Datasheet NTE16001-ECG, NTE16003-ECG, NTE16005-ECG, NTE16006-ECG, NTE16010-ECG Datasheet (NTE)

...
Page 1
NTE16000–ECG thru NTE16022–ECG
Polymeric Positive Temperature Coefficient (PTC)
Resettable Fuses
ELECTRICAL CHARACTERISTICS
I
Hold
I
Trip
Initial resistance
1 Hour (R1)
Post–Trip
Resistance
Max. Time
To Trip at 5*lh
Tripped Power
Dissipation
Amperes at 235C Ohms at 235C Ohms at 235C Seconds at 235C Watts at 235C
NTE Type No.
Diag.
No.
V max.
Volts
I max. Amps
Hold Trip Min. Max Max.
16000–ECG 629 60 40 0.10 0.20 2.50 4.50 7.50 4.0 0.38 16001–ECG 629 60 40 0.17 0.34 2.00 3.20 8.00 3.0 0.48 16002–ECG 629 60 40 0.20 0.40 1.50 2.84 4.40 2.2 0.40 16003–ECG 629 60 40 0.25 0.50 1.00 1.95 3.00 2.5 0.45 16004–ECG 629 60 40 0.30 0.60 0.76 1.36 2.10 3.0 0.50 16005–ECG 629 60 40 0.40 0.80 0.52 0.86 1.29 3.8 0.55 16006–ECG 629 60 40 0.50 1.00 0.41 0.77 1.17 4.0 0.75 16007–ECG 629 60 40 0.65 1.30 0.27 0.48 0.72 5.3 0.90 16008–ECG 629 60 40 0.75 1.50 0.18 0.40 0.60 6.3 0.90 16009–ECG 629 60 40 0.90 1.80 0.14 0.31 0.47 7.2 1.00 16010–ECG 630 30 40 0.90 1.80 0.07 0.12 0.22 5.9 0.60 16011–ECG 629 30 40 1.10 2.20 0.10 0.18 0.27 6.6 0.70 16012–ECG 629 30 40 1.35 2.70 0.065 0.115 0.17 7.3 0.80 16013–ECG 629 30 40 1.60 3.20 0.055 0.105 0.15 8.0 0.90 16014–ECG 629 30 40 1.85 3.70 0.04 0.07 0.11 8.7 1.00 16015–ECG 630 30 40 2.50 5.00 0.025 0.048 0.07 10.3 1.20 16016–ECG 630 30 40 3.00 6.00 0.02 0.05 0.08 10.8 2.00 16017–ECG 630 30 40 4.00 8.00 0.01 0.03 0.05 12.7 2.50 16018–ECG 630 30 40 5.00 10.00 0.01 0.03 0.05 14.5 3.00 16019–ECG 630 30 40 6.00 12.00 0.005 0.02 0.04 16.0 3.50 16020–ECG 630 30 40 7.00 14.00 0.005 0.02 0.03 17.5 3.80 16021–ECG 630 30 40 8.00 16.00 0.005 0.02 0.03 18.8 4.00 16022–ECG 630 30 40 9.00 18.00 0.005 0.01 0.02 *20.0 4.20
* Tested at 40 Amps.
TECHNICAL DATA
Operating/Storage Temperature –40°C to +85°C Maximum Device Surface Temperature
in Tripped State
+125°C Passive Aging +85°C, 1000 Hours ±5% Typical Resistance Change Humidity Aging +85°C, 85% R.H. 1000 Hours ±5% Typical Resistance Change Thermal Shock +125°C/–40°C 10 Times ±10% Typical Resistance Change Mechanical Shock MIL–STD–202, Method 213,
Condition 1 (100g, 6 Seconds)
No Resistance Change
Solvent Resistance MIL–STD–202, Method 215 No Change Vibration MIL–STD–883C, Method 2007.1, Condition A No Change
Page 2
TEST PROCEDURES AND REQUIREMENTS
Test Test Condition Accept/Reject Criteria
Visual/Mechanical Verify Dimensions and Materials Per PF Physical Description Resistance In Still Air @ +23°C R
min
R R
max
Time to Trip 5 Times I
Hold
, V
max
, +23°C T ≤ Max. Time to Trip (Seconds)
Hold Current 30 Min. at I
Hold
No trip
Trip Cycle Life V
max
, I
max
, 100 Cycles No Arcing or Burning
Trip Endurance V
max
, 48 Hours No Arcing or Burning Solvent Resistance MIL–STD–202, Method 215 No Change Vibration MIL–STD–883C, Method 2007.1, Condition A No Change
TYPICAL TIME TO TRIP AT +235
0.1 1 10 100
100
10
1
0.1
0.0 1
0.001
Fault Current (Amps)
Time to Trip (Seconds)
THERMAL DERATING CHART – I
HOLD
(Amps) *
Ambient Operating Temperature
NTE Type No.
–405C –205C 05C +235C +405C +505C +605C +705C +855C
NTE16000–ECG 0.16 0.14 0.12 0.10 0.08 0.07 0.06 0.05 0.04 NTE16001–ECG 0.26 0.23 0.20 0.17 0.14 0.12 0.11 0.09 0.07 NTE16002–ECG 0.31 0.27 0.24 0.20 0.16 0.14 0.13 0.11 0.08 NTE16003–ECG 0.39 0.34 0.30 0.25 0.20 0.18 0.16 0.14 0.10 NTE16004–ECG 0.47 0.41 0.36 0.30 0.24 0.22 0.19 0.16 0.12 NTE16005–ECG 0.62 0.54 0.48 0.40 0.32 0.29 0.25 0.22 0.16 NTE16006–ECG 0.78 0.68 0.60 0.50 0.41 0.36 0.32 0.27 0.20 NTE16007–ECG 1.01 0.88 0.77 0.65 0.53 0.47 0.41 0.35 0.26 NTE16008–ECG 1.16 1.02 0.89 0.75 0.61 0.54 0.47 0.41 0.30 NTE16009–ECG 1.40 1.22 1.07 0.90 0.73 0.65 0.57 0.49 0.36 NTE16010–ECG 1.40 1.22 1.07 0.90 0.73 0.65 0.57 0.49 0.36 NTE16011–ECG 1.60 1.43 1.27 1.10 0.91 0.85 0.75 0.67 0.57 NTE16012–ECG 1.96 1.76 1.55 1.35 1.12 1.04 0.92 0.82 0.70 NTE16013–ECG 2.32 2.08 1.84 1.60 1.33 1.23 1.09 0.98 0.83 NTE16014–ECG 2.68 2.41 2.13 1.85 1.54 1.42 1.26 1.13 0.96 NTE16015–ECG 3.63 3.25 2.88 2.50 2.08 1.93 1.70 1.53 1.30 NTE16016–ECG 4.35 3.90 3.45 3.00 2.49 2.31 2.04 1.83 1.56 NTE16017–ECG 5.80 5.20 4.60 4.00 3.32 3.08 2.72 2.44 2.08 NTE16018–ECG 7.25 6.50 5.75 5.00 4.15 3.85 3.40 3.05 2.60 NTE16019–ECG 8.70 7.80 6.90 6.00 4.98 4.62 4.08 3.66 3.12 NTE16020–ECG 10.15 9.10 8.05 7.00 5.81 5.39 4.76 4.27 3.64 NTE16021–ECG 11.60 10.40 9.20 8.00 6.64 6.16 5.44 4.88 4.16 NTE16022–ECG 13.05 11.70 10.35 9.00 7.47 6.39 6.12 5.49 4.68
*I
Trip
= 2 I
Hold
Page 3
DIMENSIONAL OUTLINE DRAWINGS
Diagram 629 Diagram 630
NOTE: Shape changes from round to square starting
with NTE16016–ECG.
A
B
C
D
E
E
A
C
B
D
PRODUCT DIMENSIONS (Dimensions are in inches(mm))
A B C D E Physical Characteristice
NTE Type No.
Max. Max. Nom. Tol. + Min. Max. Diag. No. Lead Dia. Material
NTE16000–ECG .290 (7.4) .500 (12.7) .200 (5.1) .027 (0.7) .300 (7.6) .122 (3.1) 629 .020 (0.51) Sn/NiCu NTE16001–ECG .290 (7.4) .500 (12.7) .200 (5.1) .027 (0.7) .300 (7.6) .122 (3.1) 629 .020 (0.51) Sn/CuFe NTE16002–ECG .290 (7.4) .500 (12.7) .200 (5.1) .027 (0.7) .300 (7.6) .122 (3.1) 629 .020 (0.51) Sn/CuFe NTE16003–ECG .290 (7.4) .500 (12.7) .200 (5.1) .027 (0.7) .300 (7.6) .122 (3.1) 629 .020 (0.51) Sn/CuFe NTE16004–ECG .290 (7.4) .530 (13.4) .200 (5.1) .027 (0.7) .300 (7.6) .122 (3.1) 629 .020 (0.51) Sn/CuFe NTE16005–ECG .290 (7.4) .540 (13.7) .200 (5.1) .027 (0.7) .300 (7.6) .122 (3.1) 629 .020 (0.51) Sn/CuFe NTE16006–ECG .310 (7.9) .540 (13.7) .200 (5.1) .027 (0.7) .300 (7.6) .122 (3.1) 629 .020 (0.51) Sn/Cu NTE16007–ECG .380 (9.7) .600 (15.2) .200 (5.1) .027 (0.7) .300 (7.6) .122 (3.1) 629 .020 (0.51) Sn/Cu NTE16008–ECG .410 (10.4) .630 (16.0) .200 (5.1) .027 (0.7) .300 (7.6) .122 (3.1) 629 .020 (0.51) Sn/Cu NTE16009–ECG .460 (11.7) .660 (16.7) .200 (5.1) .027 (0.7) .300 (7.6) .122 (3.1) 629 .020 (0.51) Sn/Cu NTE16010–ECG .290 (7.4) .480 (12.2) .200 (5.1) .027 (0.7) .300 (7.6) .120 (3.0) 630 .020 (0.51) Sn/Cu NTE16011–ECG .350 (8.9) .550 (14.0) .200 (5.1) .027 (0.7) .300 (7.6) .120 (3.0) 629 .020 (0.51) Sn/Cu NTE16012–ECG .350 (8.9) .750 (18.9) .200 (5.1) .027 (0.7) .300 (7.6) .120 (3.0) 629 .020 (0.51) Sn/Cu NTE16013–ECG .400 (10.2) .660 (16.8) .200 (5.1) .027 (0.7) .300 (7.6) .120 (3.0) 629 .020 (0.51) Sn/Cu NTE16014–ECG .470 (12.0) .720 (18.4) .200 (5.1) .027 (0.7) .300 (7.6) .120 (3.0) 629 .020 (0.51) Sn/Cu NTE16015–ECG .470 (12.0) .720 (18.3) .200 (5.1) .027 (0.7) .300 (7.6) .120 (3.0) 630 .030 (0.81) Sn/Cu NTE16016–ECG .470 (12.0) .720 (18.3) .200 (5.1) .027 (0.7) .300 (7.6) .120 (3.0) 630 .030 (0.81) Sn/Cu NTE16017–ECG .570 (14.4) .970 (24.8) .200 (5.1) .027 (0.7) .300 (7.6) .120 (3.0) 630 .030 (0.81) Sn/Cu NTE16018–ECG .690 (17.4) .980 (24.9) .400 (10.2) .027 (0.7) .300 (7.6) .120 (3.0) 630 .030 (0.81) Sn/Cu NTE16019–ECG .760 (19.3) 1.260 (31.9) .400 (10.2) .027 (0.7) .300 (7.6) .120 (3.0) 630 .030 (0.81) Sn/Cu NTE16020–ECG .870 (22.1) 1.170 (29.8) .400 (10.2) .027 (0.7) .300 (7.6) .120 (3.0) 630 .030 (0.81) Sn/Cu NTE16021–ECG .960 (24.2) 1.300 (32.9) .400 (10.2) .027 (0.7) .300 (7.6) .120 (3.0) 630 .030 (0.81) Sn/Cu NTE16022–ECG .960 (24.2) 1.300 (32.9) .400 (10.2) .027 (0.7) .300 (7.6) .120 (3.0) 630 .030 (0.81) Sn/Cu
Page 4
RESETTABLE CIRCUIT PROTECTION
When it comes to Polymeric Positive Temperature Coefficient (PPTC) circuit protection, you now have a choice.
Polymeric fuses are made from a conductive plastic formed into thin sheets, with electrodes attached to either side. The conductive plastic is manufactured from a non– conductive crystalline polymer and a highly conductive carbon balck. The electrodes ensure even distribution of power through the device, and provide a surface for leads to be attached or for custom mounting.
The phenomenon that allows conductive plastic materi­als to be used for resettable overcurrent protection de­vices is that they exhibit a very large non–linear Positive Temperature Coefficient (PTC) effect when heated. PTC is a characteristic that many materials exhibit whereby re­sistance increases with temperature. What makes the polymeric conductive plastic material unique is the magni­tude of its resistance increase. At a specific transition tem­perature, the increase is resistance is so great that it is typ­ically expressed on a log scale.
HOW POLYMERIC RESETTABLE OVERCURRENT PROTECTORS WORK
The conductive carbon black filler material in the poly­meric device is dispersed in a polymer that has a crystal­line structure. The crystalline structure densely packs the carbon particles into its crystalline boundry so they are close enough together to allow current to flow through the polymer insulator via these carbon chains”.
When the conductive plastic material is at normal room temperature, there are numerous carbon chains forming conductive paths through the material.
Under fault conditions, excessive current flows through the polymeric device. I
2
R heating causes the conductive plastic materials temperature to rise. As this self heating continues, the materials temperature continues to rise until it exceeds its phase transformation temperature. As the material passes through this phase transformation temperature, the densely packed crystalline polymer ma­trix changes to an amorphous structure. This phase change is accompanied by a small expansion. As the con­ductive particles move apart from each other, most of them no longer conduct current and the resistance of the device increases sharply.
0 20 40 60 80 100 120 140
TEMPERATURE °C
10
1
10
0
10
2
10
3
10
4
10
5
10
6
10
7
LOG R OHMS
The material will stay hot, remaining in this high resist­ance state as long as the power is applied. The device will remain latched, providing continuous protection, until the fault is cleared and the power is removed. Reversing the phase transformation allows the carbon chains to re–form as the polymer re–crystallizes. The resistance quickly re- turns to its original value.
PRODUCT SELECTION
To select the correct polymeric circuit protection device, complete the imformation listed below for application, and then refer to thwe resettable overcurrent protector data sheets.
1. Determine the nromal operating current: __________ amps
2. Determine the maximum circuit voltage (V
max
):
__________ volts
3. Determine the fault current (I
max
):
__________ amps
4. Determine the operating temperature range: Minimum Temperature: __________ °C Maximum Temperature: __________ °C
5. Select a product family so that the maximum rating for V
max
and I
max
is higher than the maximum circuit volt-
age and fault current in the application.
6. Using the I
Hold
vs. Temperature Table on the product family data sheet, select the polymeric device at the maximum operating temperature with an I
Hold
greater
than or equal to the normal operating current.
7. Verify that the selected device will trip under fault con­ditions by checking in the I
Trip
table that the fault cur-
rent is greater than I
Trip
for the selected device, at the
lowest operating temperature.
8. Order samples and test in application.
APPLICATIONS
The benefits of polymeric Resettable Overcurrent Pro­tectors are being recognized by more and more design engineers, and new applications are being discovered ev­ery day.
The use of polymeric types of devices have been widely accepted in the following applications and industries:
D Personal computers D Laptop computers D Personal digital assistants D Transformers D Small and medium electric motors D Audio equipment and speakers D Test and measurement equipment D Security and fire alarm systems D Personal care products D Point–of–sale equipment D Industrial controls D Automotive electronics and harness protection D Marine electronics D Batteryoperated toys
Loading...