78 dB
1
TA = –40 °C
A
= +25 °C
T
A
= +85 °C
T
S12 vs. FREQUENCY
AGC
= 3.0 V (GPMAX), Pin = –30 dBm
V
5dB/ REF 0 dB 1: –31.543 dB
TA = –40 °C
A
= +25 °C
T
A
= +85 °C
T
950.000 000 MHz
950.000 000 MHz
–40
–50
START 100.000 000 MHz STOP 3 100.000 000 MHz
–40
–50
START 100.000 000 MHz STOP 3 100.000 000 MHz
31
Page 32
PC8120T
µµµµ
Output port matching at f = 950 MHz
POWER GAIN vs. GAIN CONTROL VOLTAGE POWER GAIN vs. GAIN CONTROL VOLTAGE
+20
+10
VCC = 2.7 V
0
(dB)
P
–10
–20
VCC = 3.0 V
VCC = 3.3 V
+20
+10
(dB)
P
–10
–20
0
TA = +75 °C
µµµµ
PC8119T,
TA = –25 °C
TA = +75 °C
TA = +25 °C
µµµµ
PC8120T
–30
Power Gain G
–40
–50
0 0.5 1 1.5
Gain Control Voltage V
2 2.5 3.0 3.5
AGC
(V) Gain Control Voltage V
S21 vs. FREQUENCY DEPENDENCE OF GAIN CONTROL VOLTAGE
cc
= 3.0 V, Pin = –30 dBm
V
S21log MAG 5 dB/ REF 0 dB 1: 12.776 dB
10
–10
1
V
AGC
= 3.0 V
V
AGC
V
AGC
= 1.7 V
V
AGC
= 1.6 V
V
AGC
= 1.5 V
0
V
AGC
= 1.4 V
V
AGC
= 1.3 V
V
AGC
= 1.2 V
V
AGC
V
AGC
= 2.0 V = 1.9 V = 1.8 V
950.000.000 MHz 950.000.000 MHz
–20
V
AGC
–30
V
AGC
V
AGC
= 1.1 V = 1.0 V
= 0.9 V
START 100.000 000 MHz STOP 3 100.000 000 MHz
S
11
vs. FREQUENCY DEPENDENCE OF GAIN
CONTROL VOLTAGE
cc
= 3.0 V, Pin = –30 dBm
V
S11log MAG 5 dB/ REF 0 dB 1: –5.6855 dB
10
0
V
AGC
= 0 to 1.2 V
V
AGC
= 1.4 V
V
AGC
1
= 1.6 V
–10
V
AGC
= 1.8 V
–20
V
AGC
= 2.2 to 3.0 V
–30
Power Gain G
–40
–50
0 0.5 1 1.5 2.0 2.5 3.0 3.5
12
vs. FREQUENCY DEPENDENCE OF GAIN
S
TA = –25 °C
AGC
(V)
CONTROL VOLTAGE
cc
= 3.0 V, Pin = –30 dBm
V
S12log MAG 5 dB/ REF 0 dB 1: –31.081 dB
0
–10
–20
V
AGC
= 3.0 V
–30
1
V
AGC
= 0 V
–40
–50
START 100.000 000 MHz STOP 3 100.000 000 MHz
22
vs. FREQUENCY DEPENDENCE OF GAIN
S CONTROL VOLTAGE
cc
= 3.0 V, Pin = –30 dBm
V
S22log MAG 5 dB/ REF 0 dB 1: –19.041 dB
10
950.000.000 MHz
0
V
AGC
–10
–20
= 1.6 V
V
AGC
= 2.3 to 3.0 V
V
AGC
= 0 to 0.9 V
V
AGC
= 1.2 V
–30
START 100.000 000 MHz STOP 3 100.000 000 MHz
32
–30
START 100.000 000 MHz STOP 3 100.000 000 MHz
Page 33
PC8120T
µµµµ
Output port matching at f = 950 MHz
µµµµ
PC8119T,
µµµµ
PC8120T
OUTPUT POWER vs. INPUT POWER
+10
f = 950 MHz
AGC
= 3.0 V
V
VCC = 3.3 V
+5
0
(dBm)
out
VCC = 2.7 V
–5
VCC = 3.0 V
–10
Output Power P
–15
–20
–30 –25 –20 –15 –10 –5 0 +5 +10
Input Power Pin (dBm)
OUTPUT POWER vs. INPUT POWER
+10
0
–10
(dBm)
–20
out
f = 950 MHz
CC
= 3.3 V
V
V
AGC
V
AGC
V
V
AGC
= 1.7 V
= 1.5 V
AGC
= 1.35 V
= 3.3 V
–30
OUTPUT POWER vs. INPUT POWER
+10
0
–10
(dBm)
–20
out
–30
f = 950 MHz V
CC
= 3.0 V
V
AGC
V
AGC
V
V
= 1.5 V
= 1.3 V
AGC
= 1.15 V
V
AGC
AGC
= 3.0 V
= 1.0 V
–40
V
Output Power P
–50
AGC
–60
–70
–30 –25 –20 –15 –10 –5 0 +5 +10
Input Power P
in
(dBm)
OUTPUT POWER vs. INPUT POWER
+10
f = 950 MHz
CC
= 2.7 V
V
0
V
V
AGC
AGC
= 2.7 V
= 1.3 V
–10
V
AGC
(dBm)
–20
out
V
AGC
= 1.1 V
= 0.95 V
–30
= 0 V
–40
V
AGC
Output Power P
–50
= 1.2 V
V
AGC
= 0 V
–60
–70
–30 –25 –20 –15 –10 –5 0 +5 +10
in
Input Power P
(dBm)
–40
Output Power P
–50
V
AGC
= 0.8 V
V
AGC
= 0 V
–60
–70
–30 –25 –20 –15 –10 –5 0 +5 +10
in
Input Power P
(dBm)
33
Page 34
PC8120T
µµµµ
Output port matching at f = 950 MHz
µµµµ
PC8119T,
µµµµ
PC8120T
OUTPUT POWER AND IM3 vs. INPUT POWER
+10
P
0
3 (dBm)
–10
out
IM3
–20
–30
–40
–50
–60
Output Power of each tone Pout (dBm)
Third Order Intermodulation Distortion IM
–70
–30 –25 –20 –15
OUTPUT POWER AND IM3 vs. INPUT POWER
+10
VCC = 3.0 V V
0
3 (dBm)
(GP –10 dB) f1 = 950 MHz
–10
f2 = 951 MHz
–20
–30
–40
–50
2f2 – f1
(952 MHz)
Input Power P
AGC = 1.3 V
~
~
2f1 – f2
(949 MHz)
2f1 – f2 (949 MHz)
VCC = 3.0 V V (GPMAX) f1 = 950 MHz f2 = 951 MHz
–10 –5 0
in (dBm)
P
out
IM3
2f2 – f1
–60
Output Power of each tone Pout (dBm)
Third Order Intermodulation Distortion IM
–70
–30 –25 –20 –15
Input Power P
(952 MHz)
–10 –5 0
in (dBm)
AGC = 3.0 V
OUTPUT POWER AND IM3 vs. INPUT POWER
+10
VCC = 3.0 V VAGC = 1.5 V
~
P 0 dB)
(G
0
3 (dBm)
–10
~
f1 = 950 MHz f2 = 951 MHz
P
out
–20
–30
–40
(949 MHz)
IM3
2f1 – f2
2f2 – f1
–50
(952 MHz)
–60
Output Power of each tone Pout (dBm)
Third Order Intermodulation Distortion IM
–70
–30 –25 –20 –15
Input Power P
–10 –5 0
in (dBm)
OUTPUT POWER AND IM3 vs. INPUT POWER
+10
VCC = 3.0 V VAGC = 1.15 V
~
0
3 (dBm)
(GP –20 dB)
~
f1 = 950 MHz f2 = 951 MHz
–10
–20
–30
–40
–50
2f1 – f2
IM3
(949 MHz)
–60
2f2 – f1 (952 MHz)
Output Power of each tone Pout (dBm)
Third Order Intermodulation Distortion IM
–70
–30 –25 –20 –15
Input Power P
–10 –5 0
in (dBm)
P
out
34
OUTPUT POWER AND IM3 vs. INPUT POWER
+10
VCC = 3.0 V VAGC = 1.0 V
0
3 (dBm)
–10
~
(GP –30 dB)
~
f1 = 950 MHz
2 = 951 MHz
f
–20
–30
P
out
–40
–50
2f1 – f2
–60
Output Power of each tone Pout (dBm)
Third Order Intermodulation Distortion IM
–70
(949 MHz)
–30 –25 –20 –15
Input Power P
2f2 – f1 (952 MHz)
–10 –5 0
in (dBm)
IM3
OUTPUT POWER AND IM3 vs. INPUT POWER
+10
VCC = 3.0 V VAGC = 1.15 V
0
3 (dBm)
–10
~
(GP –38 dB)
~
f1 = 950 MHz f2 = 951 MHz
–20
–30
–40
Pout
–50
2f1 – f2
–60
Output Power of each tone Pout (dBm)
Third Order Intermodulation Distortion IM
–70
–30 –25 –20 –15
(949 MHz)
2f2 – f1
(952 MHz)
Input Power P
–10 –5 0
in (dBm)
IM3
Page 35
PC8120T
µµµµ
Output port matching at f = 950 MHz
OUTPUT POWER AND IM3 vs. INPUT POWER OUTPUT POWER AND IM3 vs. INPUT POWER
+10
P
(dBm)
3
0
out
+10
(dBm)
3
µµµµ
PC8119T,
0
µµµµ
PC8120T
P
out
–10
(dBm)
–20
out
–30
–40
2f
2
– f
(952 MHz)
1
2f1 – f (949 MHz)
–50
–60
Output Power of each tone P
Third Order Intermodulation Distortion IM
–70
–30 –25 –20 –15 –10 –5 0
Input Power P
in
(dBm) Input Power Pin (dBm)
ADJACENT CHANNEL INTERFERENCE vs. INPUT POWER
–20
f = 950 MHz
AGC
= VCC (GPMAX)
–30
–40
V
VCC = 2.7 V ±50 kHz
CC
= 3.0 V ±50 kHz
V VCC = 3.3 V ±50 kHz
∆ ∆ ∆
(dBc)
adj
–50
2
VCC = 3.3 V V
AGC
= 3.3 V
P
MAX)
(G f1 = 950 MHz f2 = 951 MHz
–10
(dBm)
–20
out
2f2 – f
–30
–40
(952 MHz)
1
2f1 – f
(949 MHz)
–50
–60
Output Power of each tone P
Third Order Intermodulation Distortion IM
–70
–30 –25 –20 –15 –10 –5 0
ADJACENT CHANNEL INTERFERENCE vs. GAIN CONTROL VOLTAGE
–45
f = 950 MHz
CC
= 3.0 V
–50
–55
V
Pin = –17.4 dBm ±50 kHz
in
= –19.4 dBm ±50 kHz
P
(dBc)
adj
–60
2
VCC = 2.7 V V
AGC
= 2.7 V
P
MAX)
(G f1 = 950 MHz f2 = 951 MHz
–60
–70
Adjacent Channel Interference P
–80
–30 –25 –20 –15 –10 –5 0
in
Input Power P
(dBm)
VCC = 2.7 V ±100 kHz VCC = 3.0 V ±100 kHz VCC = 3.3 V ±100 kHz
∆ ∆ ∆
–65
in
= –17.4 dBm ±100 kHz
P
in
= –19.4 dBm ±100 kHz
–70
Adjacent Channel Interference P
–75
0 0.5 1 1.5 2 2.5 3
P
Gain Control Voltage V
AGC
∆ ∆
(V)
35
Page 36
PC8120T
µµµµ
Output port matching at f = 1440 MHz
µµµµ
PC8119T,
µµµµ
PC8120T
VCC = 3.0 V , V
S11 vs. FREQUENCY
AGC
= 3.0 V (GPMAX), Pin = –30 dBm
1; 36.68 –50.342 2.2582 pF
1 400.000 000 MHz
MARKER 1
1.44 GHz
1
START 100.000 000 MHz STOP 3 100.000 000 MHz
S11
vs. FREQUENCY
V
AGC
= 3.0 V (GPMAX), Pin = –30 dBm
10
0
11
S
1.44 GHz
5 dB/ REF 0 dB 1; –6.064 dB REF 0 dB 1; –6.0673 dB
1 440.000 000 MHz
VCC = 2.7 V
VCC = 3.0 V
1
S22 vs. FREQUENCY
1; 48.615 –5.4863 –20.145 pF
1 440.000 000 MHz
MARKER 1
1.44 GHz
1
START 100.000 000 MHz STOP 3 100.000 000 MHz
11
vs. FREQUENCY
S V
CC
10
= 3.0 V, V
S
11
AGC
= 3.0 V (GpMAX), Pin = –30 dBm
log MAGlog MAG
5 dB/
1 440.000 000 MHz
TA = +85 °C
0
TA = +25 °C
1
–10
VCC = 3.3 V
–20
–30
–10
–20
–30
TA = –40 °C
START 100.000 000 MHz STOP 3 100.000 000 MHz START 100.000 000 MHz STOP 3 100.000 000 MHz
10
S22
vs. FREQUENCY
V
AGC
= 3.0 V (GPMAX), Pin = –30 dBm
S
22
5 dB/ REF 0 dB 1; –24.057 dB
1 440.000 000 MHz
10
S
22
vs. FREQUENCY
CC
= 3.0 V, V
V
log MAGlog MAG
22
S
AGC
= 3.0 V (GpMAX), Pin = –30 dBm
5 dB/ REF 0 dB
1; –22.951 dB
1 440.000 000 MHz
MARKER 1
1.44 GHz
–10
–20
–30
0
1
VCC = 3.0 V
VCC = 3.3 V VCC = 2.7 V
–10
–20
–30
0
TA = +85 °C
TA = +25 °C TA = –40 °C
START 100.000 000 MHz STOP 3 100.000 000 MHz START 100.000 000 MHz STOP 3 100.000 000 MHz
36
Page 37
PC8120T
µµµµ
Output port matching at f = 1440 MHz
µµµµ
PC8119T,
µµµµ
PC8120T
S
21
vs. FREQUENCY
AGC
= 3.0 V (GPMAX), Pin = –30 dBm
V
log MAG
17
21
S
1 dB/
REF 7 dB 1; 12.974 dB
1 440.000 000 MHz
MARKER 1
15
1.44 GHz 1
VCC = 3.3 V
CC
= 3.0 V
13
V V
CC
= 2.7 V
11
9
7
START 100.000 000 MHz STOP 3 100.000 000 MHz
S12 vs. FREQUENCY
AGC
= 3.0 V (GPMAX), Pin = –30 dBm
V
5 dB/ REF 0 dB 1; –35.378 dB
1 440.000 000 MHz
–10
S
12
0
MARKER 1
1.44 GHz
21
vs. FREQUENCY
S
AGC
= 3.0 V, (GPMAX), Pin = –30 dBm
V
17
S
21
log MAG
1 dB/
REF 7 dB 1;13.025 dB
1 440.000 000 MHz
MARKER 1
15
1.44 GHz 1
13
TA = –40 °C TA = +25 °C
TA = +85 °C
11
9
7
START 100.000 000 MHz STOP 3 100.000 000 MHz
S
12
vs. FREQUENCY
AGC
= 3.0 V, (GPMAX), Pin = –30 dBm
V
log MAGlog MAG
S
12
0
5 dB/ REF 0 dB 1; –35.238 dB
1 440.000 000 MHz
–10
–20
–30
–40
VCC = 3.3 V
VCC = 3.0 V
1
–20
–30
–40
TA = +85 °C TA = +25 °C
1
TA = –40 °C
VCC = 2.7 V
–50
START 100.000 000 MHz STOP 3 100.000 000 MHz START 100.000 000 MHz STOP 3 100.000 000 MHz
–50
37
Page 38
PC8120T
µµµµ
Output port matching at f = 1440 MHz
µµµµ
PC8119T,
µµµµ
PC8120T
POWER GAIN vs. GAIN CONTROL VOLTAGE
+20
VCC = 2.7 V
+10
0
(dB)
P
VCC = 3.0 V
–10
–20
VCC = 3.3 V
Power Gain G
–30
–40
0.50 1 1.5 2 2.5 3 3.5 0.50 1 1.5 2 2.5 3 3.5 Gain Control Voltage V
21
vs. FREQUENCY DEPENDENCE OF GAIN
S
AGC
(V)
CONTROL VOLTAGE
cc
= 3.0 V, Pin = –30 dBm
V
10
0
–10
S21log MAG
V
AGC
= 3.0 V
V
AGC
= 2.0 V
V
AGC
= 1.9 V
V
AGC
= 1.8 V
V
AGC
= 1.7 V
V
AGC
= 1.6 V
V
AGC
= 1.5 V
V
AGC
= 1.4 V
V
AGC
= 1.3 V
V
AGC
= 1.2 V
5 dB/ REF 0 dB 1: –12.908 dB
1
1.440.000 000 MHz
–20
V
V
–30
V
V
AGC
START 100.000 000 MHz STOP 3 100.000 000 MHz
AGC
AGC
AGC
= 0 V
= 1.1 V
= 1.0 V
= 0.9 V
POWER GAIN vs. GAIN CONTROL VOLTAGE
+20
TA = –25 °C
+10
(dB)
P
0
TA = +25 °C
TA = +75 °C
–10
TA = +75 °C
–20
Power Gain G
TA = +25 °C
–30
TA = –25 °C
–40
Gain Control Voltage V
12
vs. FREQUENCY DEPENDENCE OF GAIN
S
AGC
(V)
CONTROL VOLTAGE
cc
= 3.0 V, Pin = –30 dBm
V
0
–10
S12log MAG
MARKER 1
1.44 GHz
5 dB/ REF 0 dB 1: –34.801 dB
1.440.000 000 MHz
–20
V
AGC
–30
V
AGC
–40
–50
START 100.000 000 MHz STOP 3 100.000 000 MHz
= 0 V
1
= 3.0 V
38
11
vs. FREQUENCY DEPENDENCE OF GAIN
S CONTROL VOLTAGE
cc
= 3.0 V, Pin = –30 dBm
V
S11log MAG
5 dB/ REF 0 dB 1: –6.1639 dB
1.440.000 000 MHz
10
MARKER 1
1.44 GHz
0
V
AGC
= 0 to 1.2 V
V
AGC
V
AGC
= 1.4 V = 1.6 V
1
–10
V
AGC
= 1.8 V
V
AGC
= 2.2 to 3.0 V
–20
–30
START 100.000 000 MHz STOP 3 100.000 000 MHz
S
22
vs. FREQUENCY DEPENDENCE OF GAIN
CONTROL VOLTAGE
cc
= 3.0 V, Pin = –30 dBm
V
S22log MAG
5 dB/ REF 0 dB 1: –23.731 dB
1.440.000 000 MHz
10
MARKER 1
1.44 GHz
0
V
AGC
–10
–20
–30
V
V
AGC
V
= 1.6 V
AGC
= 0 to 0.9 V
= 2.3 to 3.0 V
AGC
= 1.35 V
START 100.000 000 MHz STOP 3 100.000 000 MHz
Page 39
PC8120T
µµµµ
Output port matching at f = 1440 MHz
µµµµ
PC8119T,
µµµµ
PC8120T
OUTPUT POWER vs. INPUT POWER
+10
f = 1440 MHz
AGC
V
+5
0
(dBm)
out
–5
–10
Output Power P
–15
–20
–25–30 –20 –15 –10 –5 0 +5 +10
OUTPUT POWER vs. INPUT POWER
+10
f = 1440 MHz V
CC
= 3.3 V
0
–10
(dBm)
–20
out
–30
= 3.0 V
Input Power Pin (dBm)
VCC = 3.3 V
VCC = 3.0 V
V
AGC
= 3.3 V
V
AGC
= 1.65 V
V
AGC
= 1.45 V
VCC = 2.7 V
OUTPUT POWER vs. INPUT POWER
+10
f = 1440 MHz VCC = 3.0 V
–10
(dBm)
–20
out
0
V
AGC
V
AGC
V
= 3.0 V
= 1.5 V
AGC
–30
–40
V
Output Power P
–50
AGC
V
AGC
V
AGC
–60
–70
–30 –25 –20 –15 –10 –5 0 +5 +10
in
Input Power P
(dBm)
OUTPUT POWER vs. INPUT POWER
+10
0
f = 1440 MHz VCC = 2.7 V
V
V
AGC
AGC
= 2.7 V
= 1.3 V
–10
V
AGC
(dBm)
–20
out
V
AGC
= 1.1 V = 0.95 V
–30
= 1.3 V
= 1.15 V = 0.95 V = 0 V
–40
Output Power P
–50
V V V
–60
–70
–30 –25 –20 –15 –10 –5 0 +5 +10
Input Power Pin (dBm)
AGC AGC AGC
= 1.3 V = 1.1 V = 0 V
–40
Output Power P
–50
V
AGC
V
AGC
–60
–70
–30 –25 –20 –15 –10 –5 0 +5 +10
Input Power Pin (dBm)
= 0.75 V = 0 V
39
Page 40
PC8120T
µµµµ
Output port matching at f = 1440 MHz
µµµµ
PC8119T,
µµµµ
PC8120T
OUTPUT POWER AND IM3 vs. INPUT POWER
+10
P
(dBm)
3
0
out
–10
IM
(dBm)
out
–20
–30
–40
2f1 – f
(1439 MHz)
2
3
2f2 – f (1442 MHz)
–50
–60
Third Order Intermodulation Distortion IM
Output Power of each tone P
–70
–30 –25 –20 –15 –10 –5 0
Input Power P
in
(dBm)
OUTPUT POWER AND IM3 vs. INPUT POWER
+10
VCC = 3.0 V V
AGC
(dBm)
3
(dBm)
out
–10
–20
= 1.3 V
~
0
(GP –10 dB)
~
f1 = 1440 MHz f
2
= 1441 MHz
P
out
–30
IM
–40
–50
2f1 – f
(1439 MHz)
3
2
1
VCC = 3.0 V V
AGC
= 3.0 V
(G
P
MAX) f1 = 1440 MHz f2 = 1441 MHz
OUTPUT POWER AND IM3 vs. INPUT POWER
+10
VCC = 3.0 V V
AGC
(dBm)
3
(dBm)
out
–10
–20
–30
–40
= 1.5 V
~
0
(G
P
0 dB)
~
f1 = 1440 MHz f2 = 1441 MHz
2f1 – f
2
(1439 MHz)
P
IM
out
3
–50
–60
Third Order Intermodulation Distortion IM
Output Power of each tone P
–70
–30 –25 –20 –15 –10 –5 0
Input Power Pin (dBm)
OUTPUT POWER AND IM3 vs. INPUT POWER
+10
VCC = 3.0 V V
AGC
= 1.15
(dBm)
3
(dBm)
out
0
(GP –20 dB) f1 = 1440 MHz f
2
= 1441 MHz
–10
–20
V
~
~
P
out
–30
–40
–50
2f1 – f
(1439 MHz)
2
2f2 – f
1
(1442 MHz)
IM
3
40
2f2 – f
–60
Third Order Intermodulation Distortion IM
Output Power of each tone P
–70
–30 –25 –20 –15 –10 –5 0 –30 –25 –20 –15 –10 –5 0
Input Power Pin (dBm)
1
(1442 MHz)
–60
Third Order Intermodulation Distortion IM
Output Power of each tone P
–70
Input Power Pin (dBm)
OUTPUT POWER AND IM3 vs. INPUT POWER
+10
VCC = 3.0 V V
AGC
(dBm)
3
(dBm)
out
–10
–20
= 0 V
~
0
(GP –30 dB)
~
f1 = 1440 MHz f2 = 1441 MHz
–30
P
out
–40
–50
2f2 – f1 (1442 MHz)
–60
Third Order Intermodulation Distortion IM
Output Power of each tone P
–70
–30 –25 –20 –15 –10 –5 0
2f1 – f2 (1439 MHz)
IM
3
Input Power Pin (dBm)
2f2 – f
1
(1442 MHz)
Page 41
PC8120T
µµµµ
Output port matching at f = 1440 MHz
µµµµ
PC8119T,
µµµµ
PC8120T
OUTPUT POWER AND IM3 vs. INPUT POWER
+10
P
(dBm)
3
0
out
–10
(dBm)
–20
out
2f2 – f
–30
–40
(1442 MHz)
1
2f1 – f (1439 MHz)
–50
–60
Output Power of each tone P
Third Order Intermodulation Distortion IM
–70
–30 –25 –20 –15 –10 –5 0
Input Power Pin (dBm)
ADJACENT CHANNEL INTERFERENCE vs. INPUT POWER
–20
f = 1440 MHz
AGC
= V
(dBc)
–30
adj
–40
V (GPMAX)
CC
VCC = 2.7 V ±50 kHz VCC = 3.0 V ±50 kHz VCC = 3.3 V ±50 kHz
∆ ∆ ∆
–50
IM
3
2
VCC = 3.3 V V
AGC
= 3.3 V (GPMAX) f1 = 1440 MHz f2 = 1441 MHz
VCC = 2.7 V ±100 kHz
OUTPUT POWER AND IM3 vs. INPUT POWER
+10
(dBm)
3
0
P
out
–10
(dBm)
–20
out
2f2 – f
–30
(1442 MHz)
1
2f1 – f
–40
(1439 MHz)
–50
–60
Output Power of each tone P
Third Order Intermodulation Distortion IM
–70
–30 –25 –20 –15 –10 –5 0
Input Power Pin (dBm)
ADJACENT CHANNEL INTERFERENCE vs. GAIN CONTROL VOLTAGE
–45
f = 1440 MHz
(dBc)
adj
VCC = 3.0 V
–50
–55
Pin = –19.4 dBm ±50 kHz
Pin = –17.4 dBm ±50 kHz
–60
2
VCC = 2.7 V V
AGC
= 2.7 V (GPMAX) f1 = 1440 MHz f2 = 1441 MHz
–60
–70
Adjacent Channel Interference P
–80
VCC = 3.3 V ±100 kHz
–30 –25 –20 –15 –10 –5 0
in
Input Power P
(dBm)
VCC = 3.0 V ±100 kHz
–65
–70
Adjacent Channel Interference P
–75
in
= –17.4 dBm ±100 kHz
P
Pin = –19.4 dB
0 0.5 1 1.5 2 2.5 3
Gain Control Voltage V
AGC
(V)
m ±
100 kHz
41
Page 42
PC8120T
µµµµ
Output port matching at f = 1900 MHz
µµµµ
PC8119T,
µµµµ
PC8120T
Vcc = 3.0 V, V
S11 vs. FREQUENCY
AGC
= 3.0 V (GPMAX), Pin = –30 dBm
1; 24.991 –27.029 3.0991 pF
1 900.000 000 MHz
MARKER 1
1.9 GHz
1
START 100.000 000 MHz STOP 100.000 000 MHz
S11 vs. FREQUENCY
AGC
= 3.0 V (GPMAX), Pin = –30 dBm
V
5 dB/ REF 0 dB 1; –5.5512 dB
1 900.000 000 MHz
10
11
S
log MAG
MARKER 1
1.9 GHz
VCC = 3.3 V
0
VCC = 3.0 V
1
–10
S22 vs. FREQUENCY
1; 52.643 16.369 1.3712 nH
1 900.000 000 MHz
MARKER 1
1.9 GHz 1
START 100.000 000 MHz STOP 100.000 000 MHz
S
22
vs. FREQUENCY
AGC
= 3.0 V (GPMAX), Pin = –30 dBm
V
10
S
22
log MAG
5 dB/ REF 0 dB 1; –24.124 dB
1 900.000 000 MHz
MARKER 1
1.9 GHz
0
–10
–20
VCC = 2.7 V
–30
START 100.000 000 MHz STOP 3 100.000 000 MHz
21
vs. FREQUENCY
S
AGC
= 3.0 V (GPMAX), Pin = –30 dBm
V
17
S
21
log MAG
REF 7 dB 1; 12.505 dB
1 dB/
1 900.000 000 MHz
MARKER 1
15
13
1.9 GHz 1
VCC = 3.3 V
CC
V
CC
V
11
9
7
START 100.000 000 MHz STOP 3 100.000 000 MHz
42
= 3.0 V = 2.7 V
–20
1
VCC = 2.7 V VCC = 3.0 V
CC
= 3.3 V
V
–30
START 100.000 000 MHz STOP 3 100.000 000 MHz
12
vs. FREQUENCY
S
AGC
= 3.0 V (GPMAX), Pin = –30 dBm
V
log MAG
12
S
0
5 dB/ REF 0 dB 1; –37.895 dB
1 900.000 000 MHz
MARKER 1
–10
1.9 GHz
–20
–30
VCC = 3.3 V
VCC = 3.0 V
–40
–50
START 100.000 000 MHz STOP 3 100.000 000 MHz
VCC = 2.7 V
Page 43
PC8120T
µµµµ
Output port matching at f = 1900 MHz
POWER GAIN vs. GAIN CONTROL VOLTAGE POWER GAIN vs. GAIN CONTROL VOLTAGE
20
10
(dB)
P
0
Power Gain G
–10
VCC = 2.7 V
VCC = 3.0 V
VCC = 3.3 V
20
10
(dB)
P
0
Power Gain G
–10
µµµµ
PC8119T,
TA = –25 °C
µµµµ
PC8120T
TA = +25 °C
A
= +75 °C
T
–20
0 0.5 1 1.5 2 2.5 3 3.5 0 0.5 1 1.5 2 2.5 3 3.5
Gain Control Voltage V
AGC
(V) Gain Control Voltage V
S21 vs. FREQUENCY DEPENDENCE OF GAIN CONTROL VOLTAGE
cc
= 3.0 V, Pin = –30 dBm
V S21log MAG 13.389 dB
MARKER 1
10
1.9 GHz
0
5.0 dB/ REF –10.0 dB S12log MAG –37.828 dB5.0 dB/ REF –25.0 dB
V
AGC
= 3.0 V
V V
AGC AGC
1
= 1.7 V = 1.4 V
V
AGC
= 2.0 V
–20
12
vs. FREQUENCY DEPENDENCE OF GAIN
S CONTROL VOLTAGE
cc
= 3.0 V, Pin = –30 dBm
V
0
MARKER 1
1.9 GHz
–10
–20
AGC
(V)
–10
V
AGC
–20
= 1.0 V
V
AGC
= 0 V
–30
V
AGC
= 0 V
–40
V
AGC
–30
S11 vs. FREQUENCY DEPENDENCE OF GAIN CONTROL VOLTAGE
cc
= 3.0 V, Pin = –30 dBm
V S11log MAG –5.75 dB
MARKER 1
10
1.9 GHz
0
5.0 dB/ REF –10.0 dB
V
AGC
1
V
AGC
= 1.4 V
= 0 V
–50
START 0.100000000 GHz STOP 3.100000000 GHzSTART 0.100000000 GHz STOP 3.100000000 GHz
S22 vs. FREQUENCY DEPENDENCE OF GAIN CONTROL VOLTAGE
cc
= 3.0 V, Pin = –30 dBm
V
S22log MAG –21.073 dB
MARKER 1
10
1.9 GHz
5.0 dB/ REF –10.0 dB
0
= 3.0 V
V
AGC
–10
= 1.6 V
V
AGC
= 3.0 V
–20
–30
START 0.100000000 GHz STOP 3.100000000 GHz
V
AGC
–10
–20
–30
V
AGC
V
AGC
= 3.0 V
= 1.25 V
= 1.6 V
1
V
AGC
= 0 V
START 0.100000000 GHz STOP 3.100000000 GHz
43
Page 44
PC8120T
µµµµ
Output port matching at f = 1900 MHz
µµµµ
PC8119T,
µµµµ
PC8120T
OUTPUT POWER vs. INPUT POWER
+10
f = 1900 MHz
AGC
= 3.0 V
V
+5
0
(dBm)
out
–5
–10
Output Power P
–15
–20
–30 –25 –20 –15 –10
Input Power P
VCC = 3.3 V
VCC = 3.0 V
VCC = 2.7 V
–5 0 +5 +10
in
(dBm)
OUTPUT POWER vs. INPUT POWER
+10
f = 1900 MHz
+5
CC
= 3.0 V
V
0
V
–5
–10
(dBm)
out
–15 –20 –25 –30
Output Power P
–35 –40 –45
–30 –25 –20 –15 –10
Input Power P
OUTPUT POWER vs. INPUT POWER OUTPUT POWER vs. INPUT POWER
+10
f = 1900 MHz
+5
CC
= 3.3 V
V
0
–5
–10
(dBm)
out
–15 –20 –25 –30
Output Power P
–35 –40 –45
–30 –25 –20 –15 –10
Input Power P
V
AGC
= 3.3 V
V
AGC
= 1.9 V
V
AGC
= 1.65 V
AGC
= 1.55 V
V V
AGC
= 1.48 V
V
AGC
= 0 V
–5 0 +5 +10
in
(dBm)
+10
f = 1900 MHz
+5
CC
= 2.7 V
V
0
–5
–10
(dBm)
out
–15 –20 –25 –30
Output Power P
–35 –40 –45
–30 –25 –20 –15 –10
Input Power Pin (dBm)
V
AGC
= 3.0 V
AGC
= 1.65 V
V
AGC
= 1.5 V
AGC
= 1.4 V
V
AGC
= 1.3 V
V
AGC
= 0 V
V
–5 0 +5 +10
in
(dBm)
V
AGC
= 2.7 V
V
AGC
= 1.5 V
V
AGC
= 1.3 V
V
AGC
= 1.2 V
V
AGC
= 1.13 V
V
AGC
= 0 V
–5 0 +5 +10
44
Page 45
PC8120T
µµµµ
Output port matching at f = 1900 MHz
µµµµ
PC8119T,
µµµµ
PC8120T
OUTPUT POWER AND IM3 vs. INPUT POWER
+10
P
(dBm)
3
0
out
–10
(dBm)
–20
out
–30
(1900.6 MHz)
–40
–50
–60
Output Power of each tone P
Third Order Intermodulation Distortion IM
–70
–30 –25 –20 –15 –10
2f2 – f
IM
1
3
2f1 – f
2
(1899.7 MHz)
VCC = 3.0 V V (GPMAX) f1 = 1900 MHz f2 = 1900.3 MHz
Input Power Pin (dBm)
+10
VCC = 3.0 V V
AGC
(dBm)
3
(dBm)
out
–10
–20
= 1.3 V
~
0
(GP
–10 dB)
~
f1 = 1900 MHz f2 = 1900.3 MHz
P
out
–30
2f1 – f
–40
–50
(1899.7 MHz)
2
2f2 – f (1900.6 MHz)
–60
Output Power of each tone P
Third Order Intermodulation Distortion IM
–70
–30 –25 –20 –15 –10
Input Power Pin (dBm)
AGC
IM
= 3.0 V
–5 0
3
1
–5 0
OUTPUT POWER AND IM
+10
VCC = 3.0 V V
AGC
(dBm)
3
(dBm)
out
= 1.4 V
~
0
(GP –5 dB)
~
f1 = 1900 MHz f2 = 1900.3 MHz
–10
–20
3
vs. INPUT POWER
P
out
–30
IM
3
–40
–50
2f1 – 2f
2
(1899.7 MHz)
2f2 – 2f1 (1900.6 MHz)
–60
Output Power of each tone P
Third Order Intermodulation Distortion IM
–70
–30 –25 –20 –15 –10
Input Power Pin (dBm)
3
OUTPUT POWER AND IM
+10
VCC = 3.0 V
AGC
= 0 V
V
(dBm)
(GPMIN)
0
3
f1 = 1900 MHz f2 = 1900.3 MHz
–10
(dBm)
–20
out
vs. INPUT POWEROUTPUT POWER AND IM3 vs. INPUT POWER
P
out
–30
–40
2f1 – f
–50
(1899.7 MHz)
–60
Output Power of each tone P
Third Order Intermodulation Distortion IM
–70
–30 –25 –20 –15 –10
2
2f2 – f (1900.6 MHz)
Input Power Pin (dBm)
–5 0
IM
3
1
–5 0
OUTPUT POWER AND IM3 vs. INPUT POWER
+10
P
(dBm)
0
3
–10
(dBm)
–20
out
2f2 – f
–30
(1900.6 MHz)
1
–40
–50
–60
Output Power of each tone P
Third Order Intermodulation Distortion IM
–70
–30 –25 –20 –15 –10
out
IM
3
2f1 – f2 (1899.7 MHz)
VCC = 3.3 V V (GPMAX) f1 = 1900 MHz f2 = 1900.3 MHz
Input Power Pin (dBm)
AGC
= 3.3 V
–5 0
OUTPUT POWER AND IM3 vs. INPUT POWER
+10
P
IM
out
3
(dBm)
3
(dBm)
out
0
–10
–20
2f2 – f1 (1900.6 MHz)
–30
–40
2f1 – f2 (1899.7 MHz)
–50
–60
Output Power of each tone P
Third Order Intermodulation Distortion IM
–70
–30 –25 –20 –15 –10
Input Power Pin (dBm)
VCC = 2.7 V V
AGC
= 2.7 V (GPMAX) f1 = 1900 MHz f2 = 1900.3 MHz
–5 0
45
Page 46
PC8120T
µµµµ
Output port matching at f = 1900 MHz
µµµµ
PC8119T,
µµµµ
PC8120T
ADJACENT CHANNEL INTERFERENCE vs. INPUT POWER
–20
f = 1900 MHz
(dBc)
V
AGC
adj
–30
–40
–50
–60
–70
Adjacent Channel Interference P
–80
= VCC (GPMAX)
VCC = 2.7
VCC = 3.0
–30 –25 –20 –15 –10
V ±
600 kHz
Input Power Pin (dBm)
V ±
600 kHz
VCC = 3.3
V ±
600 kHz
–5 0
ADJACENT CHANNEL INTERFERENCE vs. GAIN CONTROL VOLTAGE
–45
f = 1900 MHz
(dBc)
adj
Adjacent Channel Interference P
CC
= 3.0 V
V
–50
–55
–60
Pin = –10 dBm ±600 kHz
–65
–70
–75
0.0 0.5 1.0 1.5 2.0
Pin = –15
Gain Control Voltage V
dBm ±600 kHz
Pin = –12
AGC
dBm ±600 kHz
2.5 3.0
(V)
46
Page 47
PACKAGE DIMENSIONS
6 PIN MINIMOLD PACKAGE (UNITS: mm)
µµµµ
PC8119T,
µµµµ
PC8120T
+0.2
–0.3
2.8
+0.2
123
–0.1
1.5
65
+0.1
0.3
–0.0
0.95 0.95
1.9
2.9±0.2
0.13±0.1
0 – 0.1
4
0.2 MIN.
1.1
0.8
+0.2 –0.1
47
Page 48
µµµµ
PC8119T,
µµµµ
PC8120T
NOTES ON CORRECT USE
(1) Observe precautions for handling because of electro-static sensitive devices. (2) Form a ground pattern as wide as possible to minimize ground impedance (to prevent undesired oscillation). (3) Keep the track length of the ground pins as short as possible. (4) A low pass filter must be attached to V
CC
line.
(5) A matching circuit must be externally attached to output port.
RECOMMENDED SOLDERING CONDITIONS
This product should be soldered under the following recommended conditions. For soldering methods and
conditions other than those recommended below, contact your NEC sales representative.
PC8119T,
µµµµ
Soldering Method Soldering Conditions
Infrared Reflow P ackage peak temperature: 235°C or below
VPS Package peak temperature: 215°C or below
Wave Soldering Soldering bath temperature: 260°C or bel ow
Partial Heating Pin temperature: 300° C
Note
PC8120T
µµµµ
Time: 30 seconds or less (at 210°C) Count: 3, Exposure limi t
Time: 40 seconds or less (at 200°C) Count: 3, Exposure limi t
Time: 10 seconds or less Count: 1, Exposure limi t
Time: 3 seconds or less (per side of device) Exposure limit
Note
: None
Note
: None
Note
: None
Note
: None
After opening the dry pack, keep it in a place below 25°C and 65% RH for the allowable storage period.
Caution Do not use different soldering methods together (except for partial heating).
Recommended Condition Symbol
IR35-00-3
VP15-00-3
WS60-00-1
For details of the recommended soldering conditions for surface mounting, refer to infor mation document SEMICONDUCTOR DEVICE MOUNTING TECHNOLOGY MANUAL (C10535E).
48
Page 49
[MEMO]
µµµµ
PC8119T,
µµµµ
PC8120T
49
Page 50
[MEMO]
µµµµ
PC8119T,
µµµµ
PC8120T
50
Page 51
[MEMO]
µµµµ
PC8119T,
µµµµ
PC8120T
51
Page 52
µµµµ
PC8119T,
The application circuits and their parameters are for reference only and are not intended for use in actual design-ins.
NESAT (NEC Silicon Advanced Technology) is a trademark of NEC Corporation.
No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document. NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others. While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features. NEC devices are classified into the following three quality grades: "Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.
Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support) Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc. The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance. Anti-radioactive design is not implemented in this product.
µµµµ
PC8120T
M4 96. 5
Loading...