PARAMETERSYMBOLMIN.TYP.MAX.UNITTEST CONDITIONS
Circuit CurrentI
Circuit Current at Power Save ModeI
Maximum Output PowerP
LO Carrier LeakLoL
Image Rejection (Side Band Leak )ImR
I/Q 3rd Order Intermodulation
Distortion
Power Save Rise TimeT
Power Save Fall TimeT
CC
CC(PS)
o(sat)
3I/Q
IM
PS(RISE)
PS(FALL)
202433m ANo input signal
10uAVPS ≤ 0.5 V (Low)
LOin
f
13
−
10dBM
−
35
−
40
−
45
−
30dBc
−
30dBc
−
30dBc
−
= 948 MHz
LOin
= −10 dBm
P
I/Q
= 2.625 kHz
f
I/Q (DC) = V
I/Qin
= 500 mV
V
(Single ended)
35
25
sVPS: Low → High
µ
sVPS: High → Low
µ
CC
STANDARD CHARACTERISTICS FOR REFERENCE
(TA = +25 °C, VCC = 3.0 V, Unless Otherwise Specified VPS
input for phase shifter.
Connect around 50 Ω between 1
and 3 pin to match to 50 Ω.
Connect to the ground with
minimum inductance.
Track length should be kept as
short as possible.
2.6Bypass of L
This pin is grounded through
around 33 pF capacitor.
Input for Q signal.
This input impedance is 150 kΩ.
In case of that I/Q i nput signals
are single ended, amplitude of
the signal is 500 mVp-p max .
Input for Q signal.
This input impedance is 150 kΩ.
In case of that I/Q i nput signals
are single ended, V
DC signal should be input.
In case of that I/Q i nput signals
are differential, amplit ude of the
signal is 250 mVp-p max.
Input for I signal.
This input impedance is 150 kΩ.
In case of that I/Q i nput signals
are single ended, V
DC signal should be input.
In case of that I/Q i nput signals
are differential, amplit ude of the
signal is 250 mVp-p max.
Input for I signal.
This input impedance is 150 kΩ.
In case of that I/Q i nput signals
are single ended, amplitude of
the signal is 500 mVp-p max .
Connect to the ground with
minimum inductance.
Track length should be kept as
short as possible.
O
input.
CC
/2 biased
CC
/2 biased
1
3
Note 2
Note 2
Note 2
Note 2
Data Sheet P11074EJ3V0DS00
5
µµµµ
PC8110GR
Pin
ASSIGNMENT
No.
11RF
12
out
GND
SUPPLY
VOL. (V)
(for Output
Push-pull
Amplifier)
CC
14
V
2.7 to 3.6
(for Output
Amplifier of
Modulator)
17Power SaveV
PIN
VOL. (V)
1.6Output from modulator.
FUNCTION AND APPLICATIONEQUIVALENT CIRCUIT
This is single-end push-pull
amplifier. So this output
impedance is Low.
0
Connect to the ground with
minimum inductance.
Track length should be kept as
From Modulator
11
short as possible.
Supply voltage pin for Output
Amplifier of modulator. Internal
regulator can be kept stable
condition of supply bias agai nst
CC
.
P/S
the variable temperature or V
Power save control pin can be
controlled ON/SLEEP state with
bias as follows;
P/S
V
STATE
17
2.2 to 3.6ON
0 to 0.5SLEEP
19V
4
10
15
20
Note 2.
Relations between amplitude and V
Supply Voltage
VCC (V)
2.7 to 3.61.35 to 1.8
CC
2.7 to 3.6
GND0
I/Q DC Voltage (V)
CC
/2 = I = I = Q = Q
V
Supply voltage pin for modulator
except output Amplifier. Internal
regulator can be kept stable
condition of supply bias agai nst
CC
the variable temperature or V
.
Connect to the ground with
minimum inductance.
Track length should be kept as
short as possible.
CC
/2 bias of input signal are following.
I/Qin
P
- I/Q Input Signal - mVp-p
Single ended input
I = Q
500
≤
Differential input
I = I = Q = Q
250
≤
6
Data Sheet P11074EJ3V0DS00
EXPLANATION OF INTERNAL FUNCTION
BLOCKFUNCTION/OPERATIONBLOCK DIAGRAM
from LO
90 ° PHASE
SHIFTER
BUFFER
AMP.
Input signal from LO is send to digital ci rc ui t of
T-type flip-flop through frequency doubler.
Output signal from T-type F/F i s changed to
O
same frequency as L
quadrature phase shift, 0 °, 90 °, 180 °, 270 °.
These circuits have f unction of self phase
correction to make correc tly quadrature signals.
Buffer amplifiers f or each phase signals to send
to each mixers.
input and that have
in
× 2
÷ 2 F/F
µµµµ
PC8110GR
MIXERE ac h signals from buffer amp. are quadrat ure
modulated with two double-balanced mi x ers.
High accurate phase and amplitude i nput s are
realized to good performance for image
rejection.
ADDEROutput s i gnal s from each mixers are added with
adder and send to final amplifier.
I
I
Q
Q
to MOD
out
Data Sheet P11074EJ3V0DS00
7
TYPICAL CHARACTERISTICS
Unless otherwise specified T
500 mV
p-p
(Single ended), f
I/Q
= 2.625 kHz, f
RNYQ: a = 0.5.
µµµµ
PC8110GR
A
= +25 °C, VCC = VPS = 3 V, I/Q DC/offset = I/Q DC offset = 1.5 V, I/Q Input signal =
LOin
= 948 MHz, P
LOin
= −10 dBm, <PDC> Transmission speed: 42 kbps,
CIRCUIT CURRENT vs SUPPLY VOLTAGE
30
TA = +25 ˚C
A
= –40 ˚C
T
T
A
25
= +85 ˚C
CC
= V
V
PS
I/Q (DC) = VCC/2
RF None
20
15
- Circuit Current - mA
CC
I
10
5
0
00.51.01.52.02.53.03.54.0
VCC - Supply Voltage - V
CIRCUIT CURRENT vs POWER SAVE VOLTAGE
30
TA = +25 ˚C
A
= –40 ˚C
T
A
= +85 ˚C
25
T
V
CC
= 3 V
I/Q (DC) = 1.5 V
RF None
20
15
- Circuit Current - mA
CC
I
10
5
0
00.51.01.52.02.53.03.54.0
VPS - Power Save Voltage - V
8
Data Sheet P11074EJ3V0DS00
µµµµ
PC8110GR
RF OUTPUT POWER vs I/Q INPUT SIGNAL
A
= –40 ˚C)
(at T
0
VCC = 3.0 V
V
CC
= 2.7 V
CC
= 3.6 V
V
Single ended
–5
–10
–15
- RF Output Power - dBm
RFout
P
–20
–25
100200300 400 500
RF OUTPUT POWER vs I/Q INPUT SIGNAL
A
= +25 ˚C)
(at T
0
VCC = 3.0 V
V
CC
= 2.7 V
CC
= 3.6 V
V
Single ended
–5
–10
–15
- RF Output Power - dBm
RFout
P
–20
–25
100200300 400 500
P
I/Qin
- I/Q Input Signal - mVp-p
RF OUTPUT POWER vs I/Q INPUT SIGNAL
A
= +85 ˚C)
(at T
0
VCC = 3.0 V
CC
= 2.7 V
V
CC
= 3.6 V
V
Single ended
–5
–10
–15
- RF Output Power - dBm
RFout
P
–20
P
I/Qin
- I/Q Input Signal - mVp-p
–25
100200300 400 500
P
I/Qin
- I/Q Input Signal - mVp-p
Data Sheet P11074EJ3V0DS00
9
µµµµ
PC8110GR
Lo INPUT FREQUENCY vs
RFout
, LoL, ImR, IM
P
3I/Q
(at VCC = 2.7 V, TA = –40 ˚C)
LoL
–5
–10
–15
–20
–25
–30
- dBc
3I/Q
–35
–40
–45
–50
P
RFout
IM
3I/Q
ImR
LoL - Local Ieak, ImR - Image Rejection, IM
–55
700 800 900
1000 1100
–30
fLO - Local Input Frequency - MHz
Lo INPUT FREQUENCY vs
RFout
, LoL, ImR, IM
P
(at VCC = 3.0 V, TA = –40 ˚C)
–30
P
RFout
- dBc
3I/Q
–35
LoL
–40
IM
–45
3I/Q
- RF Output Power - dBm
RFout
P
–50
ImR
LoL - Local Ieak, ImR - Image Rejection, IM
–55
700 800 900
1000 1100
fLO - Local Input Frequency - MHz
3I/Q
–5
–30
- dBc
–10
–15
–20
3I/Q
–35
–40
–45
- RF Output Power - dBm
RFout
P
–25
–30
–50
LoL - Local Ieak, ImR - Image Rejection, IM
–55
Lo INPUT FREQUENCY vs
RFout
, LoL, ImR, IM
P
3I/Q
(at VCC = 3.6 V, TA = –40 ˚C)
LoL
P
RFout
IM
3I/Q
ImR
700 800 900
1000 1100
fLO - Local Input Frequency - MHz
–5
–10
–15
–20
- RF Output Power - dBm
RFout
P
–25
–30
Lo INPUT FREQUENCY vs
RFout
, LoL, ImR, IM
P
3I/Q
(at VCC = 2.7 V, TA = +25 ˚C)
–30
P
RFout
–5
- dBc
3I/Q
–35
–40
LoL
–45
IM
3I/Q
–50
–55
ImR
700 800 900
1000 1100
LoL - Local Ieak, ImR - Image Rejection, IM
–10
–15
–20
–25
–30
fLO - Local Input Frequency - MHz
Lo INPUT FREQUENCY vs
RFout
, LoL, ImR, IM
P
(at VCC = 3.0 V, TA = +25 ˚C)
–30
P
RFout
- dBc
3I/Q
–35
IM
LoL
3I/Q
–40
–45
- RF Output Power - dBm
RFout
P
–50
LoL - Local Ieak, ImR - Image Rejection, IM
–55
ImR
700 800 900
1000 1100
fLO - Local Input Frequency - MHz
3I/Q
–5
–30
- dBc
–10
–15
–20
3I/Q
–35
–40
–45
- RF Output Power - dBm
RFout
P
–25
–30
–50
LoL - Local Ieak, ImR - Image Rejection, IM
–55
Lo INPUT FREQUENCY vs
RFout
, LoL, ImR, IM
P
3I/Q
(at VCC = 3.6 V, TA = +25 ˚C)
P
RFout
LoL
IM
3I/Q
ImR
700 800 900
1000 1100
fLO - Local Input Frequency - MHz
–5
–10
–15
–20
- RF Output Power - dBm
RFout
P
–25
–30
10
Data Sheet P11074EJ3V0DS00
µµµµ
PC8110GR
Lo INPUT FREQUENCY vs
RFout
, LoL, ImR, IM
P
3I/Q
(at VCC = 2.7 V, TA = +85 ˚C)
–30
–5
LoL
- dBc
3I/Q
–35
P
RFout
–40
IM
3I/Q
–45
ImR
–50
LoL - Local Ieak, ImR - Image Rejection, IM
–55
700 800 900
1000 1100
–10
–15
–20
–25
–30
fLO - Local Input Frequency - MHz
Lo INPUT FREQUENCY vs
RFout
, LoL, ImR, IM
P
(at VCC = 3.0 V, TA = +85 ˚C)
–30
- dBc
3I/Q
–35
P
RFout
–40
IM
3I/Q
–45
- RF Output Power - dBm
RFout
P
–50
ImR
LoL - Local Ieak, ImR - Image Rejection, IM
–55
700 800 900
1000 1100
fLO - Local Input Frequency - MHz
3I/Q
LoL
–5
- dBc
–10
3I/Q
–15
–20
- RF Output Power - dBm
RFout
P
–25
–30
LoL - Local Ieak, ImR - Image Rejection, IM
Lo INPUT FREQUENCY vs
RFout
, LoL, ImR, IM
P
3I/Q
(at VCC = 3.6 V, TA = +85 ˚C)
–30
–35
P
RFout
LoL
–40
IM
3I/Q
–45
ImR
–50
–55
700 800 900
1000 1100
fLO - Local Input Frequency - MHz
–5
–10
–15
–20
- RF Output Power - dBm
RFout
P
–25
–30
Lo INPUT POWER vs
RFout
, LoL, ImR, IM
P
3I/Q
(at VCC = 2.7 V, TA = –40 ˚C)
–30
LoL
–5
- dBc
3I/Q
–35
P
–40
–10
RFout
–15
ImR
–45
–20
- RF Output Power - dBm
RFout
–50
IM
3I/Q
LoL - Local Ieak, ImR - Image Rejection, IM
–55
–15–5–10–15–5–10–15
–5–10
–25
–30
P
LO - Local Input Power - dBm
Lo INPUT POWER vs
RFout
, LoL, ImR, IM
P
3I/Q
(at VCC = 3.0 V, TA = –40 ˚C)
–30
LoL
–5
- dBc
3I/Q
–35
P
–40
–10
RFout
–15
ImR
–45
–50
IM
3I/Q
LoL - Local Ieak, ImR - Image Rejection, IM
–55
–20
–25
–30
LO - Local Input Power - dBm
- RF Output Power - dBm
RFout
P
Lo INPUT POWER vs
RFout
, LoL, ImR, IM
P
3I/Q
(at VCC = 3.6 V, TA = –40 ˚C)
–30
LoL
–5
- dBc
3I/Q
–35
P
–40
–10
RFout
–15
ImR
–45
–50
IM
3I/Q
LoL - Local Ieak, ImR - Image Rejection, IM
–55
–20
–25
–30
LO - Local Input Power - dBm
- RF Output Power - dBm
RFout
P
Data Sheet P11074EJ3V0DS00
11
µµµµ
PC8110GR
Lo INPUT POWER vs
RFout
, LoL, ImR, IM
P
3I/Q
(at Vcc = 2.7 V, TA = +25 ˚C)
–30
- dBc
3I/Q
–35
–40
P
RFout
LoL
–5
–10
–15
ImR
–45
–20
- RF Output Power - dBm
RFout
–50
IM
3I/Q
LoL - Local Ieak, ImR - Image Rejection, IM
–55
–15–5–10–15–5–15
–5–10
–25
–30
P
LO - Local Input Power - dBm
Lo INPUT POWER vs
RFout
, LoL, ImR, IM
P
3I/Q
(at Vcc = 3.0 V, TA = +25 ˚C)
–30
- dBc
3I/Q
–35
–40
P
RFout
LoL
–5
–10
–15
ImR
–45
–50
IM
3I/Q
LoL - Local Ieak, ImR - Image Rejection, IM
–55
–20
–25
–30
LO - Local Input Power - dBm
- RF Output Power - dBm
RFout
P
Lo INPUT POWER vs
RFout
, LoL, ImR, IM
P
3I/Q
(at Vcc = 3.6 V, TA = +25 ˚C)
–30
P
RFout
–5
- dBc
3I/Q
–35
–40
LoL
–10
–15
ImR
–45
–50
IM
3I/Q
LoL - Local Ieak, ImR - Image Rejection, IM
–55
–20
–25
–30
–10
LO - Local Input Power - dBm
- RF Output Power - dBm
RFout
P
Lo INPUT POWER vs
RFout
, LoL, ImR, IM
P
3I/Q
(at Vcc = 2.7 V, TA = +85 ˚C)
–30
–5
LoL
- dBc
3I/Q
–35
–40
P
RFout
–10
–15
ImR
–45
–20
- RF Output Power - dBm
RFout
–50
IM
3I/Q
LoL - Local Ieak, ImR - Image Rejection, IM
–55
–15–5–10–15–5–10–15
–5–10
–25
–30
P
LO - Local Input Power - dBm
Lo INPUT POWER vs
RFout
, LoL, ImR, IM
P
3I/Q
(at Vcc = 3.0 V, TA = +85 ˚C)
–30
–5
LoL
- dBc
3I/Q
–35
–40
P
RFout
–10
–15
ImR
–45
–50
IM
3I/Q
LoL - Local Ieak, ImR - Image Rejection, IM
–55
–20
–25
–30
LO - Local Input Power - dBm
- RF Output Power - dBm
RFout
P
Lo INPUT POWER vs
RFout
, LoL, ImR, IM
P
3I/Q
(at Vcc = 3.6 V, TA = +85 ˚C)
–30
- dBc
3I/Q
–35
–40
LoL
P
RFout
–5
–10
–15
ImR
–45
–50
IM
3I/Q
LoL - Local Ieak, ImR - Image Rejection, IM
–55
–20
–25
–30
LO - Local Input Power - dBm
- RF Output Power - dBm
RFout
P
12
Data Sheet P11074EJ3V0DS00
µµµµ
PC8110GR
I/Q BIASE VOLTAGE vs
P
RFout
, LoL, ImR, IM
3I/Q
(at VCC = 2.7 V, TA = –40 ˚C)
–30
P
RFout
–5
- dBc
3I/Q
–35
–40
–45
LoL
ImR
–50
IM
3I/Q
LoL - Local Ieak, ImR - Image Rejection, IM
–55
–10
–15
–20
–25
–30
1.251.351.45
I/Q (DC) - I/Q Supply Voltage - V
I/Q BIASE VOLTAGE vs
P
RFout
, LoL, ImR, IM
(at VCC = 3.0 V, TA = –40 ˚C)
–30
P
RFout
- dBc
3I/Q
–35
LoL
–40
–45
ImR
- RF Output Power - dBm
RFout
P
–50
LoL - Local Ieak, ImR - Image Rejection, IM
–55
IM
3I/Q
1.41.51.6
I/Q (DC) - I/Q Supply Voltage - V
3I/Q
–5
- dBc
–10
3I/Q
–15
–20
- RF Output Power - dBm
RFout
P
–25
–30
LoL - Local Ieak, ImR - Image Rejection, IM
I/Q BIASE VOLTAGE vs
P
RFout
, LoL, ImR, IM
3I/Q
(at VCC = 3.6 V, TA = –40 ˚C)
–30
LoL
–35
P
RFout
–40
–45
–50
ImR
IM
3I/Q
–55
1.71.81.9
I/Q (DC) - I/Q Supply Voltage - V
–5
–10
–15
–20
- RF Output Power - dBm
RFout
P
–25
–30
I/Q BIASE VOLTAGE vs
RFout
, LoL, ImR, IM
P
3I/Q
(at VCC = 2.7 V, TA = +25 ˚C)
–30
P
RFout
–5
- dBc
3I/Q
–35
–40
–10
–15
LoL
IM
3I/Q
ImR
–20
–25
–30
–45
–50
LoL - Local Ieak, ImR - Image Rejection, IM
–55
1.251.351.45
I/Q (DC) - I/Q Supply Voltage - V
I/Q BIASE VOLTAGE vs
RFout
, LoL, ImR, IM
P
(at VCC = 3.0 V, TA = +25 ˚C)
–30
P
RFout
- dBc
3I/Q
–35
–40
LoL
ImR
–45
- RF Output Power - dBm
RFout
P
–50
LoL - Local Ieak, ImR - Image Rejection, IM
–55
IM
3I/Q
1.41.51.6
I/Q (DC) - I/Q Supply Voltage - V
3I/Q
–5
- dBc
–10
3I/Q
–15
–20
- RF Output Power - dBm
RFout
P
–25
–30
LoL - Local Ieak, ImR - Image Rejection, IM
I/Q BIASE VOLTAGE vs
RFout
, LoL, ImR, IM
P
3I/Q
(at VCC = 3.6 V, TA = +25 ˚C)
–30
P
RFout
–35
–40
LoL
ImR
–45
IM
–50
3I/Q
–55
1.71.81.9
I/Q (DC) - I/Q Supply Voltage - V
–5
–10
–15
–20
- RF Output Power - dBm
RFout
P
–25
–30
Data Sheet P11074EJ3V0DS00
13
µµµµ
PC8110GR
I/Q BIASE VOLTAGE vs
P
RFout
, LoL, ImR, IM
3I/Q
(at VCC = 2.7 V, TA = +85 ˚C)
–30
–5
- dBc
3I/Q
–35
P
RFout
–40
–45
LoL
ImR
–50
IM
3I/Q
LoL - Local Ieak, ImR - Image Rejection, IM
–55
–10
–15
–20
–25
–30
1.251.351.45
I/Q (DC) - I/Q Supply Voltage - V
I/Q BIASE VOLTAGE vs
RFout
, LoL, ImR, IM
P
(at VCC = 3.0 V, TA = +85 ˚C)
–30
P
- dBc
3I/Q
–35
–40
–45
RFout
LoL
ImR
- RF Output Power - dBm
RFout
P
–50
IM
3I/Q
LoL - Local Ieak, ImR - Image Rejection, IM
–55
1.41.51.6
I/Q (DC) - I/Q Supply Voltage - V
3I/Q
–5
–30
- dBc
3I/Q
–10
–15
–20
–35
–40
–45
- RF Output Power - dBm
RFout
–25
–30
P
–50
LoL - Local Ieak, ImR - Image Rejection, IM
–55
I/Q BIASE VOLTAGE vs
P
RFout
, LoL, ImR, IM
3I/Q
(at VCC = 3.6 V, TA = +85 ˚C)
LoL
P
RFout
ImR
IM
3I/Q
1.71.81.9
I/Q (DC) - I/Q Supply Voltage - V
–5
–10
–15
–20
- RF Output Power - dBm
RFout
P
–25
–30
14
Data Sheet P11074EJ3V0DS00
µµµµ
PC8110GR
10 dB/
∆ MKR
–10.50 kHz
RBW
300 Hz
VBW
300 Hz
SWP
1.2 s
TYPICAL SINE WAVE MODULATION OUTPUT SPECTRUM
<PDC> 42 kbps, RNYQ α = 0.5, MOD Pattern [0000]
(RF Output Power, Local Carrier Leak, Image Rejection, I/Q 3rd Order Intermodulation Distortion and Power
Save Rise and Fall Time)
Voltage
Source
Pulse pattern
10
1
2
3
4
5
6
7
8
9
Generator
20
19
18
17
16
15
14
13
12
11
V
33 pF
Voltage
Source
1000 pF
100 pF
0.22 F
µ
ps
VCC1
V
CC
0.22 F
2
µ
100 pF
1000 pF
out
RF
Signal Generator
QbQ
IbI
I/Q Signal
Generator
33 pF
L
Oin
51 Ω
33 pF
Q
in
Q
in
I
in
I
in
20
Spectrum Analyzer
Data Sheet P11074EJ3V0DS00
MEASUREMENT BLOCK DIAGRAM 2
(Local Input VSWR and RF Output VSWR)
Network Analyzer
Voltage
Source
µµµµ
PC8110GR
Voltage
Source
Voltage
Source
33 pF
L
Oin
51 Ω
2
3
1
33 pF
Q
Q
I
in
I
in
in
in
4
5
6
7
8
9
10
20
19
18
17
16
15
14
13
12
11
V
33 pF
ps
RF
1000 pF
100 pF
0.22 F
µ
VCC1
V
CC
2
0.22 F
µ
100 pF
1000 pF
out
Network Analyzer
Data Sheet P11074EJ3V0DS00
21
TEST BOARD
µµµµ
PC8110GR
VCC1
V
PS
Short
RF
out
VCC2
Bypass Capacitor
33 pF
Bypass Capacitor
PC8110GR
µ
L
Oin
33 pF
33 pF
Q
in
Q
51 Ω
I
in
in
I
in
Notes 1. Double-sided patterning with 35 µm thick copper on polyhimid board sizing 50 × 50 × 0.4 mm.
2. GND pattern on backside.
3. Solder coating over patterns.
4.{, indicate through-holes.
22
Data Sheet P11074EJ3V0DS00
PACKAGE DIMENSIONS
20 PIN PLASTIC SSOP (225 mil) (UNIT: mm)
µµµµ
PC8110GR
20
110
6.7 ± 0.3
1.8 MAX.
1.5 ± 0.1
11
detail of lead end
3˚
6.4 ± 0.2
4.4 ± 0.1
+7˚
–3˚
1.0 ± 0.2
NOTE
0.5 ± 0.2
0.15
+0.10
–0.05
0.1 ± 0.1
0.65
0.22
+0.10
–0.05
0.10
0.15
M
0.575 MAX.
Each lead centerline is located within 0.10 mm of its true position (T.P.) at maximum material condition.
Data Sheet P11074EJ3V0DS00
23
µµµµ
PC8110GR
NOTE ON CORRECT USE
(1) Observe precautions for handling because of electrostatic sensitive devices.
(2) Form a ground pattern as wide as possible to keep the minimum ground impedance (to prevent undesired
oscillation).
(3) Keep the track length of the ground pins as short as possible.
CC
(4) Connect a bypass capacitor (e.x. 1 000 pF) to the V
pin.
(5) I, Q DC offset voltage should be same as the I, Q DC offset voltage (to prevent changing the local leak level with
power save control.)
RECOMMENDED SOLDERING CONDITIONS
This product should be soldered in the following recommended conditions. Other soldering method and conditions
than the recommended conditions are to be consulted with our sales representatives.
PC8110GR
µµµµ
Soldering processSoldering conditionsSymbol
Infrared ray reflowPeak package’s surface temperature: 235 °C or below,
Reflow time: 30 seconds or bel ow (210 °C or higher),
Number of reflow process: 3, Exposure limit
VPSPeak package’s surface temperature: 215 °C or below,
Reflow time: 40 seconds or bel ow (200 °C or higher),
Number of reflow process: 3, Exposure limit
Wave solderingSolder temperature: 260 °C or below,
Flow time: 10 seconds or below,
Number of flow process: 1, Exposure limit
Partial heating methodTerminal temperature: 300 °C or below,
Flow time: 3 seconds/pi n or bel ow,
Exposure limit
Exposure limit before soldering after dry-pack package is opened.
Note
Note
: None
Note
Note
Note
: None
: None
: None
IR35-00-3
VP15-00-3
WS60-00-1
Storage conditions: 25 °C and relative humidity at 65 % or less.
Caution Apply only a single process at once, except for “Partial heating method”.
For details of recommended soldering conditions for surface mounting, refer to information document
SEMICONDUCTOR DEVICE MOUNTING TECHNOLOGY MANUAL (C10535E).
24
Data Sheet P11074EJ3V0DS00
[MEMO]
µµµµ
PC8110GR
Data Sheet P11074EJ3V0DS00
25
[MEMO]
µµµµ
PC8110GR
26
Data Sheet P11074EJ3V0DS00
[MEMO]
µµµµ
PC8110GR
Data Sheet P11074EJ3V0DS00
27
µµµµ
PC8110GR
• The information in this document is subject to change without notice. Before using this document, please
confirm that this is the latest version.
• No part of this document may be copied or reproduced in any form or by any means without the prior written
consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in
this document.
• NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property
rights of third parties by or arising from use of a device described herein or any other liability arising from use
of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other
intellectual property rights of NEC Corporation or others.
• Descriptions of circuits, software, and other related information in this document are provided for illustrative
purposes in semiconductor product operation and application examples. The incorporation of these circuits,
software, and information in the design of the customer's equipment shall be done under the full responsibility
of the customer. NEC Corporation assumes no responsibility for any losses incurred by the customer or third
parties arising from the use of these circuits, software, and information.
• While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices,
the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or
property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety
measures in its design, such as redundancy, fire-containment, and anti-failure features.
• NEC devices are classified into the following three quality grades:
"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a
customer designated "quality assurance program" for a specific application. The recommended applications of
a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device
before using it in a particular application.
Standard: Computers, office equipment, communications equipment, test and measurement equipment,
audio and visual equipment, home electronic appliances, machine tools, personal electronic
equipment and industrial robots
Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed
for life support)
Specific: Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life
support systems or medical equipment for life support, etc.
The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books.
If customers intend to use NEC devices for applications other than those specified for Standard quality grade,
they should contact an NEC sales representative in advance.
M7 98. 8
Loading...
+ hidden pages
You need points to download manuals.
1 point = 1 manual.
You can buy points or you can get point for every manual you upload.