Datasheet NDP7052L, NDB7052L Datasheet (Fairchild Semiconductor)

Page 1
NDP7052L / NDB7052L N-Channel Logic Level Enhancement Mode Field Effect Transistor
General Description Features
May 1997
These logic level N-Channel enhancement mode power field effect transistors are produced using Fairchild's proprietary, high cell density, DMOS technology. This very high density process has been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulses in the avalanche and commutation modes. These devices are particularly suited for low voltage applications such as automotive, DC/DC converters, PWM motor controls, and other battery powered circuits where fast switching, low in-line power loss, and resistance to transients are needed.
75 A, 50 V. R R
= 0.010 @ VGS= 5 V
DS(ON)
= 0.0075 @ VGS= 10 V.
DS(ON)
Low drive requirements allowing operation directly from logic drivers. V
GS(TH)
< 2.0V.
Rugged internal source-drain diode can eliminate the need for an external Zener diode transient suppressor.
175°C maximum junction temperature rating. High density cell design for extremely low R
DS(ON)
.
TO-220 and TO-263 (D2PAK) package for both through hole and surface mount applications.
________________________________________________________________________________
D
G
S
Absolute Maximum Ratings T
C
Symbol Parameter NDP7052L NDB7052L Units
V
DSS
V
DGR
V
GSS
I
D
Drain-Source Voltage 50 V Drain-Gate Voltage (RGS < 1 M)
50 V
Gate-Source Voltage - Continuous ±16 V
- Nonrepetitive (tP < 50 µs)
±25
Drain Current - Continuous 75 A
- Pulsed 225
P
D
Maximum Power Dissipation @ TC = 25°C
150 W
Derate above 25°C 1 W/°C
TJ,T
Operating and Storage Temperature Range -65 to 175 °C
STG
THERMAL CHARACTERISTICS
R
JC
θ
R
θ
© 1997 Fairchild Semiconductor Corporation
Thermal Resistance, Junction-to-Case 1 °C/W Thermal Resistance, Junction-to-Ambient 62.5 °C/W
JA
NDP7052L Rev.B1
Page 2
Electrical Characteristics (T
= 25°C unless otherwise noted)
C
Symbol Parameter Conditions Min Typ Max Unit DRAIN-SOURCE AVALANCHE RATINGS (Note)
W
DSS
I
AR
Single Pulse Drain-Source Avalanche Energy VDD = 25 V, ID = 75 A 550 mJ Maximum Drain-Source Avalanche Current 75 A
OFF CHARACTERISTICS
BV
BV
I
DSS
DSS
DSS
Drain-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient
/T
J
Zero Gate Voltage Drain Current
VGS = 0 V, ID = 250 µA ID = 250 µA, Referenced to 25 o C VDS = 48 V, V
GS
= 0 V
50 V
0.075
V/oC
250 µA
TJ = 125°C 1 mA
I
GSSF
I
GSSR
Gate - Body Leakage, Forward
VGS = 16 V, VDS = 0 V
Gate - Body Leakage, Reverse VGS = -16 V, VDS = 0 V -100 nA
100 nA
ON CHARACTERISTICS (Note)
V
V
R
GS(th)
GS(th)
DS(ON)
Gate Threshold VoltageTemp.Coefficient
/T
J
Gate Threshold Voltage
ID = 250 µA, Referenced to 25 o C VDS = VGS, ID = 250 µA
TJ = 125°C
Static Drain-Source On-Resistance VGS = 5 V, ID = 37.5 A 0.0085 0.01
-0.005
1 1.3 2 V
0.8 0.85 1.6
V/oC
TJ = 150°C 0.014 0.018
0.0065 0.0075
69 S
I g
D(on)
FS
VGS = 10 V, ID = 37.5 A On-State Drain Current VGS = 5 V, VDS = 10 V 60 A Forward Transconductance
VDS = 5 V, ID = 37.5 A
DYNAMIC CHARACTERISTICS
C
iss
C
oss
C
rss
Input Capacitance Output Capacitance 1260 pF Reverse Transfer Capacitance 450 pF
VDS = 25 V, VGS = 0 V,
f = 1.0 MHz
4030 pF
SWITCHING CHARACTERISTICS (Note)
t t
t t
Q Q Q
D(on)
r
D(off)
f
Turn - On Delay Time Turn - On Rise Time 215 400 nS
Turn - Off Delay Time 110 200 nS
VDD = 25 V, ID = 37.5 A,
VGS = 5 V, R
R
= 10
GS
GEN
= 10
Turn - Off Fall Time 170 300 nS
g
gs
gd
Total Gate Charge VDS= 24 V Gate-Source Charge 15 nC
ID = 75 A , VGS = 5 V Gate-Drain Charge 45 nC
25 50 nS
92 130 nC
DRAIN-SOURCE DIODE CHARACTERISTICS
I
S
ISM V
SD
t
rr
Irr Reverse Recovery Current 2 10 A
Note: Pulse Test: Pulse Width < 300 µs, Duty Cycle < 2.0%.
Maximum Continuos Drain-Source Diode Forward Current 75 A Maximum Pulsed Drain-Source Diode Forward Current 180 A Drain-Source Diode Forward Voltage Reverse Recovery Time
VGS = 0 V, IS = 37.5 A (Note)
VGS = 0 V, IF = 37.5 A
0.9 1.3 V
40 150 ns
dIF/dt = 100 A/µs
NDP7052L Rev.B1
Page 3
Typical Electrical Characteristics
R , NORMALIZED
R , ON-RESISTANCE (OHM)
100
V = 10V
80
60
40
20
D
I , DRAIN-SOURCE CURRENT (A)
0
0 0.5 1 1.5 2 2.5 3
6.0
GS
5.0
3.5
3.0
2.5
V , DRAIN-SOURCE VOLTAGE (V)
DS
1.8
V = 3.0V
1.6
GS
1.4
1.2
1
DS(on)
DRAIN-SOURCE ON-RESISTANCE
0.8
0.6 0 20 40 60 80 100
3.5
4.0
4.5
I , DRAIN CURRENT (A)
D
5.0
6.0 10
Figure 1. On-Region Characteristics.
2
I = 37.5A
D
1.75
V = 5V
GS
1.5
1.25
1
DS(ON)
R , NORMALIZED
DRAIN-SOURCE ON-RESISTANCE
0.75
0.5
-50 -25 0 25 50 75 100 125 150 175 T , JUNCTION TEMPERATURE (°C)
J
Figure 3. On-Resistance Variation
with Temperature.
60
V = 5V
DS
50
40
30
20
D
I , DRAIN CURRENT (A)
10
0
1 1.5 2 2.5 3 3.5
V , GATE TO SOURCE VOLTAGE (V)
GS
T = -55°C
J
125°C
25°C
Figure 2. On-Resistance Variation
with Drain Current and Gate Voltage.
0.08
25°C
0.06
0.04
0.02
DS(on)
0
2 2.5 3 3.5 4 4.5 5
125°C
V , GATE TO SOURCE VOLTAGE (V)
GS
Figure 4. On Resistance Variation with
Gate-To- Source Voltage.
60
V = 0V
GS
20
1
0.1
0.01
S
0.001
I , REVERSE DRAIN CURRENT (A)
0.0001 0 0.2 0.4 0.6 0.8 1 1.2
T = 125°C
J
25°C
-55°C
V , BODY DIODE FORWARD VOLTAGE (V)
SD
ID=37.5A
Figure 5. Transfer Characteristics.
Figure 6. Body Diode Forward Voltage
Variation with Source Current and Temperature.
NDP7052L Rev.B1
Page 4
Typical Electrical Characteristics (continued)
10
I = 75A
D
8
6
4
2
GS
V , GATE-SOURCE VOLTAGE (V)
0
0 20 40 60 80 100 120 140 160
Q , GATE CHARGE (nC)
g
V = 12V
DS
24V
Figure 7. Gate Charge Characteristics.
400
200
DS(ON)
R Limit
100
50
20 10
V = 10V
GS
5
SINGLE PULSE
D
I , DRAIN CURRENT (A)
2 1
0.5
0.5 1 3 5 10 20 30 80
o
R = 1 C/W
JC
θ
T = 25 °C
C
V , DRAIN-SOURCE VOLTAGE (V))
DS
100µs
1ms
10ms
100ms
DC
48V
8000
C
4000
2000 1500
1000
CAPACITANCE (pF)
f = 1 MHz
500
V = 0V
GS
300
1 2 3 5 10 20 30 50
V , DRAIN TO SOURCE VOLTAGE (V)
DS
iss
C
oss
C
rss
Figure 8.Capacitance Characteristics.
2000
1500
1000
POWER (W)
500
0
0.1 0.3 1 3 10 30 100 300 1,000 SINGLE PULSE TIME (SEC)
SINGLE PULSE
R =1° C/W
JC
θ
T = 25°C
C
Figure 9. Maximum Safe Operating Area.
Figure 10. Single Pulse Maximum Power
Dissipation.
1
0.5
0.3
0.2
0.1
0.05
0.03
0.02
r(t), NORMALIZED EFFECTIVE
TRANSIENT THERMAL RESISTANCE
0.01
0.01 0.05 0.1 0.5 1 5 10 50 100 500 1000
D = 0.5
0.2
0.1
0.05
0.02
0.01
Single Pulse
t ,TIME (ms)
1
R (t) = r(t) * R
θ
JC
R = 1.0 °C/W
θ
JC
P(pk)
t
1
t
2
T - T = P * R (t)
CJ
Duty Cycle, D = t /t
Figure 11. Transient Thermal Response Curve.
θ
JC
JC
θ
1 2
NDP7052L Rev.B1
Loading...