Datasheet RF1K49221 Datasheet (Intersil)

Page 1
RF1K49221
Data Sheet August 1999
The RF1K49221 Dual N-Channel power MOSFET is manufactured using an advanced MegaFET process. This process, which uses feature sizes approaching those of LSI integrated circuits, gives optimum utilization of silicon, resulting in outstanding performance. It is designed for use in applications such as switching regulators, switching converters, motor drivers, relay drivers, and low voltage bus switches. This device can be operated directly from integrated circuits.
The RF1K49221 incorporates ESD protection and is designed to withstand 2kV (Human Body Model) of ESD.
Formerly developmental type TA49221.
Ordering Information
PART NUMBER PACKAGE BRAND
RF1K49221 MS-012AA RF1K49221
NOTE: When ordering, use the entire part number. For ordering in tape and reel, add the suffix 96 to the part number, i.e.RF1K4922196.
File Number
Features
• 2.5A, 60V
DS(ON)
= 0.130
•r
• 2kV ESD Protected
®
• Temperature Compensating PSPICE
Model
• Thermal Impedance PSPICE Model
• Peak Current vs Pulse Width Curve
• UIS Rating Curve
• Related Literature
- TB334 “Guidelines for Soldering Surface Mount Components to PC Boards”
Symbol
D1(8) D1(7)
S1(1)
G1(2)
4314.1
Packaging
JEDEC MS-012AA
BRANDING DASH
1
2
D2(6) D2(5)
S2(3)
G2(4)
5
3
4
8-136
CAUTION: These devices are sensitive to electrostatic discharge; follow proper ESD Handling Procedures.
LittleFET™ is a trademark of Intersil Corporation. PSPICE® is a registered trademark of MicroSim Corporation.
http://www.intersil.com or 407-727-9207
| Copyright © Intersil Corporation 1999
Page 2
RF1K49221
Absolute Maximum Ratings T
= 25oC Unless Otherwise Specified
A
RF1K49221 UNITS
Drain to Source Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V
Drain to Gate Voltage (RGS= 20kΩ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .V
Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V
DSS
DGR
GS
60 V 60 V
±20 V
Drain Current
Continuous (Pulse Width = 5s). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I
Pulsed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .I
Pulsed Avalanche Rating. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P
DM
AS
D
Refer to Peak Current Curve
D
Derate Above 25oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Electrostatic Discharge Rating MIL-STD-883, Category B(2) . . . . . . . . . . . . . . . . . . . . . ESD 2 kV
Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TJ, T
STG
Maximum Temperature for Soldering
Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .T
Package Body for 10s, See Techbrief 334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .T
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operationofthe device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
L
pkg
2.5
Refer to UIS Curve
2
0.016
-55 to 150
300 260
A
W
W/oC
o
C
o
C
o
C
NOTE:
1. TJ= 25oC to 125oC.
Electrical Specifications T
= 25oC, Unless Otherwise Specified
A
PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS
Drain to Source Breakdown Voltage BV Gate to Source Threshold Voltage V Zero Gate Voltage Drain Current I
Gate to Source Leakage Current I
DSSID
GS(TH)VGS
DSS
GSS
= 250µA, VGS = 0V, (Figure 12) 60 - - V
= VDS, ID = 250µA, (Figure 11) 1 - 3 V
VDS = 60V, VGS = 0V
TA = 25oC--1µA
TA = 150oC--50µA VGS = ±20V, TA = 25oC--10µA VGS = ±10V, TA = 85oC--25µA
Drain to Source On Resistance r
DS(ON)ID
Turn-On Time t Turn-On Delay Time t
d(ON)
Rise Time t Turn-Off Delay Time t
d(OFF)
Fall Time t Turn-Off Time t Total Gate Charge Q
g(TOT)VGS
Gate Charge at 10V Q Threshold Gate Charge Q Input Capacitance C Output Capacitance C Reverse Transfer Capacitance C Thermal Resistance Junction to Ambient R
ON
r
f
OFF
g(10)
g(TH)
ISS
OSS
RSS
θJA
= 2.5A,
(Figures 9, 10)
VDD = 30V, I RL = 12, VGS = 10V, RGS = 25Ω, (Figure 14)
VGS = 10V - - 0.130
VGS = 4.5V - - 0.350
2.5A,
D
- - 50 ns
-10-ns
-25-ns
-68-ns
-32-ns
- - 150 ns
= 0V to 20V VDD = 48V, I VGS = 0V to 10V - 13 16 nC VGS = 0V to 2V - 0.8 1.0 nC
RL = 19.2 I
g(REF)
(Figure 14)
VDS = 25V, VGS = 0V, f = 1MHz (Figure 13)
D
= 1.0mA
2.5A,
-2429nC
- 365 - pF
- 140 - pF
-40-pF
Pulse Width = 1s
- - 62.5
o
C/W
Device mounted on FR-4 material
Source to Drain Diode Specifications
PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS
Source to Drain Diode Voltage V Reverse Recovery Time t
8-137
SD
rr
ISD = 2.5A - - 1.25 V ISD = 2.5A, dISD/dt = 100A/µs--58ns
Page 3
Typical Performance Curves
1.2
RF1K49221
3.0
1.0
0.8
0.6
0.4
0.2
POWER DISSIPATION MULTIPLIER
0
0 25 50 75 100 150
125
TA, AMBIENT TEMPERATURE (oC)
FIGURE 1. NORMALIZED POWERDISSIPATION vs AMBIENT
TEMPERATURE
10
DUTY CYCLE - DESCENDING ORDER
0.5
0.2
0.1
1
0.05
0.02
0.01
0.1
, NORMALIZED
JA
θ
Z
0.01
THERMAL IMPEDANCE
0.001
-5
10
SINGLE PULSE
-4
10
-3
10
10
t, RECTANGULAR PULSE DURATION (s)
2.5
2.0
1.5
1.0
, DRAIN CURRENT (A)
D
I
0.5
0
25
50
75 100 125 150
TA, AMBIENT TEMPERATURE (oC)
FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs
AMBIENT TEMPERATURE
P
DM
t
1
t
NOTES: DUTY FACTOR: D = t1/t
PEAK TJ = PDM x Z
-2
-1
10
0
10
1
10
θ
2
2
x R
JA
+ T
JA
A
θ
2
10
3
10
FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE
50
10
1
, DRAIN CURRENT (A)
0.1
D
I
OPERATION IN THIS AREA MAY BE LIMITED BY r
0.01
0.1 V
DS
TJ = MAX RATED T
= 25oC
A
5ms
10ms
100ms
1s
DS(ON)
V
DSS(MAX)
1 10 200
= 60V
DC
100
, DRAIN TO SOURCE VOLTAGE (V)
100
VGS = 20V
VGS = 10V
10
TRANSCONDUCTANCE MAY LIMIT CURRENT
, PEAK CURRENT (A)
IN THIS REGION
DM
I
1
-5
10
-4
10
TA = 25oC
FOR TEMPERATURES ABOVE 25 CURRENT AS FOLLOWS:
I = I
-3
10
-2
10
t, PULSE WIDTH (s)
o
25
10
FIGURE 4. FORWARD BIAS SAFE OPERATING AREA FIGURE 5. PEAK CURRENT CAPABILITY
8-138
C DERATE PEAK
150 - T
A
125
-1
0
10
1
10
Page 4
RF1K49221
Typical Performance Curves
15
If R = 0 tAV = (L)(IAS)/(1.3*RATED BV
10
If R 0
= (L/R)ln[(IAS*R)/(1.3*RATED BV
t
AV
, AVALANCHE CURRENT (A)
AS
I
STARTING TJ = 150oC
1
0.1 tAV, TIME IN AVALANCHE (ms)
1 10 100
DSS
STARTING TJ = 25oC
- VDD)
DSS
(Continued)
- VDD) +1]
NOTE: Refer to Intersil Application Notes AN9321 and AN9322.
FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING CAPABILITY
20
PULSE TEST PULSE DURATION = 250µs DUTY CYCLE = 0.5% MAX
16
12
-55oC
25oC
150oC
= 15V
V
DD
20
VGS = 20V VGS = 10V
16
12
8
, DRAIN CURRENT (A)
D
I
4
0
0 1.5 3.0 4.5 6.0 7.5
VDS, DRAIN TO SOURCE VOLTAGE (V)
PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX
T
= 25oC
VGS = 8V
VGS = 7V
A
FIGURE 7. SATURATION CHARACTERISTICS
500
400
300
PULSE DURATION = 250µs, VDD= 15V DUTY CYCLE = 0.5% MAX
I
= 5.0A
D
ID = 2.5A
ID = 1.25A
VGS = 6V
VGS = 5V
VGS = 4.5V
ID = 0.625A
8
4
, ON-STATE DRAIN CURRENT (A)
D(ON)
I
0
0468102
VGS, GATE TO SOURCE VOLTAGE (V)
200
, DRAIN TO SOURCE
ON RESISTANCE (m)
100
DS(ON)
r
0
3
VGS, GATE TO SOURCE VOLTAGE (V)
6475
FIGURE 8. TRANSFER CHARACTERISTICS FIGURE 9. DRAIN TO SOURCE ON RESISTANCE vs GATE
VOLTAGE AND DRAIN CURRENT
2.0
PULSE DURATION = 250µs DUTY CYCLE = 0.5% MAX
= 10V, ID = 2.5A
V
GS
1.5
1.0
ON RESISTANCE
0.5
NORMALIZED DRAIN TO SOURCE
0
-80 -40 0 40 80 120 160 TJ, JUNCTION TEMPERATURE (oC)
1.2
1.0
0.8
NORMALIZED GATE
0.6
THRESHOLD VOLTAGE
0.4
-80 -40 0 40 80 120 160 TJ, JUNCTION TEMPERATURE (oC)
VGS = VDS, ID = 250µA
8910
FIGURE 10. NORMALIZED DRAIN TO SOURCE ON
RESISTANCE vs JUNCTION TEMPERATURE
8-139
FIGURE 11. NORMALIZED GATE THRESHOLD VOLTAGEvs
JUNCTION TEMPERATURE
Page 5
O
SO
C
O
G
(
)
RF1K49221
Typical Performance Curves
1.2 ID = 250µA
1.1
1.0
0.9
BREAKDOWN VOLTAGE
NORMALIZED DRAIN TO SOURCE
0.8
-80
-40 0 40 80 120 , JUNCTION TEMPERATURE (oC)
T
J
(Continued)
FIGURE 12. NORMALIZED DRAIN TO SOURCE BREAKDOWN
VOLTAGE vs JUNCTION TEMPERATURE
60
V E
LTA E V
UR
, DRAIN T
DS
V
VDD = BV
45
30
15
0
DSS
I
g REF()
20
----------------------- ­I
g ACT()
NOTE: Refer to Intersil Application Notes AN7254 and AN7260.
FIGURE 14. NORMALIZED SWITCHING WAVEFORMS FOR CONSTANT GATE CURRENT
500
C, CAPACITANCE (pF)
100
160
FIGURE 13. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE
RL = 24W I
= 0.30mA
g(REF)
V
= 10V
GS
PLATEAU VOLTAGES IN DESCENDING ORDER:
VDD = BV VDD = 0.75 BV VDD = 0.50 BV VDD = 0.25 BV
DSS
t, TIME (ms)
DSS DSS DSS
80
C
, GATE TO SOURCE VOLTAGE (V)
GS
V
C
C
ISS
OSS
RSS
400
300
200
0
0 5 10 15 20
, DRAIN TO SOURCE VOLTAGE (V)
V
DS
VDD = BV
I
gREF()
----------------------- ­I
gACT()
DSS
10.0
7.5
5.0
2.5
0
VGS = 0V, f = 1MHz C
= CGS + C C C
ISS RSS OSS
= C
GD
= CDS + C
GD
GD
25
Test Circuits and Waveforms
V
DS
BV
DSS
L
VARY tP TO OBTAIN REQUIRED PEAK I
V
GS
t
0V
P
AS
R
G
DUT
I
AS
0.01
+
V
DD
-
0
FIGURE 15. UNCLAMPED ENERGY TEST CIRCUIT FIGURE 16. UNCLAMPED ENERGY WAVEFORMS
8-140
t
P
I
AS
t
AV
V
DS
V
DD
Page 6
RF1K49221
Test Circuits and Waveforms
V
GS
0V
R
GS
FIGURE 17. SWITCHING TIME TEST CIRCUIT FIGURE 18. RESISTIVE SWITCHING WAVEFORMS
V
DS
V
GS
I
G(REF)
(Continued)
R
L
DUT
R
L
DUT
t
ON
t
d(ON)
t
50%
Q
10%
g(TH)
r
PULSE WIDTH
V
DS
Q
g(10)
Q
g(TOT)
VGS= 10V
V
DS
90%
+
-
+
V
DD
-
0
V
GS
10%
0
V
DD
V
VGS= 2V
GS
t
d(OFF)
90%
t
OFF
50%
t
f
10%
VGS= 20V
90%
FIGURE 19. GATE CHARGE TEST CIRCUIT FIGURE 20. GATE CHARGE WAVEFORMS
Soldering Precautions
The soldering process createsa considerablethermal stress on any semiconductor component. The melting temperature of solder is higher than the maximum rated temperature of the device. The amount of time thedeviceis heatedto a high temperature should be minimizedto assure device reliability. Therefore, the following precautions should always be observed in order to minimize the thermal stress to which the devices are subjected.
1. Always preheat the device.
2. Thedelta temperaturebetweenthepreheatand soldering should always be less than 100 device can result in excessive thermal stress which can damage the device.
o
C.Failureto preheatthe
I
g(REF)
3. Themaximumtemperaturegradientshouldbeless than5 per second when changing from preheating to soldering.
4. The peak temperatureinthe soldering process should be at least 30oC higher than the melting point of the solder chosen.
5. The maximum soldering temperature and time mustnot exceed 260oC for 10 seconds on the leads and case of the device.
6. After soldering is complete, the device should be allowed to cool naturally for at least three minutes, as forced cool­ing will increase the temperaturegradient and may result in latent failure due to mechanical stress.
7. During cooling,mechanical stress or shockshould be avoided.
o
C
8-141
Page 7
RF1K49221
PSPICE Electrical Model
SUBCKT RF1K49221 2 1 3 ; rev 4/8/97
CA 12 8 5.60e-10 CB 15 14 5.30e-10 CIN 6 8 3.40e-10
7
18
RVTEMP
19
+
22
LDRAIN
RLDRAIN
DBODY
LSOURCE
RLSOURCE
VBAT
DBODY 7 5 DBODYMOD DBREAK 5 11 DBREAKMOD DESD1 91 9 DESD1MOD
DPLCAP
10
5
DESD2 91 7 DESD2MOD DPLCAP 10 5 DPLCAPMOD
EBREAK 11 7 17 18 67.29 EDS 14 8 5 8 1 EGS 13 8 6 8 1 ESG 6 10 6 8 1 EVTHRES 6 21 19 8 1 EVTEMP 20 6 18 22 1
IT 8 17 1 LDRAIN 2 5 1e-9
LGATE 1 9 1.12e-9 LSOURCE 3 7 4.50e-10
GATE
1
MMED 16 6 8 8 MMEDMOD MSTRO 16 6 8 8 MSTROMOD MWEAK 16 21 8 8 MWEAKMOD
RBREAK 17 18 RBREAKMOD 1 RDRAIN 50 16 RDRAINMOD 28.58e-3 RGATE 9 20 15.34 RSLC1 5 51 RSLCMOD 1e-6 RSLC2 5 50 1e3 RLDRAIN 2 5 10 RLGATE 1 9 11.2 RLSOURCE 3 7 4.5 RSOURCE 8 7 RSOURCEMOD 28.85e-3 RVTHRES 22 8 RVTHRESMOD 1 RVTEMP 18 19 RVTEMPMOD 1
S1A 6 12 13 8 S1AMOD S1B 13 12 13 8 S1BMOD
LGATE
RLGATE
RGATE
9
DESD1
91
DESD2
ESG
EVTEMP
+
20
S1A
12
S1B
CA
18 22
13
8
EGS
+
6 8
13
RSLC2
6
RIN
14 13
+
6 8
EVTHRES
+
19
8
S2A
15
S2B
EDS
CIN
CB
+
5 8
RSLC1
51
+
5
51
50
RDRAIN
MSTRO
14
ESLC
16
21
8
MMED
8
DBREAK
EBREAK
MWEAK
RSOURCE
RBREAK
17
IT
RVTHRES
11
+
17
18
S2A 6 15 14 13 S2AMOD S2B 13 15 14 13 S2BMOD
VBAT 22 19 DC 1 ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*30),2.5))} .MODEL DBODYMOD D (IS = 1.95e-13 RS = 2.58e-2 TRS1 = 2.00e-3 TRS2 =-4.39e-7 CJO = 5.15e-10 TT = 5.23e-8 M=0.5)
.MODEL DBREAKMOD D (RS = 6.24e-1 TRS1 =-3.03e-4 TRS2 = 4.27e-6 .MODEL DESD1MOD D (BV=32.3 TBV1=0 TBV2=0 RS=0 TRS1=0 TRS2=0 .MODEL DESD2MOD D (BV=32.5 TBV1=0 TBV2=0 RS=25 TRS1=5.18e-4 TRS2=-1.52e-6) .MODEL DPLCAPMOD D (CJO = 1.80e-10 IS = 1e-30 N = 10 M=0.5) .MODEL MMEDMOD NMOS (VTO=2.755 KP=0.21 IS=1e-30 N=10 TOX=1 L=1u W=1u RG=15.34) .MODEL MSTROMOD NMOS (VTO=3.165 KP=3.75 IS=1e-30 N=10 TOX=1 L=1u W=1u) .MODEL MWEAKMOD NMOS (VTO=2.520 KP=0.040 IS=1e-30 N=10 TOX=1 L=1u W=1u RG=153.4 RS=0.1) .MODEL RBREAKMOD RES (TC1 = 1.10e-3 TC2 = -1.09e-6) .MODEL RDRAINMOD RES (TC1 = 1.15e-2 TC2 = 4.09e-5 .MODEL RSLCMOD RES (TC1=3.03e-3 TC2=4.52e-6) .MODEL RSOURCEMOD RES (TC1=0 TC2=0) .MODEL RVTHRESMOD RES (TC=-7.20e-4 TC2=-7.11e-6) .MODEL RVTEMPMOD RES (TC1 = -3.01e-3 TC2 = 1.81e-6)
.MODEL S1AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -7.80 VOFF= -4.80) .MODEL S1BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -4.80 VOFF= -7.80) .MODEL S2AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = 1.10 VOFF= 4.10) .MODEL S2AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = 4.10 VOFF= 1.10)
.ENDS NOTE:For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global
Temperature Options;IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley.
DRAIN
2
SOURCE
3
8-142
Page 8
RF1K49221
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.
Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time with­out notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.
For information regarding Intersil Corporation and its products, see web site http://www.intersil.com
Sales Office Headquarters
NORTH AMERICA
Intersil Corporation P. O. Box 883, Mail Stop 53-204 Melbourne, FL 32902 TEL: (407) 724-7000 FAX: (407) 724-7240
8-143
EUROPE
Intersil SA Mercure Center 100, Rue de la Fusee 1130 Brussels, Belgium TEL: (32) 2.724.2111 FAX: (32) 2.724.22.05
ASIA
Intersil (Taiwan) Ltd. 7F-6, No. 101 Fu Hsing North Road Taipei, Taiwan Republic of China TEL: (886) 2 2716 9310 FAX: (886) 2 2715 3029
Loading...