Datasheet TS556 Datasheet (ST)

Page 1
Features
Control Voltage
1
2
3
4
5
6
7
14
13
12
11
10
9
8
Discharge
Threshold
Reset
Output
Trigger
GND
Control
Voltage
+V
Discharge
Threshold
Reset
Output
Trigger
S
Very low power consumption:
220 µA typ at V 180 µA typ at V
High maximum astable frequency 2.7 MHz
Pin-to-pin and functionally compatible with
CC
CC
= 3 V
bipolar NE556
Wide voltage range: 2 V to 16 V
Supply current spikes reduced during output
transitions
High input impedance: 10
Output compatible with TTL, CMOS and logic
12
Ω
MOS
Description
TS556
Low-power dual CMOS timer
N
DIP14
(Plastic package)
D
SO14
(Plastic micropackage)
The TS556 is a dual CMOS timer which offers a very low consumption: (I
cc(TYP)
I
cc(TYP)
TS556 = 220 µA at VCC=+5V versus
NE556 = 6 mA), and high frequency: (f
TS556 = 2.7 MHz versus
(max.)
f
NE556 = 0.1 MHz).
(max.)
In both monostable and astable modes, timing remains very accurate.
The TS556 provides reduced supply current spikes during output transitions, which enable the use of lower decoupling capacitors compared to those required by bipolar NE556.
Due to the high input impedance (10
12
Ω), timing
capacitors can also be minimized.
Pin connections
(top view)
October 2008 Rev 2 1/19
www.st.com
19
Page 2
Absolute maximum ratings and operating conditions TS556

1 Absolute maximum ratings and operating conditions

Table 1. Absolute maximum ratings

Symbol Parameter Value Unit
V
I
OUT
CC
Supply voltage +18 V
Output current ± 100 mA
Thermal resistance junction to ambient
R
thja
DIP14 SO14
(2)
(1)
80
105
°C/W
Thermal resistance junction to case
R
thjc
T
j
T
stg
Junction Temperature +150 °C
Storage Temperature Range -65 to +150 °C
Human body model (HBM)
ESD
Charged device model (CDM)
1. Short-circuits can cause excessive heating. These values are typical and specified for a single layer PCB.
2. Short-circuits can cause excessive heating. These values are typical and specified for a four layers PCB.
3. Human body model: a 100 pF capacitor is charged to the specified voltage, then discharged through a
1.5kΩ resistor between two pins of the device. This is done for all couples of connected pin combinations while the other pins are floating.
4. Machine model: a 200 pF capacitor is charged to the specified voltage, then discharged directly between two pins of the device with no external series resistor (internal resistor < 5 Ω). This is done for all couples of connected pin combinations while the other pins remain floating.
5. Charged device model: all pins plus package are charged together to the specified voltage and then discharged directly to the ground.

Table 2. Operating conditions

DIP14 SO14
(2)
(1)
(4)
(3)
(5)
33 31
1200
200
1000
°C/W
VMachine model (MM)
Symbol Parameter Value Unit
V
I
OUT
CC
Supply voltage 2 to 16 V
Output sink current Output source current
Operating free air temperature range:
T
oper
TS556C TS556I TS556M
2/19
10 50
0 to +70
-40 to +125
-55 to +125
mA
°C
Page 3
TS556 Schematic diagram
R1
50k
Ω
Τ1
R2
50k
Ω
R3
50k
Ω
R4
50k
Ω
R5
50k
Ω
R6
50k
Ω
Τ2
Τ4
Threshold
Τ5
Τ6
Τ7
Τ14
Τ8
Τ9
Τ15
Τ16
Τ17
Τ18 Τ19
Trigger
Τ24
Τ22
Τ23
Τ28
Τ29
Τ32
Τ35
Τ33
Discharge
Output
Τ10
Τ11
Τ12 Τ13
Τ20
Τ21
Τ26
Τ25
Τ27 Τ30
Τ31
Τ34
GND
RESET
V
CC
R7

2 Schematic diagram

Figure 1. Schematic diagram (1/2 TS556)

3/19
Page 4
Schematic diagram TS556
Output
Discharge
Ground
Trigger
Control
Voltage
Threshold
V
CC
Reset
R
R
R
B
A
R1
R
S
Q
+
-
+
-
4 / 10
5 / 9
14
2 / 12
3 / 11
6 / 8
7
1 / 13
TS556

Figure 2. Block diagram

Table 3. Functions table

Reset Trigger Threshold Output
Low x x Low
High Low x High
High High High Low
High High Low Previous State
Note: LOW: level voltage ≤ minimum voltage specified
HIGH: level voltage maximum voltage specified x: irrelevant.
4/19
Page 5
TS556 Electrical characteristics

3 Electrical characteristics

Table 4. Static electrical characteristics
V
= +2 V, T
CC
Symbol Parameter Min. Typ. Max. Unit
= +25 °C, Reset to V
amb
(unless otherwise specified)
CC
I
CC
V
V
I
DIS
V
V
V
TRIG
I
TRIG
I
V
RESET
I
RESET
Supply current (no load, high and low states)
≤ T
T
min.
amb
≤ T
max
Control voltage level
CL
T
min.
≤ T
amb
≤ T
max
Discharge saturation voltage (I
DIS
T
min.
≤ T
amb
≤ T
max
= 1 mA)
dis
1.2
1.1
130 400
1.3 1.4
0.05 0.2
Discharge pin leakage current 1 100 nA
Low level output voltage (I
OL
T
≤ T
min.
amb
High level output voltage (I
OH
T
min.
≤ T
amb
Trigger voltage
≤ T
T
min.
amb
≤ T
≤ T
≤ T
max
max
max
sink
source
= 1 mA)
= -0.3 mA)
1.5
1.5
0.4
0.3
0.1 0.3
1.9
0.67 0.95
Trigger current 10 pA
Threshold current 10 pA
TH
Reset voltage T
≤ T
amb
≤ T
min.
max
0.4
0.3
1.1 1.5
Reset current 10 pA
400
1.5
0.25
0.35
1.05
2.0
µA
V
V
V
V
V
V
5/19
Page 6
Electrical characteristics TS556
Table 5. Static electrical characteristics
V
= +3 V, T
CC
Symbol Parameter Min. Typ. Max. Unit
= +25 °C, Reset to VCC (unless otherwise specified)
amb
I
CC
V
V
I
DIS
V
V
V
TRIG
I
TRIG
I
V
RESET
I
RESET
Supply current (no load, high and low states) T
≤ T
amb
≤ T
max
min
Control voltage level
CL
T
≤ T
amb
≤ T
max
min
Discharge saturation voltage (I
DIS
T
T
amb
≤ T
max
min
= 1 mA)
dis
1.8
1.7
180 460
22.2
0.05 0.2
Discharge pin leakage current 1 100 nA
Low level output voltage (I
OL
T
min.
≤ T
amb
High level output voltage (I
OH
T
min.
≤ T
amb
Trigger voltage
≤ T
T
min.
amb
≤ T
≤ T
≤ T
max
max
max
sink
source
= 1 mA)
= -0.3 mA)
2.5
2.5
0.9
0.8
0.1 0.3
2.9
11.1
Trigger current 10 pA
Threshold current 10 pA
TH
Reset voltage
≤ T
T
min.
amb
≤ T
max
0.4
0.3
1.1 1.5
Reset current 10 pA
460
2.3
0.25
0.35
1.2
2.0
µA
V
V
V
V
V
V
6/19
Page 7
TS556 Electrical characteristics
Table 6. Dynamic electrical characteristics
V
= +3 V, T
CC
Symbol Parameter Min. Typ. Max. Unit
Timing accuracy (monostable) R = 10 kΩ, C = 0.1 µF VCC=+2 V,
Timing shift with supply voltage variations (Monostable)
(1)
R = 10 kΩ, C = 0.1 µF, VCC = +3 V ±0.3 V 0.5 %/V
Timing shift with temperature T
T
amb
≤ T
f
min.
Maximum astable frequency
max
RA = 470 Ω, RB = 200 Ω, C = 200 pF
Astable frequency accuracy RA = RB = 1 kΩ to 100 kΩ, C = 0.1 µF 5 %
= +25 °C, Reset to VCC (unless otherwise specified)
amb
(1)
1
=+3V
max
V
CC
(1)
(2)
1
75 ppm/°C
2MHz
(2)
%
Timing shift with supply voltage variations (astable mode)
RA = RB = 10 kΩ, C = 0.1 µF, VCC = +3 to +5 V 0.5 %/V
t
Output rise time (C
R
t
Output fall time (C
F
t
t
RPW
1. See Figure 4.
2. See Figure 6.
Trigger propagation delay 100 ns
PD
Minimum reset pulse width (V
(2)
= 10 pF) 25 ns
load
= 10 pF) 20 - ns
load
= +3 V) 350 ns
trig
7/19
Page 8
Electrical characteristics TS556
Table 7. Static electrical characteristics
V
= +5 V, T
CC
Symbol Parameter Min. Typ. Max. Unit
= +25 °C, Reset to VCC (unless otherwise specified)
amb
I
CC
V
V
I
DIS
V
V
V
TRIG
I
TRIG
I
V
RESET
I
RESET
Supply current (no load, high and low states) T
≤ T
amb
≤ T
max
min.
Control voltage level
CL
T
≤ T
amb
≤ T
max
min.
Discharge saturation voltage (I
DIS
T
≤ T
amb
≤ T
max
min.
= 10 mA)
dis
2.9
2.8
220 500
3.3 3.8
0.2 0.3
Discharge pin leakage current 1 100 nA
Low level output voltage (I
OL
T
min.
≤ T
amb
High level output voltage (I
OH
T
min.
≤ T
amb
Trigger voltage
≤ T
T
min.
amb
≤ T
≤ T
≤ T
max
max
max
sink
source
= 8 mA)
= -2 mA)
4.4
4.4
1.36
1.26
0.3 0.6
4.6
1.67 1.96
Trigger current 10 pA
Threshold current 10 pA
TH
Reset voltage
≤ T
T
min.
amb
≤ T
max
0.4
0.3
1.1 1.5
Reset current 10 pA
500
3.9
0.35
0.8
2.06
2.0
µA
V
V
V
V
V
V
8/19
Page 9
TS556 Electrical characteristics
Table 8. Dynamic electrical characteristics
V
= +5 V, T
CC
Symbol Parameter Min. Typ. Max. Unit
Timing accuracy (monostable) R = 10 kΩ, C = 0.1 µF
= +25 °C, Reset to VCC (unless otherwise specified)
amb
(1)
2%
Timing shift with supply voltage variations (monostable)
R = 10 kΩ, C = 0.1 µF, VCC = +5 V ±1 V 0.38 %/V
Timing shift with temperature T
min.
f
Maximum Astable Frequency
max
RA = 470 Ω, RB = 200 Ω, C = 200 pF
Astable Frequency Accuracy RA = RB = 1 kΩ to 100 kΩ, C = 0.1 µF 3 %
Timing shift with supply voltage variations (astable mode)
RA = RB = 1 kΩ to 100 kΩ, C = 0.1 µF, V
CC
t
Output rise time (C
R
t
Output fall time (C
F
t
t
RPW
1. See Figure 4.
2. See Figure 6.
Trigger propagation delay 100 ns
PD
Minimum reset pulse width (V
(1)
T
≤ T
amb
max
(2)
= +5 to +12 V
(1)
75 ppm/°C
(2)
2.7 MHz
(2)
0.1 %/V
= 10 pF) 25 ns
load
= 10 pF) 20 - ns
load
= +5 V) 350 ns
trig
9/19
Page 10
Electrical characteristics TS556
Table 9. Static electrical characteristics
V
= +12 V, T
CC
Symbol Parameter Min. Typ. Max. Unit
= +25 °C, Reset to VCC (unless otherwise specified)
amb
I
V
V
I
V
V
V
I
TRIG
V
RESET
I
RESET
Table 10. Dynamic electrical characteristics
Supply current (no load, high and low states)
CC
T
≤ T
amb
≤ T
max
min.
Control voltage level
CL
T
≤ T
≤ T
≤ T
≤ T
amb
amb
amb
amb
≤ T
≤ T
≤ T
≤ T
max
max
max
max
sink
source
= 80 mA)
dis
= 50 mA)
= -10 mA)
min.
Discharge saturation voltage (I
DIS
T
min.
Discharge pin leakage current 1 100 nA
DIS
Low level output voltage (I
OL
T
min.
High level output voltage (I
OH
T
min.
Trigger voltage
TRIG
T
min.
≤ T
amb
≤ T
max
Trigger current 10 pA
I
Threshold current 10 pA
TH
Reset voltage
≤ T
T
min.
amb
≤ T
max
Reset current 10 pA
V
= +12 V, T
CC
= +25 °C, Reset to VCC (unless otherwise specified)
amb
7.4
7.3
10.5
10.5
3.2
3.1
0.4
0.3
340 800
800
88.6
8.7
0.09 1.6
2.0
1.2 2
2.8
11
44.8
4.9
1.1 1.5
2.0
Symbol Parameter Min. Typ. Max. Unit
Timing accuracy (monostable) R = 10 kΩ, C = 0.1 µF
(1)
4%
Timing shift with supply voltage variations (monostable)
R = 10 kΩ, C = 0.1 µF, V
= +5 V ±1 V 0.38 %/V
CC
Timing shift with temperature T
≤ T
f
max
amb
≤ T
max., VCC
min.
Maximum astable frequency RA = 470 Ω, RB = 200 Ω, C = 200 pF, VCC = +5 V 2.7 MHz
Astable frequency accuracy RA = RB = 1 kΩ to 100 kΩ, C = 0.1 µF
= +5 V 75 ppm/°C
(2)
3%
µA
V
V
V
V
V
V
Timing shift with supply voltage variations (astable mode)
RA = RB = 1 kΩ to 100 kΩ, C = 0.1 µF, VCC = 5 to +12 V
1. See Figure 4.
2. See Figure 6.
10/19
0.1 %/V
Page 11
TS556 Electrical characteristics
CC
SUPPLY VOLTAGE, V (V)
CC
SUPPLY CU RRENT, I ( A)
μ
300
200
100
0 4 8 12 16

Figure 3. Supply current (per timer) versus supply voltage

11/19
Page 12
Application information TS556

4 Application information

4.1 Monostable operation

In the monostable mode, the timer operates like a one-shot generator. Referring to figure 2, the external capacitor is initially held discharged by a transistor inside the timer, as shown in
Figure 4.

Figure 4. Application schematic

V
CC
Reset
R
Trigger
1/2
TS556
Out
C
Control Voltage
μ
0.01 F
The circuit triggers on a negative-going input signal when the level reaches 1/3 V
. Once
CC
triggered, the circuit remains in this state until the set time has elapsed, even if it is triggered again during this interval. The duration of the output HIGH state is given by t = 1.1 R x C.
It can be noticed that since the charge rate and the threshold level of the comparator are both directly proportional to the supply voltage, the timing interval is independent of the supply. Applying a negative pulse simultaneously to the Reset terminal (pin 4) and the Trigger terminal (pin 2) during the timing cycle discharges the external capacitor and causes the cycle to start over. The timing cycle now starts on the positive edge of the reset pulse. While the reset pulse is applied, the output is driven to the LOW state. When a negative trigger pulse is applied to pin 2, the flip-flop is set, releasing the short circuit across the external capacitor and driving the output HIGH. The voltage across the capacitor increases exponentially with the time constant τ = R x C. When the voltage across the capacitor equals 2/3 V
, the comparator resets the flip-flop
CC
which then discharges the capacitor rapidly and drives the output to its LOW state.
Figure 5 shows the actual waveforms generated in this mode of operation.
When Reset is not used, it should be tied high to avoid any possible or false triggering.

Figure 5. Timing diagram

t = 0.1 ms / div
INPUT = 2.0V/div
OUTPUT VOLTAGE = 5.0V/div
CAPACITOR VOLTAGE = 2.0V/div
R = 9.1k , C = 0.01 F , R = 1.0k
12/19
μ
Ω
Ω
L
Page 13
TS556 Application information

4.2 Astable operation

When the circuit is connected as shown in Figure 6 (pins 2 and 6 connected) it triggers itself and runs as a multivibrator. The external capacitor charges through R discharges through R
only. Thus the duty cycle may be precisely set by the ratio of these
B
two resistors.
and RB and
A
In the astable mode of operation, C charges and discharges between 1/3 V
and 2/3 VCC.
CC
As in the triggered mode, the charge and discharge times and therefore frequency, are independent of the supply voltage.

Figure 6. Application schematic

V
CC
Reset
A
R
Out
Control
Voltage
0.01 F
1/2
TS556
μ
R
B
C
Figure 7 shows actual waveforms generated in this mode of operation.
The charge time (output HIGH) is given by:
t1 = 0.693 (R
+ RB) C
A
and the discharge time (output LOW) by:
t2 = 0.693 x R
x C
B
Thus the total period T is given by:
T = t1 + t2 = 0.693 (R
+ 2RB) C
A
The frequency of oscillation is then:
f =
1
--- = T
1.44
-------------------------------------­(RA 2RB) C+
The duty cycle is given by:
D =

Figure 7. Timing diagram

RB
--------------------------­RA 2RB+
t = 0.5 ms / div
OUTPUT VOLTAGE = 5.0V/div
CAPACITOR VOLTAGE = 1.0V/div
R = R = 4.8 k , C = 0.1 F , R = 1.0k
AB
13/19
μ
ΩΩ
L
Page 14
Package information TS556

5 Package information

In order to meet environmental requirements, STMicroelectronics offers these devices in ECOPACK category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an STMicroelectronics trademark. ECOPACK specifications are available at: www.st.com
®
packages. These packages have a lead-free second level interconnect. The
.
14/19
Page 15
TS556 Package information

5.1 DIP14 package information

Figure 8. DIP14 package mechanical drawing

Table 11. DIP14 package mechanical data

Dimensions
Millimeters Inches
Ref.
Min. Typ. Max. Min. Typ. Max.
A5.330.21
A1 0.38 0.015
A2 2.92 3.30 4.95 0.11 0.13 0.19
b 0.36 0.46 0.56 0.014 0.018 0.022
b2 1.14 1.52 1.78 0.04 0.06 0.07
c 0.20 0.25 0.36 0.007 0.009 0.01
D 18.67 19.05 19.69 0.73 0.75 0.77
E 7.62 7.87 8.26 0.30 0.31 0.32
E1 6.10 6.35 7.11 0.24 0.25 0.28
e2.54 0.10
e1 15.24 0.60
eA 7.62 0.30
eB 10.92 0.43
L 2.92 3.30 3.81 0.11 0.13 0.15
Note: D and E1 dimensions do not include mold flash or protrusions. Mold flash or protrusions
shall not exceed 0.25 mm.
15/19
Page 16
Package information TS556

5.2 SO-14 package information

Figure 9. SO-14 package mechanical drawing

Table 12. SO-14 package mechanical data

Dimensions
Millimeters Inches
Ref.
Min. Typ. Max. Min. Typ. Max.
A 1.35 1.75 0.05 0.068
A1 0.10 0.25 0.004 0.009
A2 1.10 1.65 0.04 0.06
B 0.33 0.51 0.01 0.02
C 0.19 0.25 0.007 0.009
D 8.55 8.75 0.33 0.34
E 3.80 4.0 0.15 0.15
e1.27 0.05
H 5.80 6.20 0.22 0.24
h 0.25 0.50 0.009 0.02
L 0.40 1.27 0.015 0.05
k 8° (max.)
ddd 0.10 0.004
Note: D and F dimensions do not include mold flash or protrusions. Mold flash or protrusions must
not exceed 0.15 mm.
16/19
Page 17
TS556 Ordering information

6 Ordering information

Table 13. Order codes

Order code Temperature range Package Packaging Marking
TS556CN
TS556CD TS556CDT
TS556IN
TS556ID TS556IDT
TS556MN
TS556MD TS556MDT
0°C, +70°C
-40°C, +125°C
-55°C, +125°C
DIP14 Tube TS556CN
SO-14
DIP14 Tube TS556IN
SO-14
DIP14 Tube TS556MN
SO-14
Tube or
Tape & reel
Tube or
Tape & reel
Tube or
Tape & reel
556C
556I
556M
17/19
Page 18
Revision history TS556

7 Revision history

Table 14. Document revision history

Date Revision Changes
01-Feb-2003 1 Initial release.
Document reformatted. Added output current, ESD and thermal resistance values in
28-Oct-2008 2
Table 1: Absolute maximum ratings.
Added output current values in Table 2: Operating conditions. Updated Section 5.1: DIP14 package information and
Section 5.2: SO-14 package information.
18/19
Page 19
TS556
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2008 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
19/19
Loading...