Datasheet SAA2003H Datasheet (Philips)

Page 1
INTEGRATED CIRCUITS
DATA SH EET
SAA2003
Stereo filter and codec
Preliminary specification File under Integrated Circuits, IC01
Philips Semiconductors
May 1994
Page 2
Philips Semiconductors Preliminary specification
Stereo filter and codec SAA2003

FEATURES

Single-chip stereo filter and codec
Wide operating voltage range: 2.7 to 5.5 V
Low-power consumption: 98 mW; 3.0 V
Sleep mode for low power and low Electromagnetic
Interference (EMI)
Transparent serial audio data mode in sleep
IEC 958 digital output
Peak level detector for start of track detection or
VU meter
Versatile fade processor; slow/fast fade, mute, 12 dB attenuation
2
Serial audio interface for I
S or EIAJ formats

GENERAL DESCRIPTION

The SAA2003 performs the sub-band filtering and audio frame codec functions in the Precision Adaptive Sub-band Coding (PASC) system. It can be used as a stand-alone decoder for playback only applications, but requires the addition of an Adaptive Allocation and Scale Factor processor (SAA2013) in order to perform PASC encoding in a DCC record system.
Error concealment
Three-wire L3 bus microcontroller interface
Three sample rates:
– 32 kHz – 44.1 kHz – 48 kHz
Internal or external clock source
Three programmable outputs
Small surface mounted package (SOT307).

ORDERING INFORMATION

EXTENDED TYPE
NUMBER
SAA2003H 44 QFP
Note
1. When using reflow soldering it is recommended that the Dry Packing instructions in the
Pocketbook”
are followed. The pocketbook can be ordered using the code 9398 510 34011.
PINS PIN POSITION MATERIAL CODE
(1)
PACKAGE
plastic SOT307
“Quality Reference
Page 3
Philips Semiconductors Preliminary specification
Stereo filter and codec SAA2003

BLOCK DIAGRAM

handbook, full pagewidth
TEST0 TEST1
IECOP
WS
SCK
SD1 SD2
19 20
29
36 35 34 33
X22OUT
X22IN
651094113738 287 39
IEC 958 OUTPUT
BASEBAND
SERIAL
INTERFACE
AND
PEAK
DETECTOR
STEREO SUBBAND
FILTER PROCESSOR
27 8 40
X24OUT
X24IN
CLOCK GENERATOR
FS128
CLK22
6.15 MHz
FS256
43 2 3 44 1
SBMCLK
FILTERED DATA
INTERFACE
CLK24
FS256
X256
SAA2003
V
DD1VDD2VDD3
SUBBAND
SERIAL
INTERFACE
PASC CODEC
PROCESSOR
MICROCONTROLLER
INTERFACE AND CONTROL
17 18 14 15 16 41 42
32 31 30
25 24 23 22 26
21 13 12
MUTEDAC ATTDAC DEEMDAC
SBWS SBCL SBDA SBDIR SBEF
URDA RESET SLEEP
MBD618
V
SS1VSS2VSS3
FDCL
FSYNC
FDWS
FDAO
FDAI
Fig.1 Block diagram.
L3DATA L3MODE SYNCDAILTCNT0
L3CLK FDIRLTCNT1
Page 4
Philips Semiconductors Preliminary specification
Stereo filter and codec SAA2003

PINNING

SYMBOL PIN DESCRIPTION TYPE
FDAI 1 filtered data input from SAA2013 I FDCL 2 filtered data bit clock O FDWS 3 filtered data word select O CLK22 4 22.5792 MHz buffered clock output O X22OUT 5 22.5792 MHz crystal output O X22IN 6 22.5792 MHz crystal input I V
DD2
V
SS2
X24OUT 9 24.576 MHz crystal output O X24IN 10 24.576 MHz crystal input I CLK24 11 24.576 MHz buffered clock output O SLEEP 12 sleep mode; device inactive I RESET 13 device reset I L3DATA 14 3-wire interface; serial data I/O L3CLK 15 3-wire interface; bit clock I L3MODE 16 3-wire interface; mode control I LTCNT0 17 LT interface; control bit 0 I LTCNT1 18 LT interface; control bit 1 I TEST0 19 test mode select I TEST1 20 test mode select I URDA 21 unreliable data flag from drive processor I SBDIR 22 sub-band data direction I SBDA 23 sub-band serial data I/O SBCL 24 sub-band bit clock I/O SBWS 25 sub-band word select I/O SBEF 26 sub-band error flag from drive processor I V
SS1
V
DD1
IECOP 29 IEC 958 digital audio output O DEEMDAC 30 DAC control or general purpose output O ATTDAC 31 DAC control or general purpose output O MUTEDAC 32 DAC control or general purpose output O SD2 33 serial audio data to DAC O SD1 34 serial audio data to/from DAIO and DAC I/O SCK 35 serial audio data bit clock I/O WS 36 serial audio data word select I/O X256 37 master audio clock from external source I FS256 38 master audio clock at 256 times sample frequency O V
DD3
V
SS3
7 supply voltage (clock oscillator) 8 supply ground (clock oscillator)
27 digital supply ground 28 digital supply voltage
39 supply voltage (FS256) 40 supply ground (FS256)
Page 5
Philips Semiconductors Preliminary specification
Stereo filter and codec SAA2003
SYMBOL PIN DESCRIPTION TYPE
FDIR 41 filter direction; encode or decode O SYNCDAI 42 settings synchronization for DAIO O FSYNC 43 sub-band 0 sample synchronization for SAA2013 O FDAO 44 filtered data output to SAA2013 O
SS3
FDAO 44
FSYNC
SYNCDAI
43
42
FDIR 41
DD3
FS256
V
40
X256
V
39
38
37
WS 36
SCK 35
SD1 34
FDAI
FDCL
FDWS
CLK22
X22OUT
X22IN
V
DD2
V
SS2
X24OUT
X24IN
CLK24
1 2 3 4 5 6 7 8 9
10
11
12
13
SLEEP
RESET
14
15
L3CLK
L3DATA
SAA2003
16
17
LTCNT0
L3MODE
18
19
TEST0
LTCNT1
20
TEST1
21
URDA
22
SBDIR
SD2
33
MUTEDAC
32
ATTDAC
31
DEEMDAC
30
IECOP
29
V
28
V
27 26
SBEF SBWS
25
SBCL
24 23
SBDA
MBD619
DD1 SS1
Fig.2 Pin configuration.
Page 6
May 1994 6

FUNCTIONAL DESCRIPTION

Philips Semiconductors Preliminary specification
Stereo filter and codec SAA2003
RAM
41464
analog
output
analog
input
IEC958
analog CC
L output
analog CC
R output
L
DAC
TDA1305
R
SFC3 SAA2003 STEREO
FILTER CODEC
2
ADAS3
SAA2013
ADAPTIVE
ALLOCATION
L
R
baseband
I S
ADC
SAA7366
DIGITAL
AUDIO I/O
TDA1315
2
filtered I S
AUDIO IN/OUT PASC PROCESSOR
sub-band
2
I S
BUFFER
64K x 4
DRP
SAA2023
OR
SAA3323
DRIVE
PROCESSOR
search data
TAPE DRIVE PROCESSING
speed control
WRAMP
TDA1381
WRITE AMP.
RDAMP
TDA1380
READ AMP.
FIXED HEAD
CAPSTAN
DRIVE
TAPE
MECHANICS
DRIVERS
detect switch
Fig.3 DCC system block diagram.
handbook, full pagewidth
SYSTEM
MICROCONTROLLER
SYSTEM CONTROL
MBD620
Page 7
Philips Semiconductors Preliminary specification
Stereo filter and codec SAA2003

PASC processor

The PASC processor is a dedicated Digital Signal Processor (DSP) engine which efficiently codes digital audio data at a bit rate of 384 kbits/s without affecting the sound quality. This is achieved using an efficient adaptive data notation and by only encoding the information which can be heard by the human ear.
The audio data is split into 32 equal sub-bands during encoding. For each of the sub-bands a masking threshold is calculated. The samples from each of the sub-bands are included in the PASC data with an accuracy that is determined by the available bit-pool and by the difference between the signal power and the masking threshold for that sub-band.
The stereo filter codec performs the splitting (encoding) and reconstruction (decoding), including the necessary formatting functions. During encoding, the adaptive allocation and scaling circuit calculates the required accuracy (bit allocation) and scale factors of the sub-band samples.
E
NCODING (SEE FIG.4)
The incoming serial audio data is filtered into 32 sub-bands for left and right (I and II) channels using the stereo filter part of the SAA2003. A PASC frame is made up of left and
right (I and II) audio data for 12 samples from each of the 32 sub-bands, a total of 768 audio samples. For every PASC frame the SAA2013 calculates a bit allocation and scale factor table which is transferred to the SAA2003. All the samples in a frame are scaled in accordance with the scale factor calculated by the SAA2013. Once scaled the samples are re-quantized to reduce the number of bits to correspond with the allocation table calculated by the SAA2013. Synchronization, allocation and scale factor information is then added to provide a fully encoded PASC data signal. These frames of data are then sent to the drive processor IC (SAA2023 or SAA3323).
DECODING (SEE FIG.5) In decoding mode the SAA2003 synchronizes and
recovers frames of data from the drive processor. The recovered allocation data and the scale factors are used to correctly re-quantize and re-scale the PASC sub-band samples. The decoded sub-band samples, which are represented in 24-bits two’s complement notation, are reconstructed by the sub-band filters into a single complete digital audio signal.
handbook, full pagewidth
ALLOCATION AND
SCALE FACTOR
INFORMATION
TABLE
SCALING AND
QUANTI ZATION
baseband
samples
from SAA2013
SUB-BAND
FILTER
sub-band
samples
Fig.4 Encoding mode.
allocation information
and scale factor indices
SYNC AND
CODING
INFORMATION
quantified samples
FORMATTER
PASC
OUTPUT
DATA
MLB764
Page 8
Philips Semiconductors Preliminary specification
Stereo filter and codec SAA2003
handbook, full pagewidth
PASC
data input
FORMATTER
DE–
sync/coding
allocation
scale factor
quantified
samples
CONTROL
SCALE
FACTOR
ARRAY
AND ALLOCATION
DE-QUANTIZATION
MULTIPLY
OUTPUT
CONTROL
sub-band
samples
MEA804 - 1
SUB-BAND
FILTER
baseband
samples
Fig.5 Decoding mode.

Crystal oscillators

The recommended crystal oscillator configuration is shown in Fig.6. The specified component values only apply to crystals with a low equivalent series resistance of <40 .
C2 33 pF
C1 33 pF
C3 33 pF
C4 33 pF
22.5792 MHz
X1
24.576
MHz
X2
R1 1 M
R2 220
R4 1 M
R3 1 k
X22IN
X22OUT
X24IN
X24OUT
40
41 42
43
SAA2003
MBD621
Fig.6 Crystal oscillator components.

System reset

Reset must be active from system power-up for >1 ms. Reset must also be active for >1 ms after the falling edge of sleep as shown in Fig.7.
Page 9
Philips Semiconductors Preliminary specification
Stereo filter and codec SAA2003
handbook, full pagewidth
STANDBY
RESET
CLK24/CLK22
I/O's
ACTIVE
MODE 1 MODE 2 MODE 3 MODE 4
t
1
ACTIVE
Fig.7 Reset and sleep timing.
Table 1 Reset and sleep timing modes (see Fig.7).
t
2
t
3
ACTIVESTATIC
ACTIVE
MBD622
MODE DESCRIPTION TIMING MIN. MAX. UNIT
MODE1 standby stage 1; clocks still running t MODE2 standby mode; clocks stopped t MODE3 clocks running; reset active t
1 2 3
400 ns 0 ns 1 ms
MODE4 normal operational mode −−−

Sleep mode

A HIGH input applied to the SLEEP pin halts all internally generated clock signals. If the transparent mode of the serial audio interface is set before entering sleep, the data at the X256 external clock input is sent to the FS256 output and the data at SD1 input is sent to the SD2 output. If transparent mode is not set, these two outputs are high impedance during sleep mode.
The IECOP pin is set to high impedance during sleep mode, unless the transparent mode is selected and WS-SEL is set.
Page 10
Philips Semiconductors Preliminary specification
Stereo filter and codec SAA2003
Table 2 Transparent mode function in sleep.
PIN
TRANSPARENT
(1)
MODE
WS-SEL
(2)
PIN FUNCTION
FS256 1 X FS256 FS256 0 X high impedance SD2 1 X SD1 SD2 0 X high impedance IECOP 0 X high impedance IECOP 1 0 high impedance IECOP 1 1 WS
Notes
1. Transparent mode is controlled by bit 3 of the serial audio data interface mode control register.
2. WS-SEL is controlled by bit 3 of the codec extended settings register.

Serial audio interface

The signals between the SAA2003 and the serial audio input/output are shown in Table 3.
Table 3 Interface signals between SAA2003 and serial audio input/output.
PIN INPUT/OUTPUT FUNCTION FREQUENCY
WS bi-directional audio data word select f SCK bi-directional audio data bit clock 64f SD1 bi-directional serial audio data to/from DAIO and ADC SD2 output audio serial data to DAC FDIR output PASC mode encode/decode IECOP output alternative serial data word select for SD2
s
s
The word select (WS) line indicates the channel being transmitted (either left or right; I or II) and is equal in frequency to the sampling frequency (f
).
s
Operating at a frequency of 64 × fs, the bit clock (SCK) dictates that each WS period contains 64 SD1 or SD2 data bits. Of these bits a maximum of 36 are used to transfer data (samples may have a length up to 18 bits). Samples are transferred most significant bit (MSB) first. Both WS and SD1/SD2 change state at the negative edge of SCK.
The serial audio data is transferred between the SAA2003 and the input/output using either the standard I2S (default) as shown in Fig.8 or the EIAJ format as shown in Fig.9.
May 1994 10
Page 11
May 1994 11
Philips Semiconductors Preliminary specification
Stereo filter and codec SAA2003
0123 17 18 32 33 34 3531 49 50 63012
SCL
SWS
SD1/ SD2
0123 12 13 16 17 18 1915 28 29 31012
SCL
SWS
SD1/ SD2
a. Master and slave modes; 18 bits. b. Slave mode only; 16 bits.
MSB
left channel data right channel data
LSB
MSB
a.
14 30
left channel data right channel data
b.
LSB
LSB
MSB
MSBLSB MSBMSB
MBD623
Fig.8 Serial audio interface SD1/SD2; I2S data format.
Page 12
May 1994 12
Philips Semiconductors Preliminary specification
Stereo filter and codec SAA2003
SCL
SWS
SD1/ SD2
SCL
SWS
SD1/ SD2
012 14 15 30 31 32 33 46 47 62 63 0 1
left channel data right channel data
MSB MSB LSB MSB
LSB MSBMSB
a.
012 16 17 30 31 32 33 48 49 62 63 0 1
left channel data right channel data
MSB MSB LSB MSB
LSB MSBMSB
b.
2
2
MBD624
a. Master mode; 18 bits. b. Master mode (EIAJ); 16 bits.
Fig.9 Serial audio interface SD1; EIAJ data format.
Page 13
Philips Semiconductors Preliminary specification
Stereo filter and codec SAA2003
SERIAL AUDIO INTERFACE DATA FORMATS IN ENCODING MODE In encoding mode, the serial audio data input for the PASC processor is taken from the SD1 pin. This data is scaled by
the fade processor before being sent to the PASC processor. The output from the fade processor is sent in parallel to the SD2 output.
Both I2S and EIAJ formats are supported.
Table 4 Serial audio data interface formats in encoding mode.
SD1 INPUT SD2 OUTPUT
FORMAT MASTER/SLAVE RESOLUTION FORMAT RESOLUTION
I2S master 18 bit I2S 18 bit
2
I
S slave 18 bit I2S 18 bit
2
I
S master 16 bit I2S 18 bit
2
S slave 16 bit I2S 16 bit
I EIAJ EIAJ EIAJ EIAJ
(1) (1) (1) (1)
master 18 bit I2S 18 bit slave 18 bit I2S 18 bit master 16 bit I2S 18 bit slave 16 bit I2S 18 bit
Note
1. If SD1 is used in EIAJ mode, and the data from SD2 is required, the IECOP can be re-programmed to provide a suitable I
S
ERIAL AUDIO INTERFACE DATA FORMATS IN DECODING MODE
2
S WS signal for SD2. The IEC 958 output is not available in this mode.
In decoding mode, the output from the PASC processor, connected via the fade processor, is present at both SD1 and SD2.
Both I2S and EIAJ formats are supported.
Table 5 SD1/SD2 output decoding formats.
FORMAT MASTER/SLAVE RESOLUTION
(1)
I2S master 18 bit
2
S slave 18 bit
I
2
I
S master 16 bit
2
I
S slave 16 bit EIAJ master 18 bit EIAJ master 16 bit
Note
1. The sub-band filter performs rounding to 16 or 18 bits according to the operating mode of the interface.
ERIAL AUDIO INTERFACE MODE CONTROL
S The operating mode of the interface is programmed by the extended settings registers as shown in Table 6.
May 1994 13
Page 14
Philips Semiconductors Preliminary specification
Stereo filter and codec SAA2003
Table 6 Extended settings register.
A3 A2 A1 A0 D3 D2 D1 D0 MODE
0 0 1 0 X X X 0 16 bit operation; 16 bit rounding 0 0 1 0 X X X 1 18 bit operation; 18 bit rounding
2
0010XX0XI 0 0 1 0 X X 1 X EIAJ data format 0 0 1 0 X 0 X X peak detector input SD1 0 0 1 0 X 1 X X peak detector input SD2 0 0 1 0 0 X X X SD1/FS256 transparent mode disabled 0 0 1 0 1 X X X SD1/FS256 transparent mode enabled

Filtered data interface

The filtered data interface transfers the sub-band filtered data between the stereo filter codec and adaptive allocation and scaling parts of the DCC chip-set, and consists of the signals as shown in Table 7.
S data format
Table 7 Filtered data interface signals.
PIN INPUT/OUTPUT FUNCTION FREQUENCY
FDCL output filtered data bit clock 64f FDWS output filtered data word select f
s
s
FDAO output filtered data serial output FDAI input filtered data serial input FDIR output decode/encode control FSYNC output filtered data sync signal; band zero
ILTERED DATA INTERFACE FORMAT
F The filtered data is transferred over the interface in accordance with the formats illustrated in Figs 10 and 11.
handbook, full pagewidth
channel
FDWS
FDCL
left 32 bits
right
1
FDAI/ FDAO
bit :
2322212
MSB LSB
02010
0
0
Fig.10 Transfer of filtered data; SAA2003/SAA2013.
May 1994 14
7 bits
2322212
MSB
0
MLB765
Page 15
Philips Semiconductors Preliminary specification
Stereo filter and codec SAA2003
32 bits
SBWS
SBCL
SBDA
bit :
SBEF
0001020
15 bits1
3
byte 0 byte 1 byte 2
10111
2
13141
LSBMSB
5
1
MSB
16171
202
1
8
9
1
MEA649 - 2
2 2
Fig.11 Transfer of sub-band PASC data.

Sub-band serial PASC interface

The sub-band serial interface carries the PASC serial data stream between the stereo filter codec and the drive processor part of the DCC chip-set, and consists of the signals as shown in Table 8.
Table 8 Sub-band serial PASC interface signals.
PIN INPUT/OUTPUT FUNCTION FREQUENCY
SBDIR input sub-band data direction control SBDA input/output sub-band serial data 1SBCL input/output sub-band bit clock 768 kHz SBWS input/output sub-band word select 12 kHz SBEF input sub-band data error flag URDA input unreliable data flag
The SAA2003 generates SBWS and SBCL in both decode and encoding modes. In decode both signals can be set to inputs (slave mode) by bit 0 of the extended settings register. The filtered data interface timing is always derived from the 24.576 MHz clock, regardless of the audio sampling frequency.
Table 9 Extended settings register.
A3 A2 A1 A0 D3 D2 D1 D0 MODE
0 0 0 1 X X X 0 slave mode (default) 0 0 0 1 X X X 1 master mode
Stereo and 2-channel mono encoding modes are available. Stereo, joint stereo and 2-channel mono decoding modes are available. In decoding and encoding, 48 kHz, 44.1 kHz and 32 kHz sample frequencies can be used.
May 1994 15
Page 16
Philips Semiconductors Preliminary specification
Stereo filter and codec SAA2003
SUB-BAND SERIAL PASC INTERFACE DATA FORMAT The PASC data is transferred over the interface described
above using the format shown in Fig.11. Each period of SBWS spans 64 periods of the bit clock, SBCL, of which 32 SBCL periods are used to transfer PASC data.
The 32 data bits transferred in one period of SBWS make up a complete sub-band slot, as defined in the DCC standard. The first 16 data bits (0, 1, 2, .., 15) are transferred while SBWS is LOW, and the second 16 data bits (16, 17, 18, .., 31) are transferred while SBWS is HIGH.
SBEF and URDA are generated by the drive processor during decode. The presence of the URDA flag causes the stereo filter codec to mute the audio output data, and lose audio frame synchronization.
The direction of SBDA is controlled by the SBDIR input, which is connected to the drive processor.

SYNCDAI signal

SYNCDAI is a pulse of fixed duration which is generated by the SAA2003 when any of the following conditions occur:
Change of bit rate
Change of sampling frequency
Change from encode to decode and vice-versa
Change of FS256 clock source
2
Change of I
S bus master
Reset.
The SYNCDAI signal is used to synchronize the digital audio input/output interface.

Audio peak level detector

The peak level detector continuously encodes the maximum amplitude of the audio data samples for each audio channel until it is reset by the action of reading out the peak level data. The peak level data can be read by the SAA2013, and subsequently by the system microcontroller, or by the microcontroller directly when SAA2013 is not used.
The peak level data is read via the L3 interface in status read mode. The first 16 bits of status read transfer the status bits of SAA2003. The following 32 bits contain the peak level data. The peak level detector is reset when the 32 bits of peak level data are read.
In encode, the peak level detector can be used to monitor the data on either SD1 (pre-fade processor) or SD2 (post fade processor). In slave EIAJ input modes the peak detection is only possible on output SD2. In decode mode, SD1 must be selected for peak detector input data.
handbook, full pagewidth
L3MODE
L3CLK
L3DATA
8150 71617 30 31 32 33 46 47
Fig.12 Peak level data format during status read.
May 1994 16
MBD625
Page 17
Philips Semiconductors Preliminary specification
Stereo filter and codec SAA2003

Audio fade processor

The fade processor is controlled by the system microcontroller. It achieves level control, or fading, by multiplying the audio samples with a 17 bit accuracy fade coefficient, which is selected by an 8-bit fade counter. The fade coefficients
range from 0 to 1.0 according to a
Attenuation (dB) 20 log cos
In encode mode, audio samples are taken from input SD1 and scaled before sub-band filter processing, and sent to output SD2.
In decode mode, audio samples are scaled following reconstruction by the sub-band filter, and sent to outputs SD1 and SD2.
Table 10 Fade processor operating modes.
MODE FUNCTION
Fade rate controls rate of automatic increments and decrements Step down increases attenuation by one increment Step up reduces attenuation by one increment Full scale sets gain to unity, incrementing from current level automatically Mute sets gain to zero, decrementing from current level automatically
12 dB sets gain to 12 dB, decrementing or incrementing from current level automatically
1
⁄4cosine function. The attenuation for a particular fade count (FC) is given as follows:
π FC×

----------------- -

510
dB()=
where: 0 FC 255.
F
ADE PROCESSOR MODE CONTROL
The operating mode of the fade processor is controlled by two extended registers
Table 11 Fade processor mode control.
A3 A2 A1 A0 D3 D2 D1 D0 MODE
0011P3P2P1P0set fade rate 01000001step down 01000010step up 010001X0full scale slow 010001X1full scale fast 010010X0mute slow 010010X1mute fast 010011X012 dB slow 010011X112 dB fast 01000000no action
FADE RATE OPTION The fade rate can be set to either fast or slow modes. In fast mode the attenuation changes rate at one step per audio
sample. In slow mode the rate of change of level is controlled by the fade rate bits P3 to P0. In slow mode, the fade counter is stepped up or down according to a clock derived from the WS pin.
May 1994 17
Page 18
Philips Semiconductors Preliminary specification
Stereo filter and codec SAA2003
Table 12 Fade rate in slow and fast modes.
MODE P3 P2 P1 P0
TIME PER STEP (ms) TIME FOR 256 STEPS (ms)
32 kHz 44.1 kHz 48 kHz 32 kHz 44.1 kHz 48 kHz
Fast −−−−31.2 µs 22.7 µs 20.8 µs 8.0 5.8 5.3 Slow 00001.0 0.997 1.0 256 255 256 Slow 00012.0 1.994 2.0 512 511 512 Slow 00114.0 3.988 4.0 1024 1021 1024 Slow 01118.0 7.980 8.0 2048 2043 2048 Slow 111116.0 15.96 16.0 4096 4087 4096

IEC 958 output

The IECOP pin provides an output signal in accordance with the IEC 958/SPDIF digital audio interface format. The function of the IECOP pin is programmed by bit 3 of the codec extended settings register; see Table 13.
Table 13 IECOP pin control.
A3 A2 A1 A0 D3 D2 D1 D0 IECOP FUNCTION
00010XXXIEC958 (default) 00011XXXI
2
S word select for SD2
The IECOP output will only function when the SAA2003 is in decode mode. The IECOP cannot be used when SAA2013 is present in the system, unless the SAA2013 is in sleep mode. The IECOP output is disabled and set to high impedance by a reset.

L3 bus

The L3 bus is a three-wire clock synchronous data bus common to all ICs in the DCC chip-set. It consists of the L3MODE, L3CLK and L3DATA connections. The bus has two operating modes:
Addressing mode; selects the IC for communication and sets type of transfer.
Data mode; is used to send and receive data and control settings.
The L3MODE and L3CLK lines are driven by the system microcontroller and L3DATA is a bi-directional line. LTCNT0 and LTCNT1 must be left unconnected when L3 mode is used.
For normal use in L3 mode, LTCNT0 and LTCNT1 are held HIGH by internal pull-up resistors. The SAA2003 responds to serial addresses as shown in Table 14.
Table 14 SAA2003 serial addresses.
D0
(1)
D1
(1)
D2 D3 D4 D5 D6 D7
XX000100
Note
1. D0 and D1 are interpreted as LTCNT0 and LTCNT1 respectively. These two signals control the operation of the interface as given in Table 15.
May 1994 18
Page 19
Philips Semiconductors Preliminary specification
Stereo filter and codec SAA2003
Table 15 Interface modes.
D0/LTCNT0 D1/LTCNT1 MODE
0 0 extended setting from microcontroller to SAA2003 1 0 allocation and scale factor information from SAA2013 to SAA2003 0 1 codec internal settings from microcontroller to SAA2003 1 1 codec status from SAA2003 to microcontroller and SAA2013 including peak
level data
Table 16 Register address settings.
A3 A2 A1 A0 REGISTER
0000codec external settings 0001codec interface mode control 0010serial audio interface mode control 0011fade counter rate control 0100fade counter control
(1)
Note
1. These registers are write only, accessed using the protocol shown in Fig.13.
ndbook, full pagewidth
L3MODE
L3CLK
L3DATA D0 D1 D2 D3 A0 A1 A2 A3
MBD626
Fig.13 Extended settings protocol.

Operation in LT mode

LT interface mode can be selected by writing an extended settings word to the interface mode control register as shown in Table 17.
Table 17 Interface mode control register.
A3 A2 A1 A0 D3 D2 D1 D0 MODE
0 0 0 1 X X 1 X L3 mode (default) 0 0 0 1 X X 0 X LT mode
In LT mode the LTCNT0 and LTCNT1 pins are used, and the L3MODE pin becomes LTEN enable line. L3CLK becomes LTCLK, and L3DATA becomes LTDATA.
May 1994 19
Page 20
Philips Semiconductors Preliminary specification
Stereo filter and codec SAA2003
Table 18 Summary of address registers.
ADDRESS REGISTER
BIT DESCRIPTION
REGISTER EXPLANATION
0 external settings register 0 mute DAC
1 attenuate DAC 2 de-emphasis DAC 3 clock OK hold mode
1 codec extended settings 0 slave receive mode
1 L3/LT mode select 2 comparator delay bypass 3 WS/IEC 958 selection
2 serial audio mode control 0 18 bit operation
2
1I
S/EIAJ format 2 peak detector input select 3 transparent mode
3 fade processor fade rate 0 to 3 rate control, 0 to 15 4 fade processor control 0 to 3 fade command
5 to 15 not used −−

Codec internal settings and status

The settings register is write only, and the status register is read only. The interface protocols for accessing these registers is shown in Figs 14 and 15.
handbook, full pagewidth
L3MODE
L3CLK
L3DATA 8 9 14 15 0 1 67
Fig.14 Codec internal settings write transfer.
May 1994 20
MBD627
Page 21
May 1994 21
Philips Semiconductors Preliminary specification
Stereo filter and codec SAA2003
L3MODE
L3CLK
L3DATA 8150 716 3017 33 46 4731 32
MBD628
Fig.15 Codec status read transfer.
Page 22
Philips Semiconductors Preliminary specification
Stereo filter and codec SAA2003
The codec internal settings register is shown in Table 19.
Table 19 Codec internal settings register formats.
BITS DESCRIPTION ENCODING/DECODING
15 to 12 bit rate index encoding only
11 and 10 sample frequency encoding only
9 decode mode encoding and decoding 8 external FS256 encoding and decoding 7 2 channel mono encoding only 6 mute sub-band filters encoding and decoding 5 external master I
4 select channel I/II decoding only 3 and 2 transparent bits encoding only 1 and 0 emphasis indication encoding only
2
S encoding and decoding
Table 20 Codec status register formats.
BITS DESCRIPTION ENCODING/DECODING
15 to 12 bit rate index encoding and decoding
11 and 10 sample frequency encoding and decoding
9 ready-to-receive encoding and decoding
8 not used 7 and 6 sub-band mode encoding and decoding
5 synchronization decoding only
4 clock OK encoding and decoding 3 and 2 transparent bits encoding and decoding 1 and 0 emphasis indication encoding and decoding
16 first channel identification
17 to 31 first channel peak level; LSB first
32 second channel identification
33 to 47 second channel peak level; LSB first
May 1994 22
Page 23
Philips Semiconductors Preliminary specification
Stereo filter and codec SAA2003

Average current consumption

The average current consumption is shown in Fig.16.
80
handbook, halfpage
I
DD
(mA)
60
40
20
0
2.5 3.5 4.5 5.5
Fig.16 Average current consumption.

Timing diagrams

MBD640
V (V)
DD
handbook, full pagewidth
FS256
SCK
t
cL
WS, SD1 and SD2
Fig.17 Serial audio interface timing in decode; master mode.
May 1994 23
T
FS
t
fH
t
d1
T
c
t
fL
t
d1
t
cH
t
h2
t
d2
MBD629
Page 24
Philips Semiconductors Preliminary specification
Stereo filter and codec SAA2003
T
handbook, full pagewidth
FS256
FS
t
fH
t
fL
SCK
WS and SD2
SD1
handbook, full pagewidth
t
d1
t
cL
T
c
t
t
h1
su
t
cH
Fig.18 Serial audio interface timing in encode; master mode.
T
t
cL
c
t
cH
t
d1
t
h2
t
d2
MLB602
SCK
WS, SD1
SD1, SD2
T
FS
FS256
t
FH
t
FL
Fig.19 Serial audio interface timing; slave mode.
May 1994 24
t
t
h1
su
t
h2
t
d
MBD630
Page 25
Philips Semiconductors Preliminary specification
Stereo filter and codec SAA2003
t
handbook, full pagewidth
SYNCDAI
WS, SCK (slave to master)
WS, SCK (slave to master)
SH
t
d1
t
d2
SD1
ndbook, full pagewidth
FS256
FDCL
t
d3
t
d4
MBD631
Fig.20 Serial audio master/slave timing.
T
FS
t
FH
t
d1
t
FL
t
d1
t
cL
t
h2
T
c
t
cH
FDWS, FDAO, FSYNC
t
d2
FDAI
Fig.21 Filtered data interface timing.
May 1994 25
t
t
h1
su
MBD632
Page 26
Philips Semiconductors Preliminary specification
Stereo filter and codec SAA2003
handbook, full pagewidth
k, full pagewidth
SCK
SBWS, SBDA
SBWS
sub-band # 0 1 2 29 30 31 0 1 2 3
FDWS
FSYNC
Fig.22 FSYNC output timing.
T
c
t
d3
t
cH
t
d4
(encode)
(decode)
t
cL
t
t
d2
d1
MBD633
SBDA
SBEF
andbook, full pagewidth
SBWS
SBCL
SBDA
L3DATA
t
su2
t
h1
t
su1
0
Fig.23 Sub-band PASC interface timing.
t
h2
MBD634
912345678 101112
MBD635
May 1994 26
Page 27
Philips Semiconductors Preliminary specification
Stereo filter and codec SAA2003
t
handbook, full pagewidth
L3MODE
ML
handbook, full pagewidth
L3CLK
L3DATA (INPUT)
L3DATA (OUTPUT)
L3MODE
t
d1
t
su
t
d2
t
cH
t
h1
t
cL
Fig.24 L3 bus timing; addressing mode.
t
h2
t
d3
MBD637
L3CLK
L3DATA (INPUT)
L3DATA (OUTPUT)
L3MODE
t
d1
t
su
t
d3
t
d2
t
cH
t
h1
t
d4
t
h2
Fig.25 L3 bus timing; data transfer mode.
May 1994 27
t
cL
t
ML
t
h3
t
d5
MBD636
Page 28
Philips Semiconductors Preliminary specification
Stereo filter and codec SAA2003
handbook, full pagewidth
SYNCDAI
FS256 CLOCK SOURCE
FS256 CLOCK SOURCE
FDIR
internal
external
t
SH
t
d2
t
d1
t
d5
t
d4
t
d3
Fig.26 Internal/external clock source transition timing.
external
internal
MBD638
t
c24L
CLK24
t
f
t
c22L
CLK22
t
f
Fig.27 CLK22 and CLK24 timing.
May 1994 28
T
T
c24
c22
t
c24H
t
r
t
c22H
t
r
MBD639
Page 29
Philips Semiconductors Preliminary specification
Stereo filter and codec SAA2003

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134).
SYMBOL PARAMETER CONDITIONS MIN. MAX. UNIT
V
DD
V
I
I
I
V
O
I
O
I
DDQ
T
stg
T
amb
V
es1
V
es2
Notes
1. The input voltage (V
2. Equivalent to discharging a 100 pF capacitor through a 1.5 k resistor.
3. Equivalent to discharging a 200 pF capacitor through a 2.5 µH inductor.
supply voltage 0.5 +6.5 V input voltage note 1 0.5 VDD + 0.5 V input current 20 mA output voltage 0.5 +6.5 V output current 20 mA quiescent supply current clocks stopped 100 µA storage temperature 65 +150 °C operating ambient temperature 40 +85 °C electrostatic handling note 2 2000 +2000 V electrostatic handling note 3 200 +200 V
) may not exceed 6.5 V.
I

CHARACTERISTICS

= 40 to 85 °C; VDD = 2.7 to 5.5 V; unless otherwise specified.
T
amb
SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT
Supply
V
DD
I
DD
supply voltage 2.7 5.0 5.5 V supply current VDD = 3.0 V 32.5 35.0 mA
V
= 5.0 V 68.8 75.0 mA
DD
sleep mode; V
= 5.0 V
DD
−−400 µA
Inputs FDAI, L3CLK, URDA, SBDIR, SBEF, X256, SLEEP and L3MODE
V
IL
V
IH
I
LI
C
I
LOW level input voltage 0 0.3V HIGH level input voltage 0.7V input leakage current VI = 0 to V
DD
10 +10 µA
DD
V
DD
DD
input capacitance −−10 pF
V V
Inputs TEST0 and TEST1
V
IL
V
IH
R
I(pd)
C
I
LOW level input voltage 0 0.3V HIGH level input voltage 0.7V input pull-down resistance VI = V
DD
50 k
DD
V
DD
DD
V V
input capacitance −−10 pF
May 1994 29
Page 30
Philips Semiconductors Preliminary specification
Stereo filter and codec SAA2003
SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT
Inputs LTCNT0 and LTCNT1
V
IL
V
IH
R
I(pu)
C
I
LOW level input voltage 0 0.3V HIGH level input voltage 0.7V
DD
V input pull-up resistance VI = 0 V 50 k input capacitance −−10 pF
Input RESET
V
tLH
threshold voltage
−−0.8V
LOW-to-HIGH
V
tHL
threshold voltage
0.2V
DD
−−V HIGH-to-LOW
V
hys
C
I
hysteresis voltage 0.33V input capacitance −−10 pF
Outputs FDCL, FDWS, FDIR, FSYNC, FDAO, MUTEDAC, ATTDAC and DEEMDAC
V
OL
V
OH
C
L
t
r
LOW level output voltage IOL = 4 mA 0 0.4 V HIGH level output voltage IOH = 4mA VDD− 0.4 V load capacitance −−30 pF output rise time 0.4 V to VDD− 0.4 V;
−−20 ns
CL = 30 pF
t
f
output fall time VDD− 0.4 V to 0.4 V;
−−20 ns
CL = 30 pF
DD
DD
DD
DD
V
DD
V V
V
V
Output CLK22
V
OL
V
OH
C
L
t
r
t
f
LOW level output voltage IOL = 4 mA 0 0.4 V HIGH level output voltage IOH = 4mA VDD− 0.4 V load capacitance −−30 pF output rise time 0.4 V to VDD− 0.4 V;
output fall time VDD− 0.4 V to 0.4 V;
Output CLK24
V
OL
V
OH
C
L
t
r
t
f
LOW level output voltage IOL = 6 mA 0 0.4 V HIGH level output voltage IOH = 6mA VDD− 0.4 V load capacitance −−50 pF output rise time 0.4 V to VDD− 0.4 V;
output fall time VDD− 0.4 V to 0.4 V;
CL = 30 pF
CL = 30 pF
CL = 50 pF
CL = 50 pF
DD
V
−−7ns
−−7ns
DD
V
−−7ns
−−7ns
May 1994 30
Page 31
Philips Semiconductors Preliminary specification
Stereo filter and codec SAA2003
SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT
Output SYNCDAI
V
OL
V
OH
C
L
t
r
t
f
Output FS256
V
OL
V
OH
C
L
t
r
t
f
I
LI
Output SD2
V
OL
V
OH
C
L
t
r
t
f
I
LI
Output IECOP
V
OL
V
OH
C
L
t
r
t
f
I
LI
LOW level output voltage IOL = 4 mA 0 0.4 V HIGH level output voltage IOH = 4mA VDD− 0.4 V
DD
V load capacitance −−40 pF output rise time 0.4 V to VDD− 0.4 V;
−−20 ns
CL = 40 pF
output fall time VDD− 0.4 V to 0.4 V;
−−20 ns
CL = 40 pF
LOW level output voltage IOL = 6 mA 0 0.4 V HIGH level output voltage IOH = 6mA VDD− 0.4 V
DD
V load capacitance −−60 pF output rise time 0.4 V to VDD− 0.4 V;
−−7ns
CL = 60 pF
output fall time VDD− 0.4 V to 0.4 V
−−7ns
;
CL = 60 pF
3-state leakage current VI = 0 to V
DD
10 +10 µA
LOW level output voltage IOL = 4 mA 0 0.4 V HIGH level output voltage IOH = 4mA VDD− 0.4 V
DD
V load capacitance −−30 pF output rise time 0.4 V to VDD− 0.4 V;
−−20 ns
CL = 30 pF
output fall time VDD− 0.4 V to 0.4 V;
−−20 ns
CL = 30 pF
3-state leakage current VI = 0 to V
DD
10 +10 µA
LOW level output voltage IOL = 4 mA 0 0.4 V HIGH level output voltage IOH = 4mA VDD− 0.4 V
DD
V load capacitance −−50 pF output rise time 0.4 V to VDD− 0.4 V;
−−20 ns
CL = 50 pF
output fall time VDD− 0.4 V to 0.4 V;
−−20 ns
CL = 50 pF
3-state leakage current VI = 0 to V
DD
10 +10 µA
May 1994 31
Page 32
Philips Semiconductors Preliminary specification
Stereo filter and codec SAA2003
SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT
Inputs/outputs SBDA, SBCL and SBWS
V
IL
V
IH
R
I(pd)
C
I
V
OL
V
OH
C
L
t
r
t
f
LOW level input voltage 0 0.3V HIGH level input voltage 0.7V input pull-down resistance VI = V input capacitance −−10 pF LOW level output voltage IOL = 4 mA 0 0.4 V HIGH level output voltage IOH = 4mA VDD− 0.4 V load capacitance −−30 pF output rise time 0.4 V to VDD− 0.4 V;
output fall time VDD− 0.4 V to 0.4 V;
Inputs/outputs SD1, SCK and WS
V
IL
V
IH
R
I(pd)
C
I
V
OL
V
OH
C
L
t
r
t
f
LOW level input voltage 0 0.3V HIGH level input voltage 0.7V input pull-down resistance VI = V input capacitance −−10 pF LOW level output voltage IOL = 4 mA 0 0.4 V HIGH level output voltage IOH = 4mA VDD− 0.4 V load capacitance −−50 pF output rise time 0.4 V to VDD− 0.4 V;
output fall time VDD− 0.4 V to 0.4 V;
DD
CL = 30 pF
CL = 30 pF
DD
CL = 50 pF
CL = 50 pF
DD
DD
V
DD
50 k
DD
−−20 ns
−−20 ns
DD
DD
V
DD
50 k
DD
−−20 ns
−−20 ns
V
V
V
V
V
V
Input/output L3DATA
V
IL
V
IH
C
I
V
OL
V
OH
C
L
t
r
LOW level input voltage 0 0.3V HIGH level input voltage 0.7V input capacitance −−10 pF LOW level output voltage IOL = 4 mA 0 0.4 V HIGH level output voltage IOH = 4mA VDD− 0.4 V load capacitance −−60 pF output rise time 0.4 V to VDD− 0.4 V;
CL = 60 pF
t
f
output fall time VDD− 0.4 V to 0.4 V;
CL = 60 pF
Input X22IN (external clock)
V
IL
V
IH
I
LI
C
I
LOW level input voltage 0 0.3V HIGH level input voltage 0.7V input leakage current 10 +10 µA input capacitance −−10 pF
May 1994 32
V
V
V
DD
V
DD
DD
DD
−−20 ns
−−20 ns
V
V
DD
V
DD
DD
Page 33
Philips Semiconductors Preliminary specification
Stereo filter and codec SAA2003
SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT
Output X22OUT
f
xtal
g
m
G
v
C
fb
C
O
Input X24IN (external clock)
V
IL
V
IH
I
LI
C
I
Output X24OUT
f
xtal
g
m
G
v
C
fb
C
O
Input X256
f
i
t
cH
t
cL
CLK22 and CLK24 timing; Fig.27
crystal frequency note 1 22.5792 MHz transconductance 1.5 −−mS small signal voltage gain Gv = gm× R
O
3.5 −− feedback capacitance −−5pF output capacitance −−10 pF
LOW level input voltage 0 0.3V HIGH level input voltage 0.7V
DD
V
DD
DD
V
V input leakage current 10 +10 µA input capacitance −−10 pF
crystal frequency note 1 24.567 MHz transconductance 1.5 −−mS small signal voltage gain Gv = gm× R
O
3.5 −− feedback capacitance −−5pF output capacitance −−10 pF
input frequency fs = 48 kHz 12.288 MHz
f
= 44.1 kHz 11.2896 MHz
s
f
= 32 kHz 8.192 MHz
s
HIGH time 35 −−ns LOW time 35 −−ns
O
UTPUT CLK24
f
o
t
c24H
t
c24L
t
r
t
f
output frequency CL = 50 pF 24.576 MHz HIGH time CL = 50 pF 12 −−ns LOW time CL = 50 pF 12 −−ns rise time CL = 50 pF −−7ns fall time CL = 50 pF −−7ns
OUTPUT CLK22 f
o
t
c22H
t
c22L
t
r
t
f
output frequency CL = 30 pF 22.5792 MHz HIGH time CL = 30 pF 11 −−ns LOW time CL = 30 pF 11 −−ns rise time CL = 30 pF −−7ns fall time CL = 30 pF −−7ns
May 1994 33
Page 34
Philips Semiconductors Preliminary specification
Stereo filter and codec SAA2003
SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT
Drive processing interface timing; see Fig.23
t t t t
t
t
t
t
t
cy cH cL d1
d2
su1
h1
su2
h2
SCK cycle time 1302 ns SCK HIGH time 460 651 ns SCK LOW time 460 651 ns SBWS and SBDA delay time
20 −−ns
until SCK LOW SCK delay time until SBWS
−−20 ns and SBDA valid
SBDA input set-up time before
235 −−ns
SCK HIGH SBDA input hold time after
30 −−ns
SCK HIGH set-up time from SCK HIGH
−−90 ns until SBEF valid
SBEF input hold time after
380 −−ns
SCK HIGH
Filtered data interface timing; see Fig.21
FDCL, FDWS, FDAI f
T t
t
t
256
c
FH
FL
d1
FS256 frequency fs = 48 kHz 12.288 MHz
FDCL cycle time fs = 48 kHz 325.6 ns FS256 HIGH time fs = 48 kHz; note 2 35 −−ns
FS256 LOW time fs = 48 kHz; note 2 35 −−ns
FS256 delay time until FDCL
AND FDAO
transition
t
cH
t
cL
t
h2
FDCL HIGH time fs = 48 kHz 143 −−ns FDCL LOW time fs = 48 kHz 143 −−ns FDWS, FDAO and FSYNC
hold time after FS256 HIGH
t
d2
FS256 HIGH delay time until FDWS, FDAO and FSYNC valid
t
su
FDAI input set-up time before FS256 HIGH
t
h1
FDAI input hold time after FS256 HIGH
f
= 44.1 kHz 11.2896 MHz
s
= 32 kHz 8.192 MHz
f
s
= 44.1 kHz; note 2 38 −−ns
f
s
f
= 32 kHz; note 2 75 −−ns
s
f
= 44.1 kHz; note 2 38 −−ns
s
f
= 32 kHz; note 2 35 −−ns
s
0 50 ns
0 −−ns
0 50 ns
20 −−ns
30 −−ns
May 1994 34
Page 35
Philips Semiconductors Preliminary specification
Stereo filter and codec SAA2003
SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT
Timing characteristics FDIR and SYNCDAI; see Fig.26
t
sH
t
d1
t
d2
t
d3
t
d4
t
d5
Baseband data interface timing characteristics
M
ASTER MODE; SEE FIGS 17 AND 18
T
c
t
cH
t
cL
t
d1
t
h2
t
d2
t
su
t
h1
SLAVE MODE; SEE FIG.19 T
c
t
cH
t
cL
t
su
t
h1
t
h2
t
d
SYNCDAI HIGH time 1280 −−ns internal clock delay time after
0 −−ns
SYNCDAI LOW external clock delay time after
−−320 ns SYNCDAI LOW
FDIR delay time before
280 −−ns
SYNCDAI HIGH external clock delay time
−−320 ns before SYNCDAI HIGH
internal clock delay time
0 −−ns
before SYNCDAI HIGH
SCK cycle time fs = 48 kHz 325.6 ns SCK HIGH time fs = 48 kHz 143 −−ns SCK LOW time fs = 48 kHz 143 −−ns FS256 HIGH delay time until
0 50 ns
SCK transition WS, SD1 and SD2 hold time
0 −−ns
after FS256 HIGH FS256 delay time until WS,
0 50 ns
SD1 and SD2 valid SD1 input set-up time before
30 −−ns
SCK HIGH SD1 input hold time after SCK
0 −−ns
HIGH
SCK cycle time fs = 48 kHz 325.6 651.2 ns SCK HIGH time fs = 48 kHz 116 −−ns SCK LOW time fs = 48 kHz 116 −−ns WS and SD1 inputs set-up
30 −−ns
time before SCK HIGH WS and SD1 inputs hold time
0 −−ns
after SCK HIGH SD1 and SD2 outputs hold
66 −−ns
time after SCK HIGH SCK delay time until SD1 and
−−223 ns SD2 outputs valid
May 1994 35
Page 36
Philips Semiconductors Preliminary specification
Stereo filter and codec SAA2003
SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT
Timing characteristics master/slave mode transition; see Fig.20
t
sH
t
d1
t
d2
t
d3
t
d4
Timing L3 interface; see Fig.24
A
DDRESSING MODE
t
cH
t
cL
t
d1
t
su
t
h1
t
h2
t
d2
t
d3
SYNCDAI HIGH time 1280 −−ns WS and SCK outputs enabled
140 −−ns
after SYNCDAI LOW WS and SCK outputs disabled
140 −−ns
before SYNCDAI LOW SD1 output disabled before
250 −−ns
SYNCDAI HIGH SD1 output enabled after
790 −−ns
SYNCDAI LOW
L3CLK HIGH time 210 −−ns L3CLK LOW time 210 −−ns L3MODE LOW delay time until
190 −−ns
L3CLK HIGH L3DATA input set-up time
190 −−ns
before L3CLK HIGH L3DATA input hold time after
30 −−ns
L3CLK HIGH L3CLK HIGH hold time before
190 −−ns
L3MODE HIGH L3MODE LOW delay time until
0 50 ns
L3DATA disabled L3MODE HIGH delay time
0 50 ns
until L3DATA enabled
May 1994 36
Page 37
Philips Semiconductors Preliminary specification
Stereo filter and codec SAA2003
SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT
D
ATA MODE; SEE FIG.25
t
cH
t
cL
t
d1
t
d2
t
d3
t
su
t
h1
t
h2
t
d4
t
h3
t
d5
t
ML
Notes
1. The crystal frequencies 22.5792 MHz ±200 × 10−6MHz and 24.5760 MHz ±200 × 10−6MHz must track each other in frequency with an accuracy of 200× 10−6MHz. For example if the 24.5760 MHz clock is 150× 10−6MHz fast, then the range of the 22.5792 MHz clock becomes 50 × 10−6MHz and +350 × 10−6MHz
2. Timing values only valid for internally generated FS256.
L3CLK HIGH time 210 −−ns L3CLK LOW time 210 −−ns L3MODE delay time until
190 −−ns
L3CLK HIGH L3MODE delay time until
0 50 ns
L3DATA enabled L3MODE delay time until
−−380 ns
L3DATA valid L3DATA set-up time before
190 −−ns
L3CLK HIGH L3DATA input hold time after
30 −−ns
L3CLK HIGH L3DATA output hold time after
120 −−ns
L3CLK HIGH L3CLK delay time until
L3DATA output valid
not between data bits 7 and 8
between data bits 7
−−360 ns
−−530 ns
and 8
L3CLK HIGH hold time before
190 −−ns
L3MODE LOW L3MODE LOW delay time until
0 50 ns
L3DATA output disabled L3MODE LOW time between data words 190 −−ns
May 1994 37
Page 38
Philips Semiconductors Preliminary specification
Stereo filter and codec SAA2003

PACKAGE OUTLINE

handbook, full pagewidth
seating
plane
0.1 S
12.9
12.3
44
1
pin 1 index
11
12
34
22
S
1.2 (4x)
0.8
33
0.8
0.40
23
0.20
B
10.1
9.9
12.9
12.3
B
0.15 M
Dimensions in mm.
0.8
0.40
0.20
0.15 M A
10.1
9.9
1.85
1.65
MBB944 - 2
Fig.28 Plastic quad flat-pack, 44-pin (short) (QFP44SL).
May 1994 38
0.25
0.05
1.2
0.8
(4x)
A
detail X
0.95
0.55
0.85
0.75
X
0.25
0.14
0 to 10
2.10
1.70
o
Page 39
Philips Semiconductors Preliminary specification
Stereo filter and codec SAA2003
SOLDERING Plastic quad flat-packs
YWAVE
B During placement and before soldering, the component
must be fixed with a droplet of adhesive. After curing the adhesive, the component can be soldered. The adhesive can be applied by screen printing, pin transfer or syringe dispensing.
Maximum permissible solder temperature is 260 °C, and maximum duration of package immersion in solder bath is 10 s, if allowed to cool to less than 150 °C within 6 s. Typical dwell time is 4 s at 250 °C.
A modified wave soldering technique is recommended using two solder waves (dual-wave), in which a turbulent wave with high upward pressure is followed by a smooth laminar wave. Using a mildly-activated flux eliminates the need for removal of corrosive residues in most applications.
B
Y SOLDER PASTE REFLOW
Reflow soldering requires the solder paste (a suspension of fine solder particles, flux and binding agent) to be
applied to the substrate by screen printing, stencilling or pressure-syringe dispensing before device placement.
Several techniques exist for reflowing; for example, thermal conduction by heated belt, infrared, and vapour-phase reflow. Dwell times vary between 50 and 300 s according to method. Typical reflow temperatures range from 215 to 250 °C.
Preheating is necessary to dry the paste and evaporate the binding agent. Preheating duration: 45 min at 45 °C.
EPAIRING SOLDERED JOINTS (BY HAND-HELD SOLDERING
R
IRON OR PULSE
-HEATED SOLDER TOOL)
Fix the component by first soldering two, diagonally opposite, end pins. Apply the heating tool to the flat part of the pin only. Contact time must be limited to 10 s at up to 300 °C. When using proper tools, all other pins can be soldered in one operation within 2 to 5 s at between 270 and 320 °C. (Pulse-heated soldering is not recommended for SO packages.)
For pulse-heated solder tool (resistance) soldering of VSO packages, solder is applied to the substrate by dipping or by an extra thick tin/lead plating before package placement.
May 1994 39
Page 40
Philips Semiconductors Preliminary specification
Stereo filter and codec SAA2003

DEFINITIONS

Data sheet status
Objective specification This data sheet contains target or goal specifications for product development. Preliminary specification This data sheet contains preliminary data; supplementary data may be published later. Product specification This data sheet contains final product specifications.
Limiting values
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.
Application information
Where application information is given, it is advisory and does not form part of the specification.

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.
The Digital Compact Cassette logo is a registered trade mark of Philips Electronics N.V.
May 1994 40
Page 41
Philips Semiconductors Preliminary specification
Stereo filter and codec SAA2003
NOTES
May 1994 41
Page 42
Philips Semiconductors Preliminary specification
Stereo filter and codec SAA2003
NOTES
May 1994 42
Page 43
Philips Semiconductors Preliminary specification
Stereo filter and codec SAA2003
NOTES
May 1994 43
Page 44
Philips Semiconductors – a worldwide company
Argentina: IEROD, Av. Juramento 1992 - 14.b, (1428)
BUENOS AIRES, Tel. (541)786 7633, Fax. (541)786 9367
Australia: 34 Waterloo Road, NORTH RYDE, NSW 2113,
Tel. (02)805 4455, Fax. (02)805 4466
Austria: Triester Str. 64, A-1101 WIEN, P.O. Box 213,
Tel. (01)60 101-1236, Fax. (01)60 101-1211
Belgium: Postbus 90050, 5600 PB EINDHOVEN, The Netherlands,
Tel. (31)40 783 749, Fax. (31)40 788 399
Brazil: Rua do Rocio 220 - 5
CEP: 04552-903-SÃO PAULO-SP, Brazil. P.O. Box 7383 (01064-970). Tel. (011)821-2327, Fax. (011)829-1849
Canada: INTEGRATED CIRCUITS:
Tel. (800)234-7381, Fax. (708)296-8556 DISCRETE SEMICONDUCTORS: 601 Milner Ave, SCARBOROUGH, ONTARIO, M1B 1M8, Tel. (0416)292 5161 ext. 2336, Fax. (0416)292 4477
Chile: Av. Santa Maria 0760, SANTIAGO,
Tel. (02)773 816, Fax. (02)777 6730
Colombia: IPRELENSO LTDA, Carrera 21 No. 56-17,
77621 BOGOTA, Tel. (571)249 7624/(571)217 4609, Fax. (571)217 4549
Denmark: Prags Boulevard 80, PB 1919, DK-2300 COPENHAGEN S,
Tel. (032)88 2636, Fax. (031)57 1949
Finland: Sinikalliontie 3, FIN-02630 ESPOO,
Tel. (9)0-50261, Fax. (9)0-520971
France: 4 Rue du Port-aux-Vins, BP317,
92156 SURESNES Cedex, Tel. (01)4099 6161, Fax. (01)4099 6427
Germany: PHILIPS COMPONENTS UB der Philips G.m.b.H.,
P.O. Box 10 63 23, 20043 HAMBURG, Tel. (040)3296-0, Fax. (040)3296 213.
Greece: No. 15, 25th March Street, GR 17778 TAVROS,
Tel. (01)4894 339/4894 911, Fax. (01)4814 240
Hong Kong: PHILIPS HONG KONG Ltd., Components Div.,
6/F Philips Ind. Bldg., 24-28 Kung Yip St., KWAI CHUNG, N.T., Tel. (852)424 5121, Fax. (852)428 6729
India: Philips INDIA Ltd, Components Dept,
Shivsagar Estate, A Block , Dr. Annie Besant Rd. Worli, Bombay 400 018 Tel. (022)4938 541, Fax. (022)4938 722
Indonesia: Philips House, Jalan H.R. Rasuna Said Kav. 3-4,
P.O. Box 4252, JAKARTA 12950, Tel. (021)5201 122, Fax. (021)5205 189
Ireland: Newstead, Clonskeagh, DUBLIN 14,
Tel. (01)640 000, Fax. (01)640 200
Italy: PHILIPS COMPONENTS S.r.l.,
Viale F. Testi, 327, 20162 MILANO, Tel. (02)6752.3302, Fax. (02)6752 3300.
Japan: Philips Bldg 13-37 , Kohnan 2-chome, Minato-ku, TOKYO 108,
Tel. (03)3740 5028, Fax. (03)3740 0580
Korea: (Republic of) Philips House, 260-199 Itaewon-dong,
Yongsan-ku, SEOUL, Tel. (02)794-5011, Fax. (02)798-8022
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA,
SELANGOR, Tel. (03)750 5214, Fax. (03)757 4880
Mexico: Philips Components, 5900 Gateway East, Suite 200,
EL PASO, TX 79905, Tel. 9-5(800)234-7381, Fax. (708)296-8556
Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB
Tel. (040)783749, Fax. (040)788399
New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND,
Tel. (09)849-4160, Fax. (09)849-7811
th
floor, Suite 51,
Norway: Box 1, Manglerud 0612, OSLO,
Tel. (022)74 8000, Fax. (022)74 8341
Pakistan: Philips Electrical Industries of Pakistan Ltd.,
Exchange Bldg. ST-2/A, Block 9, KDA Scheme 5, Clifton, KARACHI 75600, Tel. (021)587 4641-49, Fax. (021)577035/5874546.
Philippines: PHILIPS SEMICONDUCTORS PHILIPPINES Inc,
106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI, Metro MANILA, Tel. (02)810 0161, Fax. (02)817 3474
Portugal: PHILIPS PORTUGUESA, S.A.,
Rua dr. António Loureiro Borges 5, Arquiparque - Miraflores, Apartado 300, 2795 LINDA-A-VELHA, Tel. (01)14163160/4163333, Fax. (01)14163174/4163366.
Singapore: Lorong 1, Toa Payoh, SINGAPORE 1231,
Tel. (65)350 2000, Fax. (65)251 6500
South Africa: S.A. PHILIPS Pty Ltd., Components Division,
195-215 Main Road Martindale, 2092 JOHANNESBURG, P.O. Box 7430 Johannesburg 2000, Tel. (011)470-5911, Fax. (011)470-5494.
Spain: Balmes 22, 08007 BARCELONA,
Tel. (03)301 6312, Fax. (03)301 42 43
Sweden: Kottbygatan 7, Akalla. S-164 85 STOCKHOLM,
Tel. (0)8-632 2000, Fax. (0)8-632 2745
Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH,
Tel. (01)488 2211, Fax. (01)481 77 30
Taiwan: PHILIPS TAIWAN Ltd., 23-30F, 66, Chung Hsiao West
Road, Sec. 1. Taipeh, Taiwan ROC, P.O. Box 22978, TAIPEI 100, Tel. (02)388 7666, Fax. (02)382 4382.
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd.,
209/2 Sanpavuth-Bangna Road Prakanong, Bangkok 10260, THAILAND, Tel. (662)398-0141, Fax. (662)398-3319.
Turkey:Talatpasa Cad. No. 5, 80640 GÜLTEPE/ISTANBUL,
Tel. (0212)279 2770, Fax. (0212)269 3094
United Kingdom: Philips Semiconductors Limited, P.O. Box 65,
Philips House, Torrington Place, LONDON, WC1E 7HD, Tel. (071)436 41 44, Fax. (071)323 03 42
United States:INTEGRATED CIRCUITS:
811 East Arques Avenue, SUNNYVALE, CA 94088-3409, Tel. (800)234-7381, Fax. (708)296-8556 DISCRETE SEMICONDUCTORS: 2001 West Blue Heron Blvd.,
P.O. Box 10330, RIVIERA BEACH, FLORIDA 33404, Tel. (800)447-3762 and (407)881-3200, Fax. (407)881-3300
Uruguay: Coronel Mora 433, MONTEVIDEO,
Tel. (02)70-4044, Fax. (02)92 0601
For all other countries apply to: Philips Semiconductors, International Marketing and Sales, Building BAF-1, P.O. Box 218, 5600 MD, EINDHOVEN, The Netherlands, Telex 35000 phtcnl, Fax. +31-40-724825
SCD31 © Philips Electronics N.V. 1994
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.
Printed in The Netherlands
513061/1500/01/pp44 Date of release: May 1994 Document order number: 9397 731 40011
Philips Semiconductors
Loading...