Datasheet RF1S30N06LE Datasheet (Fairchild Semiconductor)

Page 1
July 1995
RFP30N06LE, RF1S30N06LE,
SEMICONDUCTOR
RF1S30N06LESM
30A, 60V, ESD Rated, Avalanche Rated, Logic Level
N-Channel Enhancement-Mode Power MOSFETs
Features
• 30A, 60V
DS(ON)
= 0.047
•r
• 2kV ESD Protected
Temperature Compensating
PSPICE Model
• Peak Current vs Pulse Width Curve
• UIS Rating Curve
Description
The RFP30N06LE, RF1S30N06LE and RF1S30N06LESM are N-Channel power MOSFETs manufactured using the MegaFET process. This process, which uses feature sizes approaching those of LSI integrated circuits gives optimum utilization of silicon, resulting in outstanding performance. They were designed for use in applications such as switch­ing regulators, switching converters, motor drivers and relay drivers. These transistors can be operated directly from inte­grated circuits.
These transistors incorporate ESD protection and are designed to withstand 2kV (Human Body Model) of ESD.
PACKAGE AVAILABILITY
PART NUMBER PACKAGE BRAND
RFP30N06LE TO-220AB F30N06LE RF1S30N06LE TO-262AA 1S30N06L RF1S30N06LESM TO-263AB 1S30N06L
NOTE: When ordering use the entire part number. Add suffix, 9A, to obtain the TO-263 variant in tape and reel i.e. RF1S30N06LESM9A.
Formerly developmental type TA49027.
Packages
DRAIN
(FLANGE)
DRAIN
(FLANGE)
Symbol
GATE SOURCE
G
A
JEDEC TO-263AB
A
M
A
D
S
SOURCE
DRAIN
GATE
SOURCE
DRAIN
GATE
DRAIN
(FLANGE)
Absolute Maximum Ratings T
Drain Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .V
Drain Gate Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .V
Gate Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .V
Drain Current
RMS Continuous. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I
Pulsed Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I
Pulsed Avalanche Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .E
Power Dissipation
TC = +25oC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .P
Derate above +25oC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Electrostatic Discharge Rating, MIL-STD-883, Category B(2) . . . . . . . . . . . . . . . ESD 2 kV
Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T
Soldering Temperature of Leads for 10s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T
Copyright © Harris Corporation 1995
= +25oC
C
STG
DSS
DGR
GS
DM
AS
, T
RFP30N06LE, RF1S30N06LE,
RF1S30N06LESM UNITS
60 V 60 V
+10, -8 V
D
Refer to Peak Current Curve
D
J L
30
Refer to UIS Curve
96
0.645
-55 to +175 260
File Number
5-45
A
W
W/oC
o
C
o
C
3629.1
Page 2
Specifications RFP30N06LE, RF1S30N06LE, RF1S30N06LESM
Electrical Specifications T
= +25oC, Unless Otherwise Specified
C
PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS
Drain-Source Breakdown Voltage BV Gate Threshold Voltage V Zero Gate Voltage Drain Current I
Gate-Source Leakage Current I On Resistance r Turn-On Time t Turn-On Delay Time t Rise Time t Turn-Off Delay Time t Fall Time t Turn-Off Time t Total Gate Charge Q Gate Charge at 5V Q Threshold Gate Charge Q Input Capacitance C Output Capacitance C Reverse Transfer Capacitance C Thermal Resistance Junction to Case R Thermal Resistance Junction to Ambient R
DSSID
GS(TH)VGS
DSS
VDS = 60V, VGS = 0V
GSS
DS(ON)ID
ON
VGS = +10, -8V - - 10 µA
VDD = 30V, ID = 30A, RL = 1, VGS = 5V,
D(ON)
D(OFF)
OFF
G(TOT)VGS
G(5)
G(TH)
ISS
RGS = 2.5
R
F
VGS = 0V to 5V - 28 34 nC VGS = 0V to 1V - 1.8 2.6 nC VDS = 25V, VGS = 0V,
f = 1MHz
OSS
RSS
θJC
θJA
= 250µA, VGS = 0V 60 - - V
= VDS, ID = 250µA1-2V
TC = +25oC--1µA T
= +150oC--50µA
C
= 30A, VGS = 5V - - 0.047
- - 140 ns
-11-ns
-88-ns
-30-ns
-40-ns
- - 100 ns
= 0V to 10V VDD = 48V,
-5162nC ID = 30A, RL = 1.6
- 1350 - pF
- 290 - pF
-85-pF
- - 1.55
--80
o
C/W
o
C/W
Source-Drain Diode Specifications
PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS
Forward Voltage V Reverse Recovery Time t
RR
SD
ISD = 30A - - 1.5 V ISD = 30A, dISD/dt = 100A/µs - - 125 ns
5-46
Page 3
RFP30N06LE, RF1S30N06LE, RF1S30N06LESM
Typical Performance Curves
200 100
= +25oC
T
C
100µs
10
1
DUTY CYCLE
0.5
0.2
0.1
0.05
0.02
0.01
P
DM
NOTES: DUTY FACTOR: D = t PEAK TJ = PDM x Z
-2
10
-1
10
, DRAIN CURRENT(A)
D
I
10
OPERATION IN THIS AREA MAY BE LIMITED BY r
1
1
DS(ON)
V
MAX = 60V
DSS
10
VDS, DRAIN-TO-SOURCE VOLTAGE (V)
1ms
10ms
100ms
DC
100
, NORMALIZED
0.1
JC
θ
Z
THERMAL RESPONSE
SINGLE PULSE
0.01
-5
10
10
t, RECTANGULAR PULSE DURATION (s)
-4
-3
10
FIGURE 1. SAFE OPERATING AREA CURVE FIGURE 2. NORMALIZED MAXIMUM TRANSIENT THERMAL
IMPEDANCE
40
30
20
, DRAIN CURRENT (A)
10
D
I
0
25 50 75 100
TC, CASE TEMPERATURE (oC)
125 150
175
500
VGS = 10V
100
, PEAK CURRENT CAPABILITY (A)
DM
I
20
-6
10
VGS = 5V
TRANSCONDUCTANCE MAY LIMIT CURRENT IN THIS REGION
-5
10
-4
10
t, PULSE WIDTH (s)
FOR TEMPERATURES ABOVE 25oC DERATE PEAK CURRENT AS FOLLOWS:
II
-3
10
175 Tc–
 
=
---------------------- -
25

-2
10
10-110
t
150
1
t
2
θ
1/t2
+ T
JC
C
0
10
TC = +25oC
0
1
10
1
10
FIGURE 3. MAXIMUM CONTINUOUS DRAIN CURRENT vs
FIGURE 4. PEAK CURRENT CAPABILITY
TEMPERATURE
100
80
60
40
, DRAIN CURRENT (A)
D
20
I
0
0 1.5
VDS, DRAIN-TO-SOURCE VOLTAGE (V)
PULSE DURATION = 250µs,
= 10V
V
GS
3.0
4.5
TC = +25oC
VGS = 5V
= 4.5V
V
GS
= 4V
V
GS
VGS = 3V
6.0 7.5
100
PULSE TEST PULSE DURATION = 250µs
80
DUTY CYCLE = 0.5% MAX
60
40
20
, ON STATE DRAIN CURRENT (A)
D(ON)
I
0
0.0 V
GS
3.0
-55
o
C
4.5
+25
o
C
, GATE-TO-SOURCE VOLTAGE (V)
6.0
FIGURE 5. TYPICAL SATURATION CHARACTERISTICS FIGURE 6. TYPICAL TRANSFER CHARACTERISTICS
5-47
V
DD
+175oC
= 15V
7.51.5
Page 4
RFP30N06LE, RF1S30N06LE, RF1S30N06LESM
Typical Performance Curves
3.0
2.5
2.0
1.5
, NORMALIZED
1.0
DS(ON)
r
0.5
0.0
-80 -40
FIGURE 7. NORMALIZED r
2.0
1.5
PULSE DURATION = 250µs, V
04080
TJ, JUNCTION TEMPERATURE (oC)
vs JUNCTION TEMPERATURE FIGURE 8. NORMALIZED GATE THRESHOLD VOLTAGE vs
DS(ON)
(Continued)
= 5V, ID = 30A
GS
160
120
ID = 250µA
200
, NORMALIZED GATE
THRESHOLD VOLTAGE
GS(TH)
V
1.0
1.5
0.0
1.2
0.8
2.0
1.0
0.5
-80
-40
04080
TJ, JUNCTION TEMPERATURE (oC)
TEMPERATURE
VGS= VDS, ID = 250µA
160
120 200
1.0
, NORMALIZED
DSS
0.5
BV
0.0
-80 -40 0 40 80 120 160 200
DRAIN-TO-SOURCE BREAKDOWN VOLTAGE
TJ, JUNCTION TEMPERATURE (oC) TC, CASE TEMPERATURE (oC)
FIGURE 9. NORMALIZED DRAIN SOURCE BREAKDOWN
VOLTAGE vs TEMPERATURE
2000
1500
1000
500
C, CAPACITANCE (pF)
0
0
C
ISS
C
OSS
C
RSS
5
10 15 20 25
VDS, DRAIN-TO-SOURCE VOLTAGE (V)
VGS = 0V, f = 1MHz
0.6
0.4
0.2
POWER DISSIPATION MULTIPLIER
0.0 25 50 75 100
0
0
125
FIGURE 10. NORMALIZED POWER DISSIPATION vs
TEMPERATURE DERATING CURVE
60
45
30
15
, DRAIN SOURCE VOLTAGE (V)
DS
V
0
VDD = BV
20
DSS
I
G(REF)
I
G(ACT)
0.75 BV
0.50 BV
0.25 BV RL = 2.0
I
G(REF)
V
DSS DSS DSS
= 0.62mA
= 5V
GS
t, TIME (s)
0.75 BV
0.50 BV
0.25 BV
VDD = BV
DSS DSS DSS
I
G(REF)
80
I
G(ACT)
DSS
150
5.00
3.75
2.50
1.25
0.00
175
, GATE SOURCE VOLTAGE (V)
GS
V
FIGURE 11. TYPICAL CAPACITANCE vs DRAIN-TO-SOURCE
VOLTAGE
FIGURE 12. NORMALIZED SWITCHING WAVEFORMS FOR
CONSTANT GATE CURRENT. REFER TO HARRIS APPLICATION NOTES AN7254 AND AN7260
5-48
Page 5
RFP30N06LE, RF1S30N06LE, RF1S30N06LESM
Typical Performance Curves
100
10
, AVALANCHE CURRENT (A)
AS
I
1
0.01
FIGURE 13. UNCLAMPED INDUCTIVE SWITCHING
Test Circuits and Waveforms
TO OBTAIN
VARY t
P
REQUIRED PEAK I
V
GS
AS
R
G
(Continued)
If R = 0 tAV = (L)(IAS)/(1.3*RATED BV
If R 0 t
= (L/R)ln[(IAS*R)/(1.3*RATED BV
AV
0.1
tAV, TIME IN AVALANCHE (ms)
V
DS
L
+
V
DD
-
STARTING T STARTING TJ = +150oC
- VDD)
DSS
- VDD) +1]
DSS
110
= +25oC
J
BV
DSS
t
P
I
AS
V
DS
V
DD
DUT
I
L
0.01
t
AV
0V
t
P
FIGURE 14. UNCLAMPED ENERGY TEST CIRCUIT FIGURE 15. UNCLAMPED ENERGY WAVEFORMS
0V
V
DD
R
L
V
V
DS
V
GS
R
GS
DUT
DS
V
GS
10%
t
D(ON)
90%
t
ON
50%
t
10%
R
PULSE WIDTH
t
D(OFF)
90%
t
OFF
50%
FIGURE 16. RESISTIVE SWITCHING TEST CIRCUIT FIGURE 17. RESISTIVE SWITCHING WAVEFORMS
t
F
90%
10%
5-49
Page 6
RFP30N06LE, RF1S30N06LE, RF1S30N06LESM
Temperature Compensated PSPICE Model for the RFP30N06LE, RF1S30N06LE, RF1S30N06LESM
SUBCKT RFP30N06LE 2 1 3; rev 6/2/93 CA 12 8 1 3.34e-9 CB 15 14 3.44e-9 CIN 6 8 0 1.343e-9
DBODY 7 5 DBDMOD DBREAK 5 11 DBKMOD DESD1 91 9 DESD1MOD DESD2 91 7 DESD2MOD DPLCAP 10 5 DPLCAPMOD
EBREAK 11 7 17 18 75.39 EDS 14 8 5 8 1 EGS 13 8 6 8 1 ESG 6 10 6 8 1 EVTO 20 6 18 8 1
IT 8 17 1
LDRAIN 2 5 1e-9 LGATE 1 9 7.22e-9 LSOURCE 3 7 6.31e-9
MOS1 16 6 8 8 MOSMOD M = 0.99 MOS2 16 21 8 8 MOSMOD M = 0.01
RBREAK 17 18 RBKMOD 1 RDRAIN 50 16 RDSMOD 11.86e-3 RGATE 9 20 2.52 RIN 6 8 1e9 RSCL1 5 51 RSLVCMOD 1e-6 RSCL2 5 50 1e3 RSOURCE 8 7 RDSMOD 26.6e-3 RVTO 18 19 RVTOMOD 1
GATE
1
9
LGATE RGATE
DESD1
91
DESD2
ESG
EVTO
20
+
18
8
S1A
12
S1B
CA
10
-
6 8
+
-
13814
EGS
DPLCAP
6
RIN
13
13
+
6 8
S2A
S2B
-
VTO
15
EDS
+
CIN
CB
5
LDRAIN
RSCL1RSCL2
51
+
5
ESCL
51
50
RDRAIN
16
21
MOS1
14
+
5 8
--
8
DBREAK
EBREAK
MOS2
RSOURCE
11
17
+
17 18
-
7
RBREAK
IT
DBODY
LSOURCE
DRAIN
SOURCE
18
RVTO
19
VBAT
+
2
3
S1A 6 12 13 8 S1AMOD S1B 13 12 13 8 S1BMOD S2A 6 15 14 13 S2AMOD S2B 13 15 14 13 S2BMOD
VBAT 8 19 DC 1 VTO 21 6 0.5
ESCL 51 50 VALUE = {(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)*1e6/89,7))
.MODEL DBDMOD D (IS = 3.80e-13 RS = 1.12e-2 TRS1 = 1.61e-3 TRS2 = 6.08e-6 CJO = 1.05e-9 TT = 3.84e-8) .MODEL DBKMOD D (RS = 1.82e-1 TRS1 = 7.50e-3 TRS2 = -4.0e-5) .MODEL DESD1MOD D (BV = 13.54 TBV1 = 0 TBV2 = 0 RS = 45.5 TRS1 = 0 TRS2 = 0) .MODEL DESD2MOD D (BV = 11.46 TBV1 = -7.576e-4 TBV2 = -3.0e-6 RS = 0 TRS1 = 0 TRS2 = 0) .MODEL DPLCAPMOD D (CJO = 0.591e-9 IS = 1e-30 N = 10) .MODEL MOSMOD NMOS (VTO = 1.94 KP = 139.2 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u) .MODEL RBKMOD RES (TC1 = 1.07e-3 TC2 = -3.03e-7) .MODEL RDSMOD RES (TC1 = 5.38e-3 TC2 = 1.64e-5) .MODEL RSLVCMOD RES (TC1 = 1.75e-3 TC2 = 3.90e-6) .MODEL RVTOMOD RES (TC1 = -2.15e-3 TC2 = -5.43e-6) .MODEL S1AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -4.05 VOFF = -1.5) .MODEL S1BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -1.5 VOFF = -4.05) .MODEL S2AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -2.2 VOFF = 2.8) .MODEL S2BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = 2.8 VOFF = -2.2)
.ENDS
NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global Temperature Options; IEEE Power Electronics Specialist Conference Records 1991.
5-50
Loading...