Datasheet RF1S45N03L, RFP45N03L Datasheet (Intersil)

Page 1
Semiconductor
/
September 1998
RFP45N03L,
RF1S45N03L, RF1S45N03LSM
45A, 30V, 0.022 Ohm,
Logic Level, N-Channel Power MOSFETs
[ /Title (RFP45 N03L, RF1S45 N03L, RF1S45 N03LS M)
Subject (45A, 30V,
0.022 Ohm,
Features
•r
DS(ON)
Temperature Compensating
• Can be Driven Directly from CMOS, NMOS, and TTL Circuits
• Peak Current vs Pulse Width Curve
• UIS Rating Curve
• 175
• Related Literature
- TB334 “Guidelines for Soldering Surface Mount
= 0.022
PSPICE Model
o
C Operating Temperature
Components to PC Boards”
Ordering Information
PART NUMBER PACKAGE BRAND
RFP45N03L TO-220AB FP45N03L RF1S45N03L TO-262AA F45N03L RF1S45N03LSM TO-263AB F45N03L
Description
These are N-Channel power MOSFETs manufactured using the MegaFET process. This process, which uses feature sizes approaching those of LSI circuits, gives optimum utili­zation of silicon, resulting in outstanding performance. They were designed for use in applications such as switching reg­ulators, switching conv erters, motor drivers and rela y drivers . These transistors can be operated directly from integrated circuits.
Formerly developmental type TA49030.
Symbol
D
G
S
NOTE: When ordering, use the entire part number. Add the suffix 9A, to obtain the TO-263AB variant in tape and reel, e.g., RF1S45N03LSM9A.
Packaging
JEDEC TO-220AB JEDEC TO-262AA
SOURCE
DRAIN
GATE
DRAIN (FLANGE)
JEDEC TO-263AB
GATE
SOURCE
(FLANGE)
DRAIN
(FLANGE)
DRAIN
SOURCE
DRAIN
GATE
CAUTION: These devices are sensitive to electrostatic discharge. Users should follow proper ESD Handling Procedures. Copyright
© Harris Corporation 1998
7-1
File Number 4005.2
Page 2
RFP45N03L, RF1S45N03L, RF1S45N03LSM
Absolute Maximum Ratings T
= 25oC, Unless Otherwise Specified
C
RFP45N03L, RF1S45N03L,
RF1S45N03LSM UNITS
Drain to Source Voltage (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V
Drain to Gate Voltage RGS = 20k (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . V
Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V
Continuous Drain Current. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I
Pulsed Drain Current (Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I
Pulsed Avalanche Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .E
Power Dissipation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .P
DSS
DGR
GS
DM
AS
D
Refer to Peak Current Curve
D
Derate Above 25oC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .TJ,T
STG
Maximum Temperature for Soldering
Leads at 0.063in (1.6mm) from Case for 10s . . . . . . . . . . . . . . . . . . . . . . . . . . . . T
Package Body for 10s, See Techbrief 334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . T
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
L
pkg
30 V 30 V
±10 V
45
Refer to UIS Curve
90
0.606
-55 to 175
300 260
A
W
W/oC
o
C
o
C
o
C
NOTE:
1. TJ= 25oC to 150oC.
Electrical Specifications T
= 25oC, Unless Otherwise Specified
C
PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS
Drain to Source Breakdown Voltage BV Gate to Threshold Voltage V
GS(TH)VGS
Zero Gate Voltage Drain Current I
Gate to Source Leakage Current I Drain to Source On Resistance (Note 2) r
DS(ON)ID
Turn-On Time t Turn-On Delay Time t
d(ON)
Rise Time t Turn-Off Delay Time t
d(OFF)
Fall Time t Turn-Off Time t Total Gate Charge Q
g(TOT)VGS
Gate Charge at 5V Q Threshold Gate Charge Q Input Capacitance C Output Capacitance C Reverse Transfer Capacitance C Thermal Resistance Junction-to-Case R Thermal Resistance Junction-to-Ambient R
DSSID
DSS
GSS
ON
r
f
OFF
g(5)
g(TH)
ISS OSS RSS
θJC
θJA
= 250µA, VGS = 0V 30 - - V
= VDS, ID = 250µA1-2V VDS = Rated BV VDS = Rated BV
, VGS = 0V - - 25 µA
DSS
, VGS = 0V, TC = 150oC - - 250 µA
DSS
VGS = ±10V - - ±100 nA
= 45A, VGS = 5V (Figure 11 - - 0.022
VDD = 15V, ID = 45A, RL = 0.33, VGS = 5V, RGS = 5 (Figures 15, 18, 19)
- - 260 ns
-15- ns
- 160 - ns
-20- ns
-20- ns
- - 60 ns
= 0V to 10V VDD = 24V, ID = 45A, VGS = 0V to 5V - 30 36 nC VGS = 0V to 1V - 1.5 1.8 nC
RL = 0.533 I
= 0.6mA
G(REF)
(Figures 20, 21)
VDS = 25V, VGS = 0V, f = 1MHz (Figure 14)
-5060nC
- 1650 - pF
- 575 - pF
- 200 - pF
- - 1.65oC/W
--80oC/W
Source to Drain Diode Specifications
PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS
Source to Drain Diode Voltage V
SD
Diode Reverse Recovery Time t
NOTES:
2. Pulse test: pulse width 300µs, duty cycle 2%.
3. Repetitive rating: pulse width limited by Max junction temperature. See Transient Thermal Impedance curve (Figure 3).
ISD = 45A - - 1.5 V ISD = 45A, dISD/dt = 100A/µs - - 125 ns
rr
7-2
Page 3
RFP45N03L, RF1S45N03L, RF1S45N03LSM
Typical Performance Curves
1.2
1.0
0.8
0.6
0.4
0.2
POWER DISSIPATION MULTIPLIER
0
0 25 50 75 100 175
TC, CASE TEMPERATURE (oC)
Unless Otherwise Specified
150
125
FIGURE 1. NORMALIZED POWER DISSIP ATION vs CASE
TEMPERA TURE
2
1
50
40
30
20
, DRAIN CURRENT (A)
D
I
10
0
25 50 75 100
TC, CASE TEMPERATURE (oC)
125
150
FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs
CASE TEMPERATURE
175
0.5
0.2
0.1
0.1
, NORMALIZED
JC
θ
Z
500
100
, DRAIN CURRENT (A)
D
I
0.05
0.02
THERMAL IMPEDANCE
0.01 SINGLE PULSE
0.01
-5
10
TC = 25oC, TJ = MAX RATED
10
OPERATION IN THIS AREA MAY BE LIMITED BY r
1
1
VDS, DRAIN TO SOURCE VOLTAGE (V)
-4
10
-3
10
t, RECTANGULAR PULSE DURATION (s)
-2
10
FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE
500
VGS = 10V
DS(ON)
100µs
1ms
10ms
100ms
DC
10
50
100
TRANSCONDUCTANCE MAY LIMIT CURRENT
DM
10
10
IN THIS REGION
-5
, PEAK CURRENT CAPABILITY (A) I
-4
10
NOTES: DUTY FACTOR: D = t PEAK TJ = PDM x Z
-1
10
VGS = 5V
-3
10
t, PULSE WIDTH (s)
P
DM
t
1
t
2
1/t2
x R
150
+ T
JC
θ
C
TC = 25oC
10
JC
θ
0
10
FOR TEMPERATURES ABOVE 25 CURRENT AS FOLLOWS:
10
I = I
-2
o
C DERATE PEAK
175 - T
25
-1
10
C
1
10
0
1
10
FIGURE 4. FORWARD BIAS SAFE OPERATING AREA FIGURE 5. PEAK CURRENT CAPABILITY
7-3
Page 4
RFP45N03L, RF1S45N03L, RF1S45N03LSM
Typical Performance Curves
200
100
STARTING TJ = 150oC
10
If R = 0
, AVALANCHE CURRENT (A)
tAV = (L)(IAS)/(1.3*RATED BV
AS
I
If R 0
= (L/R)ln[(IAS*R)/(1.3*RATED BV
t
AV
1
0.001
0.01 tAV, TIME IN AVALANCHE (ms)
DSS
0.1
Unless Otherwise Specified (Continued)
STARTING TJ = 25oC
- VDD)
) +1]
DSS-VDD
1
10
NOTE: Refer to Harris Application Notes AN9321 and AN9322.
FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING
100
VDD= 15V
75
-55oC
175oC
25oC
100
100
V
= 10V
GS
75
50
, DRAIN CURRENT (A)
25
D
I
0
0123 5
PULSE DURATION = 250µs, TC = 25oC
VDS, DRAIN TO SOURCE VOLTAGE (V)
VGS = 5V
V
GS
V
GS
V
GS
VGS = 3V
4
= 4.5V
= 4V
= 3.5V
FIGURE 7. SATURATION CHARACTERISTICS
100
75
ID = 15A
ID = 30A
ID = 45A
, ON-STATE RESISTANCE (m)
DS(ON)
r
50
ID = 2A
25
0
2.5
3.0 VGS, GATE TO SOURCE VOLTAGE (V)
PULSE DURATION = 250µs
3.5
4.0 4.5
50
25
, DRAIN TO SOURCE CURRENT (A)
DS(ON)
I
0
0
VGS, GATE TO SOURCE VOLTAGE (V)
PULSE TEST PULSE DURATION = 250µs DUTY CYCLE = 0.5% MAX
3.0 4.5 6.0 7.51.5
FIGURE 8. TRANSFER CHARACTERISTICS FIGURE 9. DRAIN TO SOURCE ON RESISTANCE vs GATE
VOLTAGE AND DRAIN CURRENT
350
VDD = 15V, ID = 45A, RL = 0.333
300
250
200
150
100
SWITCHING TIME (ns)
50
0
010
RGS, GATE TO SOURCE RESISTANCE ()
t
r
t
f
t
d(OFF)
t
d(ON)
20
30
40
50
2.0
PULSE DURATION = 250µs, VGS = 5V, ID = 45A
1.5
1.0
0.5
NORMALIZED ON RESISTANCE
0
-80 -40 0 40 80 120 160 TJ, JUNCTION TEMPERATURE (oC)
5.0
200
FIGURE 10. SWITCHING TIME vs GATE RESISTANCE FIGURE 11. NORMALIZED DRAIN TO SOURCE ON
RESISTANCE vs JUNCTION TEMPERATURE
7-4
Page 5
RFP45N03L, RF1S45N03L, RF1S45N03LSM
Typical Performance Curves
2.0
1.5
1.0
NORMALIZED GATE
0.5
THRESHOLD VOLTAGE
0
-80 -40 0 40 80 120 160 TJ, JUNCTION TEMPERATURE (oC)
Unless Otherwise Specified (Continued)
VGS = VDS, ID = 250µA
FIGURE 12. NORMALIZED GATE THRESHOLD VOLTA GE vs
JUNCTION TEMPERATURE
2500
2000
1500
1000
C, CAPACITANCE (pF)
500
0
0 5 10 15 20 25
, DRAIN TO SOURCE VOLTAGE (V)
V
DS
C
C
C
ISS
OSS
RSS
VGS = 0V, f = 0.1MHz C
= CGS + C C C
ISS RSS OSS
= C
GD
CDS + C
GD
GD
FIGURE 14. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE
2.0 ID = 250µA
1.5
1.0
0.5
BREAKDOWN VOLTAGE
NORMALIZED DRAIN TO SOURCE
0
200
-80 -40 0 40 80 120 160 , JUNCTION TEMPERATURE (oC)
T
J
FIGURE 13. NORMALIZED DRAIN TO SOURCE BREAKDOWN
VOLTAGE vs JUNCTION TEMPERATURE
30
24
18
12
6
, DRAIN TO SOURCE VOLTAGE (V)
DS
V
0
= BV
V
DD
I
G REF()
--------------------- -
20
I
GACT()
DSS
0.75 BV
0.50 BV
0.25 BV
RL = 0.67
= 0.6mA
I
G(REF)
V
= 5V
GS
t, TIME (µs)
DSS DSS DSS
VDD = BV
I
G REF()
--------------------- -
80
I
GACT()
NOTE: Refer to Harris Application Notes AN7254 and AN7260.
FIGURE 15. NORMALIZED SWITCHING WAVEFORMS FOR
CONSTANT GATE CURRENT
DSS
200
5
4
3
2
1
, GATE TO SOURCE VOLTAGE (V)
GS
V
0
7-5
Page 6
RFP45N03L, RF1S45N03L, RF1S45N03LSM
Test Circuits and Waveforms
V
DS
BV
DSS
L
VARY t
TO OBTAIN
P
REQUIRED PEAK I
V
GS
AS
R
G
+
V
DD
-
DUT
0V
P
I
AS
0.01
0
t
FIGURE 16. UNCLAMPED ENERGY TEST CIRCUIT FIGURE 17. UNCLAMPED ENERGY WAVEFORMS
t
P
I
AS
t
AV
V
DS
V
DD
t
ON
t
DS
10%
d(ON)
90%
50%
t
10%
r
PULSE WIDTH
V
DS
V
R
DUT
L
+
V
DD
-
0
V
GS
0
V
GS
R
GS
V
GS
FIGURE 18. SWITCHING TIME TEST CIRCUIT FIGURE 19. RESISTIVE SWITCHING WAVEFORMS
V
I
G(REF)
DS
R
L
V
GS
+
V
DD
-
DUT
V
DD
VGS= 1V
0
Q
g(TOT)
V
DS
Q
g(5)
V
GS
Q
g(TH)
VGS= 5V
t
d(OFF)
90%
t
OFF
50%
t
f
10%
VGS= 10V
90%
I
G(REF)
0
FIGURE 20. GATE CHARGE TEST CIRCUIT FIGURE 21. GATE CHARGE WAVEFORMS
7-6
Page 7
RFP45N03L, RF1S45N03L, RF1S45N03LSM
PSPICE Electrical Model
.SUBCKT RFP45N03L 2 1 3 ; rev 11/22/94
CA 12 8 2.55e-9 CB 15 14 2.64e-9 CIN 6 8 1.45e-9
DBODY 7 5 DBDMOD DBREAK 5 11 DBKMOD DPLCAP 10 5 DPLCAPMOD
EBREAK 11 7 17 18 33.3 EDS 14 8 5 8 1 EGS 13 8 6 8 1 ESG 6 10 6 8 1 EVTO 20 6 18 8 1
IT 8 17 1
LDRAIN 2 5 1e-9 LGATE 1 9 4.9e-9 LSOURCE 3 7 4.9e-9
MOS1 16 6 8 8 MOSMOD M = 0.99 MOS2 16 21 8 8 MOSMOD M = 0.01
RBREAK 17 18 RBKMOD 1 RDRAIN 50 16 RDSMOD 0.14e-3 RGATE 9 20 0.89 RIN 6 8 1e9 RSCL1 5 51 RSCLMOD 1e-6 RSCL2 5 50 1e3 RSOURCE 8 7 RDSMOD 10.31e-3 RVTO 18 19 RVTOMOD 1
GATE
1
LGATE RGATE
DPLCAP
10
-
6
ESG
8
+
VTO
EVTO
20
9
+
-
18
8
S1A
12
13814
S1B
CA
EGS
-
6
RIN
S2A
15
13
S2B
13
+
6 8
EDS
+
CIN
CB
5
RSCL1RSCL2
51
+
5
ESCL
51
50 RDRAIN
16
21
MOS1
14
+
5 8
--
8
DBREAK
EBREAK
MOS2
RSOURCE
11
17
+
17 18
-
7
RBREAK
IT
DRAIN
LDRAIN
DBODY
LSOURCE
SOURCE
18
RVTO
19
VBAT
+
2
3
S1A 6 12 13 8 S1AMOD S1B 13 12 13 8 S1BMOD S2A 6 15 14 13 S2AMOD S2B 13 15 14 13 S2BMOD
VBAT 8 19 DC 1 VTO 21 6 0.583
ESCL 51 50 VALUE = {(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)*1e6/176,6))}
.MODEL DBDMOD D (IS = 3.61e-13 RS = 5.06e-3 TRS1 = 3.05e-3 TRS2 = 7.57e-6 CJO = 2.16e-9 TT = 2.18e-8) .MODEL DBKMOD D (RS = 1.66e-1 TRS1 = -2.97e-3 TRS2 = 7.57e-6) .MODEL DPLCAPMOD D (CJO = 0.96e-9 IS = 1e-30 N = 10) .MODEL MOSMOD NMOS (VTO = 2.313 KP = 53.82 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u) .MODEL RBKMOD RES (TC1 = 8.95e-4 TC2 = -1e-7) .MODEL RDSMOD RES (TC1 = 3.82e-3 TC2 = 1.17e-5) .MODEL RSCLMOD RES (TC1 = 2.03e-3 TC2 = 0.45e-5) .MODEL RVTOMOD RES (TC1 = -2.27e-3 TC2 = -5.75e-7) .MODEL S1AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -4.82 VOFF= -2.82) .MODEL S1BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -2.82 VOFF= -4.82) .MODEL S2AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -2.67 VOFF= 2.33) .MODEL S2BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = 2.33 VOFF= -2.67)
.ENDS
NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global Temperature Options; written by William J. Hepp and C. Frank Wheatley.
7-7
Loading...