Datasheet RF1S45N06LESM, RFP45N06LE Datasheet (Intersil)

Page 1
RFP45N06LE, RF1S45N06LESM
Data Sheet October 1999 File Number 4076.2
45A, 60V, 0.028 Ohm, Logic Level N-Channel Power MOSFETs
Formerly developmental type TA49177.
Ordering Information
PART NUMBER PACKAGE BRAND
RFP45N06LE TO-220AB FP45N06L RF1S45N06LESM TO-263AB F45N06LE
NOTE: When ordering,use theentirepart number.Add thesuffix 9Ato obtain theTO-263AB v ariantin tapeandreel i.e.,RF1S45N06LESM9A.
Features
• 45A, 60V
•r
DS(ON)
• Temperature Compensating PSPICE
= 0.028
®
Model
• Peak Current vs Pulse Width Curve
• UIS Rating Curve
o
C Operating Temperature
• 175
• Related Literature
- TB334 “Guidelines for Soldering Surface Mount Components to PC Boards”
Symbol
D
G
S
Packaging
DRAIN (FLANGE)
JEDEC TO-220AB JEDEC TO-263AB
SOURCE
DRAIN
GATE
GATE
SOURCE
DRAIN
(FLANGE)
1
CAUTION: These devices are sensitive to electrostatic discharge; follow proper ESD Handling Procedures.
PSPICE® is a registered trademark of MicroSim Corporation.
1-888-INTERSIL or 407-727-9207
| Copyright © Intersil Corporation 1999.
Page 2
RFP45N06LE, RF1S45N06LESM
Absolute Maximum Ratings T
= 25oC, Unless Otherwise Specified
C
RFP45N06LE, RF1S45N06LESM UNITS
Drain to Source Voltage (Note 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V
Drain to Gate Voltage (RGS = 20kΩ) (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .V
Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V
Continuous Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I
Pulsed Drain Current (Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .I
Pulsed Avalanche Rating. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P
DSS
DGR
GS
DM
AS
D
Refer to Peak Current Curve
D
Derate Above 25oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TJ, T
STG
Maximum Temperature for Soldering
Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .T
Package Body for 10s, See Techbrief 334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
L
pkg
60 V 60 V
±10 V
45
Refer to UIS Curve
142
0.95
-55 to 175
300 260
A
W
W/oC
o
C
o
C
o
C
NOTE:
1. TJ= 25oC to 150oC.
Electrical Specifications T
= 25oC, Unless Otherwise Specified
C
PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS
Drain to Source Breakdown Voltage BV Gate Threshold Voltage V Zero Gate Voltage Drain Current I
DSSID
GS(TH)VGS
DSS
= 250µA, VGS = 0V (Figure 13) 60 - - V
= VDS, ID = 250µA (Figure 12) 1 - 3 V VDS = 55V, VGS = 0V - - 1 µA VDS = 50V, VGS = 0V, TC = 150oC - - 250 µA
Gate to Source Leakage Current I Drain to Source On Resistance (Note 2) r
DS(ON)ID
Turn-On Time t Turn-On Delay Time t
d(ON)
Rise Time t Turn-Off Delay Time t
d(OFF)
Fall Time t Turn-Off Time t Total Gate Charge Q
g(TOT)VGS
Gate Charge at 5V Q Threshold Gate Charge Q
Input Capacitance C Output Capacitance C Reverse Transfer Capacitance C Thermal Resistance Junction to Case R Thermal Resistance Junction to Ambient R
GSS
ON
OFF
g(5)
g(TH)
ISS OSS RSS
θJC
θJA
VGS = ±10V - - 10 µA
= 45A, VGS = 5V (Figure 11) - - 0.028
VDD = 30V, ID = 45A, RL = 0.67, VGS = 5V, RGS = 2.5 (Figures 10, 18, 19)
r
- - 215 ns
-20-ns
- 150 - ns
-55-ns
f
-90-ns
- - 185 ns
= 0V to 10V VDD = 48V, VGS = 0V to 5V - 58 75 nC VGS = 0V to 1V - 2.4 3.0 nC
ID = 45A, RL = 1.07 (Figures 20, 21)
VDS = 25V, VGS = 0V, f = 1MHz (Figure 14)
- 107 135 nC
- 2150 - pF
- 640 - pF
- 240 - pF
- - 1.05
TO-220, and TO-263 - - 80
o o
C/W C/W
Source to Drain Diode Specifications
PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS
Source to Drain Diode Voltage V
SD
Diode Reverse Recovery Time t
NOTES:
2. Pulse test: pulse width 80µs, duty cycle 2%.
3. Repetitive rating: pulse width limited by Max junction temperature. See Transient Thermal Impedance curve (Figure 3).
2
ISD = 45A - - 1.5 V ISD = 45A, dISD/dt = 100A/µs - - 155 ns
rr
Page 3
RFP45N06LE, RF1S45N06LESM
Typical Performance Curves Unless Otherwise Specified
1.2
1.0
0.8
0.6
0.4
0.2
POWER DISSIPATION MULTIPLIER
0
0 25 50 75 100 175
TC, CASE TEMPERATURE (oC)
125
150
FIGURE 1. NORMALIZED POWER DISSIPATIONvs CASE
TEMPERATURE
2
1
0.5
0.2
0.1
0.1
JC
θ
THERMAL IMPEDANCE
0.01 10
-5
0.05
0.02
0.01 SINGLE PULSE
-4
10
-3
10
t, RECTANGULAR PULSE DURATION (s)
, NORMALIZED
Z
50
40
30
20
, DRAIN CURRENT (A)
D
I
10
0
25 50 75 100 125 150
TC, CASE TEMPERATURE (oC)
FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENTvs
CASE TEMPERATURE
P
DM
t
1
t
NOTES: DUTY FACTOR: D = t PEAK TJ = PDM x Z
-2
10
-1
10
2
1/t2
x R
JC
θ
0
10
175
+ T
JC
C
θ
1
10
FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE
500
100
10
, DRAIN CURRENT (A)
D
I
OPERATION IN THIS AREA MAY BE LIMITED BY r
1
1 10 100
DS(ON)
VDS, DRAIN TO SOURCE VOLTAGE (V)
TC = 25oC
T
= MAX RATED
J
100µs
1ms
10ms
200
500
100
THERMAL IMPEDANCE MAY LIMIT CURRENT IN THIS REGION
, PEAK CURRENT CAPABILITY (A)
DM
I
10
-5
10
VGS = 10V
-4
10
VGS = 5V
FOR TEMPERATURES ABOVE 25 CURRENT AS FOLLOWS:
I = I
-3
10
t, PULSE WIDTH (s)
-2
10
o
C DERATE PEAK
175 - T
25
-1
10
FIGURE 4. FORWARD BIAS SAFE OPERATING AREA FIGURE 5. PEAK CURRENT CAPABILITY
3
150
TC = 25oC
C
0
10
1
10
Page 4
RFP45N06LE, RF1S45N06LESM
Typical Performance Curves Unless Otherwise Specified (Continued)
200
100
STARTING TJ = 25oC
10
, AVALANCHE CURRENT (A)
AS
I
STARTING TJ = 150oC
If R = 0 tAV = (L)(IAS)/(1.3*RATED BV
If R 0
= (L/R)ln[(IAS*R)/(1.3*RATED BV
t
AV
1
tAV, TIME IN AVALANCHE (ms)
DSS
1 10 1000.01 0.1
- VDD)
DSS
- VDD) +1]
NOTE: Refer to Intersil Application Notes AN9321 and AN9322.
FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING
100
VDD= 15V
PULSE DURATION = 80µs
80
DUTY CYCLE = 0.5% MAX
60
40
20
, DRAIN TO SOURCE CURRENT (A)
DS(ON)
I
0
0 3.0 4.5 6.01.5
VGS, GATE TO SOURCE VOLTAGE (V)
-55oC
25oC
175oC
100
80
60
40
, DRAIN CURRENT (A)
D
I
20
0
0 1.5 3.0 4.5 6.0
VDS, DRAIN TO SOURCE VOLTAGE (V)
V
= 10V
GS
VGS = 5V
PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX
= 25oC
T
C
VGS = 4V
VGS = 3.5V
VGS = 3V
VGS = 2.5V
FIGURE 7. SATURATION CHARACTERISTICS
80
ID = 45A
60
ID = 11.25A
40
, DRAIN TO SOURCE
DS(ON)
r
ID = 22.5A
ON RESISTANCE (m)
20
PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX
0
2.0 3.5 4.5 5.0
3.0
, GATE TO SOURCE VOLTAGE (V)
V
GS
ID = 90A
4.02.5
FIGURE 8. TRANSFER CHARACTERISTICS FIGURE 9. DRAINTO SOURCE ONRESISTANCE vsGATE
VOLTAGE AND DRAIN CURRENT
600
VDD = 30V, ID = 45A, RL= 0.67
500
400
300
200
SWITCHING TIME (ns)
100
0
10
RGS, GATE TO SOURCE RESISTANCE ()
t
r
t
d(OFF)
t
f
t
d(ON)
20 30 40 500
2.5 PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX VGS = 5V, ID = 45A
2.0
1.5
1.0
NORMALIZED ON RESISTANCE
0.5
-80 -40 0 40 80 120 160 TJ, JUNCTION TEMPERATURE (oC)
FIGURE 10. SWITCHING TIME vs GATE RESISTANCE FIGURE11. NORMALIZED DRAIN TO SOURCE ON
RESISTANCE vs JUNCTION TEMPERATURE
4
200
Page 5
RFP45N06LE, RF1S45N06LESM
Typical Performance Curves Unless Otherwise Specified (Continued)
1.2
1.0
0.8
NORMALIZED GATE
0.6
THRESHOLD VOLTAGE
0.4
-80 -40 0 40 80 120 160 TJ, JUNCTION TEMPERATURE (oC)
VGS = VDS, ID = 250µA
200
FIGURE 12. NORMALIZED GATE THRESHOLD VOLTAGE vs
JUNCTION TEMPERATURE
3000
2500
2000
1500
1000
C, CAPACITANCE (pF)
500
0
0 5 10 15 20 25
VDS, DRAIN TO SOURCE VOLTAGE (V)
VGS = 0V, f = 1MHz C
= CGS + C
ISS
C
= C
RSS OSS
GD
CDS + C
C
GD
GD
C
C
C
ISS
OSS
RSS
FIGURE 14. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE
1.2 ID = 250µA
1.1
1.0
0.9
BREAKDOWN VOLTAGE
NORMALIZED DRAIN TO SOURCE
0.8
-80 -40 0 40 80 120 160 T
, JUNCTION TEMPERATURE (oC)
J
FIGURE 13. NORMALIZED DRAIN TOSOURCE BREAKDOWN
VOLTAGE vs JUNCTION TEMPERATURE
60
45
30
15
, DRAIN TO SOURCE VOLTAGE (V)
DS
V
0
VDD = BV
I
GREF()
--------------------- -
20
I
G ACT()
DSS
RL = 1.3
= 1.3mA
I
G(REF)
= 5V
V
GS
PLATEAU VOLTAGES IN DESCENDING ORDER:
V
= BV
DD
VDD = 0.75 BV VDD = 0.50 BV VDD = 0.25 BV
DSS
t, TIME (µs)
DSS DSS DSS
80
VDD = BV
I
GREF()
--------------------- -
I
GACT()
5.00
DSS
3.75
2.50
1.25
0
NOTE: Refer to Intersil Application Notes AN7254 and AN7260.
FIGURE 15. NORMALIZED SWITCHING WAVEFORMS FOR
CONSTANT GATE CURRENT
200
, GATE TO SOURCE VOLTAGE (V)
GS
V
Test Circuits and Waveforms
V
DS
BV
DSS
L
VARY t
TO OBTAIN
P
REQUIRED PEAK I
V
GS
t
0V
P
AS
R
G
DUT
I
AS
0.01
+
V
DD
-
0
FIGURE 16. UNCLAMPED ENERGY TEST CIRCUIT FIGURE 17. UNCLAMPED ENERGY WAVEFORMS
5
t
P
I
AS
t
AV
V
DS
V
DD
Page 6
RFP45N06LE, RF1S45N06LESM
Test Circuits and Waveforms (Continued)
t
ON
t
10%
d(ON)
90%
50%
t
10%
r
PULSE WIDTH
V
DS
V
DS
R
DUT
L
+
V
DD
-
0
V
GS
0
V
GS
R
GS
V
GS
FIGURE 18. SWITCHING TIME TEST CIRCUIT FIGURE 19. RESISTIVE SWITCHING WAVEFORMS
V
I
g(REF)
DS
R
L
V
GS
+
V
DD
-
DUT
V
DD
VGS= 2V
0
Q
g(TOT)
V
DS
Q
OR Q
g(10)
V
GS
VGS= 1V FOR
g(5)
V
GS
VGS= 5V FOR
2
L
DEVICES
L2 DEVICES
Q
g(TH)
t
d(OFF)
90%
= 10V
t
OFF
t
f
10%
50%
VGS= 20V
V
= 10V FOR
GS
L2 DEVICES
90%
I
g(REF)
0
FIGURE 20. GATE CHARGE TEST CIRCUIT FIGURE 21. GATE CHARGE WAVEFORMS
6
Page 7
PSPICE Electrical Model
SUBCKT 45N06LE 2 1 3 ; rev 10/25/95
CA 12 8 3.73e-9 CB 15 14 3.73e-9 CIN 6 8 2.08e-9
RFP45N06LE, RF1S45N06LESM
DBODY 7 5 DBODYMOD DBREAK 5 11 DBREAKMOD DPLCAP 10 5 DPLCAPMOD
EBREAK 11 7 17 18 66.5 EDS 14 8 5 8 1 EGS 13 8 6 8 1 ESG 6 10 6 8 1 EVTHRES 6 21 19 8 1 EVTEMP 20 6 18 22 1
IT 8 17 1 LDRAIN 2 5 4.0e-9
LGATE 1 9 6.0e-9 LSOURCE 3 7 3.0e-9
GATE
1
MMED 16 6 8 8 MMEDMOD MSTRO 16 6 8 8 MSTROMOD MWEAK 16 21 8 8 MWEAKMOD
RBREAK 17 18 RBREAKMOD 1 RDRAIN 50 16 RDRAINMOD 3.75e-3 RGATE 9 20 1.0 RLDRAIN 2 5 40 RLGATE 1 9 60 RLSOURCE 3 7 30 RSLC1 5 51 RSLCMOD 1e-6 RSLC2 5 50 1e3 RSOURCE 8 7 RSOURCEMOD 6.15e-3 RVTHRES 22 8 RVTHRESMOD 1 RVTEMP 18 19 RVTEMPMOD 1
S1A 6 12 13 8 S1AMOD S1B 13 12 13 8 S1BMOD S2A 6 15 14 13 S2AMOD
LGATE
RLGATE
RGATE
9
CA
-
ESG
+
EVTEMP
+
-
18 22
20
S1A
12
13
8
S1B
EGS EDS
13
10
6 8
+
+
RSLC2
6
S2A
14 13
S2B
6 8
-
-
DPLCAP
EVTHRES
+
19
8
CIN
15
CB
-
+
-
5
51
5
51
21
MSTRO
14
5 8
RSLC1
+
ESLC
-
50 RDRAIN
16
8
MMED
DBREAK
11
EBREAK
MWEAK
RSOURCE
RBREAK
17 18
IT
8
RVTHRES
+
17 18
-
7
RVTEMP 19
-
+
22
LDRAIN
RLDRAIN
DBODY
LSOURCE
RLSOURCE
VBAT
DRAIN
2
SOURCE
3
S2B 13 15 14 13 S2BMOD VBAT 22 19 DC 1 ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*200),4))} .MODEL DBODYMOD D (IS = 1.70e-12 RS = 3.20e-3 TRS1 = 1.75e-3 TRS2 = 1.75e-6 CJO = 2.55e-9 IKF = 13 XTI = 5.2 TT = 7.00e-8 M = 0.47)
.MODEL DBREAKMOD D (RS = 1.70e-1 IKF = 0.1 TRS1 = 2.00e-3 TRS2 = 8.00e-7) .MODEL DPLCAPMOD D (CJO = 2.00e-9 IS = 1e-30 VJ = 1.1 M = 0.83 N = 10) .MODEL MMEDMOD NMOS (VTO = 2.00 KP = 5 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 1.0) .MODEL MSTROMOD NMOS (VTO = 2.42 KP = 128 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u) .MODEL MWEAKMOD NMOS (VTO = 1.60 KP = 0.01 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 10.0 RS = 0.1) .MODEL RBREAKMOD RES (TC1 = 1.13e-3 TC2 = 0) .MODEL RDRAINMOD RES (TC1 = 1.20e-2 TC2 = 6.00e-5) .MODEL RSLCMOD RES (TC1 = 2.00e-3 TC2 = 1.00e-6) .MODEL RSOURCEMOD RES (TC1 = 2.00e-3 TC2 =-1.00e-5) .MODEL RVTHRESMOD RES (TC1 = -2.50e-3 TC2 = -8.50e-6) .MODEL RVTEMPMOD RES (TC1 = -2.00e-3 TC2 = 5.00e-6)
.MODEL S1AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -5.3 VOFF= -2.5) .MODEL S1BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -2.5 VOFF= -5.3) .MODEL S2AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -1.4 VOFF= 0.5) .MODEL S2BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = 0.5 VOFF= -1.4)
.ENDS
NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley.
7
Page 8
RFP45N06LE, RF1S45N06LESM
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.
Intersil semiconductor productsare sold by description only. Intersil Corporation reservesthe right to make changes in circuit design and/orspecifications at any time with­out notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor forany infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.
For information regarding Intersil Corporation and its products, see web site http://www.intersil.com
Sales Office Headquarters
NORTH AMERICA
Intersil Corporation P. O. Box 883, Mail Stop 53-204 Melbourne, FL 32902 TEL: (407) 724-7000 FAX: (407) 724-7240
8
EUROPE
Intersil SA Mercure Center 100, Rue de la Fusee 1130 Brussels, Belgium TEL: (32) 2.724.2111 FAX: (32) 2.724.22.05
ASIA
Intersil (Taiwan) Ltd. 7F-6, No. 101 Fu Hsing North Road Taipei, Taiwan Republic of China TEL: (886) 2 2716 9310 FAX: (886) 2 2715 3029
Loading...