The TS556 is a dual CMOS timer which offers a
very low consumption:
(I
cc(TYP)
I
cc(TYP)
TS556 = 220 µA at VCC=+5V versus
NE556 = 6 mA),
and high frequency:
(f
TS556 = 2.7 MHz versus
(max.)
f
NE556 = 0.1 MHz).
(max.)
In both monostable and astable modes, timing
remains very accurate.
The TS556 provides reduced supply current
spikes during output transitions, which enable the
use of lower decoupling capacitors compared to
those required by bipolar NE556.
Due to the high input impedance (10
12
Ω), timing
capacitors can also be minimized.
Pin connections
(top view)
October 2008 Rev 21/19
www.st.com
19
Page 2
Absolute maximum ratings and operating conditionsTS556
1 Absolute maximum ratings and operating conditions
Table 1.Absolute maximum ratings
SymbolParameterValueUnit
V
I
OUT
CC
Supply voltage+18V
Output current± 100mA
Thermal resistance junction to ambient
R
thja
DIP14
SO14
(2)
(1)
80
105
°C/W
Thermal resistance junction to case
R
thjc
T
j
T
stg
Junction Temperature+150°C
Storage Temperature Range-65 to +150°C
Human body model (HBM)
ESD
Charged device model (CDM)
1. Short-circuits can cause excessive heating. These values are typical and specified for a single layer PCB.
2. Short-circuits can cause excessive heating. These values are typical and specified for a four layers PCB.
3. Human body model: a 100 pF capacitor is charged to the specified voltage, then discharged through a
1.5kΩ resistor between two pins of the device. This is done for all couples of connected pin combinations
while the other pins are floating.
4. Machine model: a 200 pF capacitor is charged to the specified voltage, then discharged directly between
two pins of the device with no external series resistor (internal resistor < 5 Ω). This is done for all couples of
connected pin combinations while the other pins remain floating.
5. Charged device model: all pins plus package are charged together to the specified voltage and then
discharged directly to the ground.
Table 2.Operating conditions
DIP14
SO14
(2)
(1)
(4)
(3)
(5)
33
31
1200
200
1000
°C/W
VMachine model (MM)
SymbolParameterValueUnit
V
I
OUT
CC
Supply voltage2 to 16V
Output sink current
Output source current
Operating free air temperature range:
T
oper
TS556C
TS556I
TS556M
2/19
10
50
0 to +70
-40 to +125
-55 to +125
mA
°C
Page 3
TS556Schematic diagram
R1
50k
Ω
Τ1
R2
50k
Ω
R3
50k
Ω
R4
50k
Ω
R5
50k
Ω
R6
50k
Ω
Τ2
Τ4
Threshold
Τ5
Τ6
Τ7
Τ14
Τ8
Τ9
Τ15
Τ16
Τ17
Τ18Τ19
Trigger
Τ24
Τ22
Τ23
Τ28
Τ29
Τ32
Τ35
Τ33
Discharge
Output
Τ10
Τ11
Τ12Τ13
Τ20
Τ21
Τ26
Τ25
Τ27Τ30
Τ31
Τ34
GND
RESET
V
CC
R7
2 Schematic diagram
Figure 1.Schematic diagram (1/2 TS556)
3/19
Page 4
Schematic diagramTS556
Output
Discharge
Ground
Trigger
Control
Voltage
Threshold
V
CC
Reset
R
R
R
B
A
R1
R
S
Q
+
-
+
-
4 / 10
5 / 9
14
2 / 12
3 / 11
6 / 8
7
1 / 13
TS556
Figure 2.Block diagram
Table 3.Functions table
ResetTriggerThresholdOutput
LowxxLow
HighLowxHigh
HighHighHighLow
HighHighLowPrevious State
Note:LOW: level voltage ≤ minimum voltage specified
HIGH: level voltage ≥ maximum voltage specified
x: irrelevant.
4/19
Page 5
TS556Electrical characteristics
3 Electrical characteristics
Table 4.Static electrical characteristics
V
= +2 V, T
CC
SymbolParameterMin.Typ.Max.Unit
= +25 °C, Reset to V
amb
(unless otherwise specified)
CC
I
CC
V
V
I
DIS
V
V
V
TRIG
I
TRIG
I
V
RESET
I
RESET
Supply current (no load, high and low states)
≤ T
T
min.
amb
≤ T
max
Control voltage level
CL
T
min.
≤ T
amb
≤ T
max
Discharge saturation voltage (I
DIS
T
min.
≤ T
amb
≤ T
max
= 1 mA)
dis
1.2
1.1
130400
1.31.4
0.050.2
Discharge pin leakage current1100nA
Low level output voltage (I
OL
T
≤ T
min.
amb
High level output voltage (I
OH
T
min.
≤ T
amb
Trigger voltage
≤ T
T
min.
amb
≤ T
≤ T
≤ T
max
max
max
sink
source
= 1 mA)
= -0.3 mA)
1.5
1.5
0.4
0.3
0.10.3
1.9
0.670.95
Trigger current10pA
Threshold current10pA
TH
Reset voltage
T
≤ T
amb
≤ T
min.
max
0.4
0.3
1.11.5
Reset current10pA
400
1.5
0.25
0.35
1.05
2.0
µA
V
V
V
V
V
V
5/19
Page 6
Electrical characteristicsTS556
Table 5.Static electrical characteristics
V
= +3 V, T
CC
SymbolParameterMin.Typ.Max.Unit
= +25 °C, Reset to VCC (unless otherwise specified)
amb
I
CC
V
V
I
DIS
V
V
V
TRIG
I
TRIG
I
V
RESET
I
RESET
Supply current (no load, high and low states)
T
≤ T
amb
≤ T
max
min
Control voltage level
CL
T
≤ T
amb
≤ T
max
min
Discharge saturation voltage (I
DIS
T
≤ T
amb
≤ T
max
min
= 1 mA)
dis
1.8
1.7
180460
22.2
0.050.2
Discharge pin leakage current1100nA
Low level output voltage (I
OL
T
min.
≤ T
amb
High level output voltage (I
OH
T
min.
≤ T
amb
Trigger voltage
≤ T
T
min.
amb
≤ T
≤ T
≤ T
max
max
max
sink
source
= 1 mA)
= -0.3 mA)
2.5
2.5
0.9
0.8
0.10.3
2.9
11.1
Trigger current10pA
Threshold current10pA
TH
Reset voltage
≤ T
T
min.
amb
≤ T
max
0.4
0.3
1.11.5
Reset current10pA
460
2.3
0.25
0.35
1.2
2.0
µA
V
V
V
V
V
V
6/19
Page 7
TS556Electrical characteristics
Table 6.Dynamic electrical characteristics
V
= +3 V, T
CC
SymbolParameterMin.Typ.Max.Unit
Timing accuracy (monostable)
R = 10 kΩ, C = 0.1 µF VCC=+2 V,
Timing shift with supply voltage variations
(Monostable)
(1)
R = 10 kΩ, C = 0.1 µF, VCC = +3 V ±0.3 V 0.5%/V
Timing shift with temperature
T
≤ T
amb
≤ T
f
min.
Maximum astable frequency
max
RA = 470 Ω, RB = 200 Ω, C = 200 pF
Astable frequency accuracy
RA = RB = 1 kΩ to 100 kΩ, C = 0.1 µF5%
= +25 °C, Reset to VCC (unless otherwise specified)
amb
(1)
1
=+3V
max
V
CC
(1)
(2)
1
75ppm/°C
2MHz
(2)
%
Timing shift with supply voltage variations
(astable mode)
RA = RB = 10 kΩ, C = 0.1 µF, VCC = +3 to +5 V0.5%/V
t
Output rise time (C
R
t
Output fall time (C
F
t
t
RPW
1. See Figure 4.
2. See Figure 6.
Trigger propagation delay100ns
PD
Minimum reset pulse width (V
(2)
= 10 pF)25ns
load
= 10 pF)20-ns
load
= +3 V)350ns
trig
7/19
Page 8
Electrical characteristicsTS556
Table 7.Static electrical characteristics
V
= +5 V, T
CC
SymbolParameterMin.Typ.Max.Unit
= +25 °C, Reset to VCC (unless otherwise specified)
amb
I
CC
V
V
I
DIS
V
V
V
TRIG
I
TRIG
I
V
RESET
I
RESET
Supply current (no load, high and low states)
T
≤ T
amb
≤ T
max
min.
Control voltage level
CL
T
≤ T
amb
≤ T
max
min.
Discharge saturation voltage (I
DIS
T
≤ T
amb
≤ T
max
min.
= 10 mA)
dis
2.9
2.8
220500
3.33.8
0.20.3
Discharge pin leakage current1100nA
Low level output voltage (I
OL
T
min.
≤ T
amb
High level output voltage (I
OH
T
min.
≤ T
amb
Trigger voltage
≤ T
T
min.
amb
≤ T
≤ T
≤ T
max
max
max
sink
source
= 8 mA)
= -2 mA)
4.4
4.4
1.36
1.26
0.30.6
4.6
1.671.96
Trigger current10pA
Threshold current10pA
TH
Reset voltage
≤ T
T
min.
amb
≤ T
max
0.4
0.3
1.11.5
Reset current10pA
500
3.9
0.35
0.8
2.06
2.0
µA
V
V
V
V
V
V
8/19
Page 9
TS556Electrical characteristics
Table 8.Dynamic electrical characteristics
V
= +5 V, T
CC
SymbolParameterMin.Typ.Max.Unit
Timing accuracy (monostable)
R = 10 kΩ, C = 0.1 µF
= +25 °C, Reset to VCC (unless otherwise specified)
amb
(1)
2%
Timing shift with supply voltage variations
(monostable)
R = 10 kΩ, C = 0.1 µF, VCC = +5 V ±1 V 0.38%/V
Timing shift with temperature
T
min.
f
Maximum Astable Frequency
max
RA = 470 Ω, RB = 200 Ω, C = 200 pF
Astable Frequency Accuracy
RA = RB = 1 kΩ to 100 kΩ, C = 0.1 µF3%
Timing shift with supply voltage variations
(astable mode)
RA = RB = 1 kΩ to 100 kΩ, C = 0.1 µF,
V
CC
t
Output rise time (C
R
t
Output fall time (C
F
t
t
RPW
1. See Figure 4.
2. See Figure 6.
Trigger propagation delay100ns
PD
Minimum reset pulse width (V
(1)
≤ T
≤ T
amb
max
(2)
= +5 to +12 V
(1)
75ppm/°C
(2)
2.7MHz
(2)
0.1%/V
= 10 pF)25ns
load
= 10 pF)20-ns
load
= +5 V)350ns
trig
9/19
Page 10
Electrical characteristicsTS556
Table 9.Static electrical characteristics
V
= +12 V, T
CC
SymbolParameterMin.Typ.Max.Unit
= +25 °C, Reset to VCC (unless otherwise specified)
amb
I
V
V
I
V
V
V
I
TRIG
V
RESET
I
RESET
Table 10.Dynamic electrical characteristics
Supply current (no load, high and low states)
CC
T
≤ T
amb
≤ T
max
min.
Control voltage level
CL
T
≤ T
≤ T
≤ T
≤ T
amb
amb
amb
amb
≤ T
≤ T
≤ T
≤ T
max
max
max
max
sink
source
= 80 mA)
dis
= 50 mA)
= -10 mA)
min.
Discharge saturation voltage (I
DIS
T
min.
Discharge pin leakage current1100nA
DIS
Low level output voltage (I
OL
T
min.
High level output voltage (I
OH
T
min.
Trigger voltage
TRIG
T
min.
≤ T
amb
≤ T
max
Trigger current10pA
I
Threshold current10pA
TH
Reset voltage
≤ T
T
min.
amb
≤ T
max
Reset current10pA
V
= +12 V, T
CC
= +25 °C, Reset to VCC (unless otherwise specified)
amb
7.4
7.3
10.5
10.5
3.2
3.1
0.4
0.3
340800
800
88.6
8.7
0.091.6
2.0
1.22
2.8
11
44.8
4.9
1.11.5
2.0
SymbolParameterMin.Typ.Max.Unit
Timing accuracy (monostable)
R = 10 kΩ, C = 0.1 µF
(1)
4%
Timing shift with supply voltage variations
(monostable)
R = 10 kΩ, C = 0.1 µF, V
= +5 V ±1 V0.38%/V
CC
Timing shift with temperature
T
≤ T
f
max
amb
≤ T
max., VCC
min.
Maximum astable frequency
RA = 470 Ω, RB = 200 Ω, C = 200 pF, VCC = +5 V2.7MHz
Astable frequency accuracy
RA = RB = 1 kΩ to 100 kΩ, C = 0.1 µF
= +5 V75ppm/°C
(2)
3%
µA
V
V
V
V
V
V
Timing shift with supply voltage variations
(astable mode)
RA = RB = 1 kΩ to 100 kΩ, C = 0.1 µF,
VCC = 5 to +12 V
1. See Figure 4.
2. See Figure 6.
10/19
0.1%/V
Page 11
TS556Electrical characteristics
CC
SUPPLY VOLTAGE, V (V)
CC
SUPPLY CU RRENT, I ( A)
μ
300
200
100
0 4 8 12 16
Figure 3.Supply current (per timer) versus supply voltage
11/19
Page 12
Application informationTS556
4 Application information
4.1 Monostable operation
In the monostable mode, the timer operates like a one-shot generator. Referring to figure 2,
the external capacitor is initially held discharged by a transistor inside the timer, as shown in
Figure 4.
Figure 4.Application schematic
V
CC
Reset
R
Trigger
1/2
TS556
Out
C
Control Voltage
μ
0.01 F
The circuit triggers on a negative-going input signal when the level reaches 1/3 V
. Once
CC
triggered, the circuit remains in this state until the set time has elapsed, even if it is triggered
again during this interval. The duration of the output HIGH state is given by t = 1.1 R x C.
It can be noticed that since the charge rate and the threshold level of the comparator are
both directly proportional to the supply voltage, the timing interval is independent of the
supply. Applying a negative pulse simultaneously to the Reset terminal (pin 4) and the
Trigger terminal (pin 2) during the timing cycle discharges the external capacitor and causes
the cycle to start over. The timing cycle now starts on the positive edge of the reset pulse.
While the reset pulse is applied, the output is driven to the LOW state.
When a negative trigger pulse is applied to pin 2, the flip-flop is set, releasing the short
circuit across the external capacitor and driving the output HIGH. The voltage across the
capacitor increases exponentially with the time constant τ = R x C.
When the voltage across the capacitor equals 2/3 V
, the comparator resets the flip-flop
CC
which then discharges the capacitor rapidly and drives the output to its LOW state.
Figure 5 shows the actual waveforms generated in this mode of operation.
When Reset is not used, it should be tied high to avoid any possible or false triggering.
Figure 5.Timing diagram
t = 0.1 ms / div
INPUT = 2.0V/div
OUTPUT VOLTAGE = 5.0V/div
CAPACITOR VOLTAGE = 2.0V/div
R = 9.1k , C = 0.01 F , R = 1.0k
12/19
μ
Ω
Ω
L
Page 13
TS556Application information
4.2 Astable operation
When the circuit is connected as shown in Figure 6 (pins 2 and 6 connected) it triggers itself
and runs as a multivibrator. The external capacitor charges through R
discharges through R
only. Thus the duty cycle may be precisely set by the ratio of these
B
two resistors.
and RB and
A
In the astable mode of operation, C charges and discharges between 1/3 V
and 2/3 VCC.
CC
As in the triggered mode, the charge and discharge times and therefore frequency, are
independent of the supply voltage.
Figure 6.Application schematic
V
CC
Reset
A
R
Out
Control
Voltage
0.01 F
1/2
TS556
μ
R
B
C
Figure 7 shows actual waveforms generated in this mode of operation.
The charge time (output HIGH) is given by:
t1 = 0.693 (R
+ RB) C
A
and the discharge time (output LOW) by:
t2 = 0.693 x R
x C
B
Thus the total period T is given by:
T = t1 + t2 = 0.693 (R
+ 2RB) C
A
The frequency of oscillation is then:
f =
1
--- =
T
1.44
-------------------------------------(RA 2RB) C+
The duty cycle is given by:
D =
Figure 7.Timing diagram
RB
--------------------------RA 2RB+
t = 0.5 ms / div
OUTPUT VOLTAGE = 5.0V/div
CAPACITOR VOLTAGE = 1.0V/div
R = R = 4.8 k , C = 0.1 F , R = 1.0k
AB
13/19
μ
ΩΩ
L
Page 14
Package informationTS556
5 Package information
In order to meet environmental requirements, STMicroelectronics offers these devices in
ECOPACK
category of second level interconnect is marked on the package and on the inner box label,
in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering
conditions are also marked on the inner box label. ECOPACK is an STMicroelectronics
trademark. ECOPACK specifications are available at: www.st.com
®
packages. These packages have a lead-free second level interconnect. The
.
14/19
Page 15
TS556Package information
5.1 DIP14 package information
Figure 8.DIP14 package mechanical drawing
Table 11.DIP14 package mechanical data
Dimensions
MillimetersInches
Ref.
Min.Typ.Max.Min.Typ.Max.
A5.330.21
A10.380.015
A22.923.304.950.110.130.19
b0.360.460.560.0140.0180.022
b21.141.521.780.040.060.07
c0.200.250.360.0070.0090.01
D18.6719.0519.690.730.750.77
E7.627.878.260.300.310.32
E16.106.357.110.240.250.28
e2.540.10
e115.240.60
eA7.620.30
eB10.920.43
L2.923.303.810.110.130.15
Note:D and E1 dimensions do not include mold flash or protrusions. Mold flash or protrusions
shall not exceed 0.25 mm.
15/19
Page 16
Package informationTS556
5.2 SO-14 package information
Figure 9.SO-14 package mechanical drawing
Table 12.SO-14 package mechanical data
Dimensions
MillimetersInches
Ref.
Min.Typ.Max.Min.Typ.Max.
A1.351.750.050.068
A10.100.250.0040.009
A21.101.650.040.06
B0.330.510.010.02
C0.190.250.0070.009
D8.558.750.330.34
E3.804.00.150.15
e1.270.05
H5.806.200.220.24
h0.250.500.0090.02
L0.401.270.0150.05
k8° (max.)
ddd0.100.004
Note:D and F dimensions do not include mold flash or protrusions. Mold flash or protrusions must
not exceed 0.15 mm.
16/19
Page 17
TS556Ordering information
6 Ordering information
Table 13.Order codes
Order codeTemperature rangePackagePackagingMarking
TS556CN
TS556CD
TS556CDT
TS556IN
TS556ID
TS556IDT
TS556MN
TS556MD
TS556MDT
0°C, +70°C
-40°C, +125°C
-55°C, +125°C
DIP14TubeTS556CN
SO-14
DIP14TubeTS556IN
SO-14
DIP14TubeTS556MN
SO-14
Tube or
Tape & reel
Tube or
Tape & reel
Tube or
Tape & reel
556C
556I
556M
17/19
Page 18
Revision historyTS556
7 Revision history
Table 14.Document revision history
DateRevisionChanges
01-Feb-20031Initial release.
Document reformatted.
Added output current, ESD and thermal resistance values in
28-Oct-20082
Table 1: Absolute maximum ratings.
Added output current values in Table 2: Operating conditions.
Updated Section 5.1: DIP14 package information and
Section 5.2: SO-14 package information.
18/19
Page 19
TS556
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.