Datasheet LSH32JC32, LSH32JC20 Datasheet (LOGIC)

Page 1
DEVICES INCORPORATED
LSH32
32-bit Cascadable Barrel Shifter
LSH32
DEVICES INCORPORATED
FEATURES DESCRIPTION
❑❑
32-bit Input, 32-bit Output Multi-
❑❑
plexed to 16 Lines
❑❑
Full 0-31 Position Barrel Shift
❑❑
Capability
❑❑
Integral Priority Encoder for 32-bit
❑❑
Floating Point Normalization
❑❑
Sign-Magnitude or Two’s Comple-
❑❑
ment Mantissa Representation
❑❑
32-bit Linear Shifts with Sign or
❑❑
Zero Fill
❑❑
Independent Priority Encoder
❑❑
Outputs for Block Floating Point
❑❑
68-pin PLCC, J-Lead
❑❑
The LSH32 is a 32-bit high speed shifter designed for use in floating point normalization, word pack/ unpack, field extraction, and similar applications. It has 32 data inputs, and 16 output lines. Any shift configuration of the 32 inputs, includ­ing circular (barrel) shifting, left shifts with zero fill, and right shift with sign extend are possible. In addition, a built-in priority encoder is provided to aid floating point normalization.
SHIFT ARRAY
The 32 inputs to the LSH32 are applied to a 32-bit shift array. The 32 outputs of this array are multiplexed down to 16 lines for presentation at the device outputs. The array may be
LSH32 BLOCK DIAGRAM
SIGN
I
31-I0
32
32:5
PRIORITY
SI4-SI
RIGHT/LEFT
FILL/WRAP
NORM
ENCODE
5
0
5
SO4-SO
2:1
16 16
0
32
32-bit
BARREL
SHIFT
ARRAY
2:1
16
Y15-Y
0
32-bit Cascadable Barrel Shifter
configured such that any contiguous 16-bit field (including wraparound of the 32 inputs) may be presented to the output pins under control of the shift code field (wrap mode). Alterna­tively, the wrap feature may be disabled, resulting in zero or sign bit fill, as appropriate (fill mode). The shift code control assignments and the resulting input to output mapping for the wrap mode are shown in Table 1.
Essentially the LSH32 is configured as a left shift device. That is, a shift code of 000002 results in no shift of the input field. A code of 000012 provides an effective left shift of 1 position, etc. When viewed as a right shift, the shift code corresponds to the two’s com­plement of the shift distance, i.e., a shift code of 111112 (–110) results in a right shift of one position, etc.
When not in the wrap mode, the LSH32 fills bit positions for which there is no corresponding input bit. The fill value and the positions filled depend on the RIGHT/LEFT (R/L) direction pin. This pin is a don’t care input when in wrap mode. For left shifts in fill mode, lower bits are filled with zero as shown in Table 2. For right shifts, however, the SIGN input is used as the fill value. Table 3 depicts the bits to be filled as a function of shift code for the right shift case. Note that the R/L input changes only the fill convention, and does not affect the definition of the shift code.
In fill mode, as in wrap mode, the shift code input represents the number of shift positions directly for left shifts, but the two’s complement of the shift code results in the equivalent right shift. However, for fill mode the R/L
OE
MS/LS
input can be viewed as the most
Special Arithmetic Functions
1
08/16/2000–LDS.32-Q
Page 2
DEVICES INCORPORATED
LSH32
32-bit Cascadable Barrel Shifter
TABLE 1. WRAP MODE SHIFT CODE DEFINITIONS
Shift CodeShift Code
Shift Code
Shift CodeShift Code
00000 I31 I30 I29 • • • I16 I 15 • • • I2 I1 I0 00001 I30 I29 I28 • • • I15 I 14 • • • I1 I0 I31 00010 I29 I28 I27 • • • I14 I 13 • • • I0 I31 I 30 00011 I28 I27 I26 • • • I13 I 12 • • • I31 I 30 I 29
•••• •• •• ••••
•••• •• •• ••••
•••• •• •• ••••
01111 I16 I15 I14 • • • I1 I0• I19 I18 I17 10000 I15 I14 I13 • • • I0 I31 • • • I18 I 17 I16 10001 I14 I13 I12 • • • I31 I 30 • • • I17 I16 I15 10010 I13 I12 I11 • • • I30 I 29 • • • I16 I15 I14
•••• •• •• ••••
•••• •• •• ••••
•••• •• •• ••••
11100 I3 I2 I1• I20 I 19 • • • I6 I5 I 4 11101 I2 I1 I0• I19 I 18 • • • I5 I4 I 3 11110 I1 I0 I31 • • • I18 I 17 • • • I4 I3 I2 11111 I0 I31 I30 • • • I17 I 16 • • • I3 I2 I1
YY
YY
3131
Y
31
3131
YY
YY
3030
30
3030
2929
Y
29
2929
YY
Y
YY
• • •• • •
• • •
• • •• • •
YY
YY
1616
16
1616
1515
Y
15 • • •
1515
YY
Y
YY
YY
YY
22
Y
2
22
YY
YY
11
Y
YY
00
1
Y
0
11
00
YY
TABLE 2. FILL MODE SHIFT CODE DEFINITIONS — LEFT SHIFT
Shift CodeShift Code
Shift Code
Shift CodeShift Code
00000 I31 I30 I29 • • • I16 I 15 • • • I2 I1 I0 00001 I30 I29 I28 • • • I15 I 14 • • • I1 I0 0 00010 I29 I28 I27 • • • I14 I 13 • • • I0 00 00011 I28 I27 I26 • • • I13 I 12 • • • 000
•••• •• •• ••••
•••• •• •• ••••
•••• •• •• ••••
01111 I16 I15 I14 • • • I1 I0• 000 10000 I15 I14 I13 • • • I0 0 • • • 000 10001 I14 I13 I12 • • • 00 000 10010 I13 I12 I11 • • • 00 000
•••• •• •• ••••
•••• •• •• ••••
•••• •• •• ••••
11100 I3 I2 I1• 00 000 11101 I2 I1 I0• 00 000 11110 I1 I0 0 • • • 00 000 11111 I0 00 00 000
YY
YY
3131
Y
31
3131
YY
YY
3030
30
3030
2929
Y
29
2929
YY
Y
YY
• • •• • •
• • •
• • •• • •
YY
YY
1616
16
1616
1515
Y
15 • • •
1515
YY
Y
YY
YY
YY
22
Y
2
22
YY
YY
11
Y
YY
00
1
Y
0
11
00
YY
significant bit of a 6-bit two’s comple­ment shift code, comprised of R/L concatenated with the SI4–SI0 lines. Thus a positive shift code (R/L = 0) results in a left shift of 0–31 positions, and a negative code (R/L = 1) a right shift of up to 32 positions. The LSH32 can thus effectively select any contigu­ous 32-bit field out of a (sign extended and zero filled) 96-bit "input."
OUTPUT MULTIPLEXER
The shift array outputs are applied to a 2:1 multiplexer controlled by the MS/LS select line. This multiplexer makes available at the output pins either the most significant or least significant 16 outputs of the shift array.
PRIORITY ENCODER
The 32-bit input bus drives a priority encoder which is used to determine the first significant position for purposes of normalization. The priority encoder produces a five-bit code representing the location of the first non-zero bit in the input word. Code assignment is such that the priority encoder output represents the number of shift positions required to left align the first non-zero bit of the input word. Prior to the priority encoder, the input bits are individu­ally exclusive OR’ed with the SIGN input. This allows normalization in floating point systems using two’s complement mantissa representation. A negative value in two’s complement representation will cause the exclusive OR gates to invert the input data to the encoder. As a result the leading significant digit will always be "1." This affects only the encoder inputs; the shift array always operates on the raw input data. The priority encoder function table is shown in Table 4.
ffs2
Special Arithmetic Functions
08/16/2000–LDS.32-Q
Page 3
DEVICES INCORPORATED
LSH32
32-bit Cascadable Barrel Shifter
TABLE 3. FILL MODE SHIFT CODE DEFINITIONS — RIGHT SHIFT
Shift CodeShift Code
Shift Code
Shift CodeShift Code
00000 S S S • • • SS SSS 00001 S S S • • • SS SSI31 00010 S S S • • • SS SI31 I30 00011 S S S • • • SS I31 I30 I 29
•••• •• •• ••••
•••• •• •• ••••
•••• •• •• ••••
01111 S S S • • • SS I19 I18 I 17 10000 S S S • • • SI31 • • • I18 I17 I16 10001 S S S • • • I31 I 30 • • • I17 I16 I15 10010 S S S • • • I30 I 29 • • • I16 I15 I14
•••• •• •• ••••
•••• •• •• ••••
•••• •• •• ••••
11100 S S S • • • I20 I 19 • • • I6 I5 I4 11101 S S S • • • I19 I 18 • • • I5 I4 I3 11110 S S I31 • • • I18 I 17 • • • I4 I3 I 2 11111 S I31 I30 • • • I17 I 16 • • • I3 I2 I1
YY
YY
3131
Y
31
3131
YY
YY
3030
30
3030
2929
Y
29
2929
YY
Y
YY
• • •• • •
• • •
• • •• • •
YY
YY
1616
16
1616
1515
Y
15 • • •
1515
YY
Y
YY
YY
YY
22
Y
2
22
YY
YY
11
Y
YY
00
1
Y
0
11
00
YY
NORMALIZE MULTIPLXER
The NORM input, when asserted results in the priority encoder output driving the internal shift code inputs directly. It is exactly equivalent to routing the SO4–SO0 outputs back to the SI4–SI0 inputs. The NORM input provides faster normalization of 32-bit data by avoiding the delay associated with routing the shift code off chip. When using the NORM function, the LSH32 should be placed in fill mode, with the R/L input low.
APPLICATIONS EXAMPLES
Normalization of mantissas up to 32 bits can be accomplished directly by a single LSH32. The NORM input is asserted, and fill mode and left shift are selected. The normalized mantissa is then available at the device output in two 16-bit segments, under the control of the output data multiplexer select, the MS/LS.
TABLE 4. PRIORITY ENCODER FUNCTION TABLE
II
II
3131
I
31
3131
II
II
3030
30
3030
2929
I
29
2929
II
I
II
1XX XX X X X 00000 01X XX X X X 00001 001 XX X X X 00010
•••• •• •• ••••
•••• •• •• ••••
000 1X X X X 01111 000 01 X X X 10000 000 00 X X X 10001
•••• •• •• ••••
•••• •• •• ••••
000 00 0 1 X 11110 000 00 0 0 1 11111 000 00 0 0 0 11111
• • •• • •
• • •
• • •• • •
II
II
1616
1515
I
16
1616
II
• • •• • •
I
15
• • •
1515
• • •• • •
II
II
II
II
22
I
II
11
2
I
1
22
11
II
Shift CodeShift Code
00
I
0
Shift Code
00
II
Shift CodeShift Code
If it is desirable to avoid the necessity of multiplexing output data in 16-bit segments, two LSH32 devices can be used in parallel. Both devices receive the same input word, with the MS/LS select line of one wired high, and the other low. Each device will then independently determine the shift distance required for normalization, and the full 32 bits of output data will be available simultaneously.
Special Arithmetic Functions
3
08/16/2000–LDS.32-Q
Page 4
DEVICES INCORPORATED
LSH32
32-bit Cascadable Barrel Shifter
LONG-WORD NORMALIZATION (MULTIPLE CYCLES)
Normalization of floating point mantissas longer than 32 bits can be accomplished by cascading LSH32 units. When cascading for normaliza­tion, the device inputs are overlapped such that each device lower in priority than the first shares 16 inputs with its more significant neighbor. Fill mode and left shift are selected, however, internal normalization (NORM) is not used. The most significant result half of each device is enabled to the output. The shift out (SO4–SO0) lines of the most significant slice are connected to the shift in lines of all
slices, including the first. The excep­tion is that all SI4 lines are grounded, limiting the shift distance to 16 positions. The shift distance required for normalization is produced by the priority encoder in the most signifi­cant slice. The priority encoder will produce the shift code necessary to normalize the input word if the leading non-zero digit is found in the upper 16 bits. If this is the case, the number of shift positions necessary to accomplish normalization is placed on the SO4 –SO0 outputs for use by all slices, and the appropriate 0–15 bit shift is accomplished. If the upper 16 bits are all zero, then the maximum shift of 15 places is executed. Single
FIGURE 1. SINGLE CYCLE LONG-WORD NORMALIZATION USING LSH32S
I63-I
48
I47-I
32
I31-I
16
clock normalization requiring shifts longer than 16 bits can be accom­plished by a bank-select technique described below.
SINGLE CYCLE LONG-WORD NORMALIZATION
An extension of the above concept is a single clock normalization of long words (potentially requiring shifts of more than 15 places). The arrange­ment of LSH32s required is shown in Figure 1. Cascading of LSH32 units is accomplished by connecting the SI3– SI0 input lines of each unit to the SO3 – SO0 outputs of the most significant device in the row as before. Essen-
I15-I
0
0
PRIORITY
ENCODE
2:4
DECODE
MSBs
4
LSH32
3-0
SI
I
47-I32I31-I16
4
LSH32
SI
3-0
I
31-I16I15-I0
4
LSH32
SI
3-0
I
16-I0
4
LSH32
SI
3-0
SI
4
SO
SO
SO
SO
OE
OE
OE
0
OE
4-0
4-0
4-0
4-0
5
4
LSH32
SI
3-0
5
4
SI
3-0
5
4
SI
3-0
SI
4
5
OE
I15-I
LSH32
OE
0
LSH32
OE
4
LSH32
SI
3-0
0
4
SI
3-0
SI
4
OE
0
LSH32
OE
4
LSH32
SI
3-0
SI
4
OE
Y63-Y
48
Y47-Y
32
Y31-Y
16
Y15-Y
0
Special Arithmetic Functions
ffs4
08/16/2000–LDS.32-Q
Page 5
DEVICES INCORPORATED
LSH32
32-bit Cascadable Barrel Shifter
tially the LSH32s are arranged in multiple rows or banks such that the inputs to successive rows are left­shifted by 16 positions. The outputs of each row are multiplexed onto a three-state bus. The normalization problem then reduces to selecting from among the several banks that one which has the first non-zero bit of the input value among its 16 most significant positions. If the most significant one in the input file was within the upper 16 locations of a given bank, the SO4 output of the most significant slice in that bank will be low. Single clock normalization can thus be accomplished simply by enabling onto the three-state output bus the highest priority bank in which this condition is met. In this way the input word will be normalized regardless of the number of shift positions required to accomplish this.
The number of shift positions can be determined simply by concatenation of the SO3–SO0 outputs of the most significant slice in the selected row with the encoded Output Enable-bits determining the row number. Note that lower rows need not be fully populated. This is because they represent left shifts in multiples of 16 positions, and the lower bits of the output word will be zero filled. In order to accomplish this zero fill, the least significant device in each row is always enabled, and the row select is instead connected to the SI4 input. This will force the shift length of the least significant device to a value greater than 15 whenever the row containing that device is not selected. This results in zero fill being accom­plished by the equivalently positioned slice in a higher bank, as shown in the diagram.
BLOCK FLOATING POINT
With a small amount of external logic, block floating point operations are easily accomplished by the LSH32. Data resulting from a vector operation are applied to the LSH32 with the NORM-input deasserted. The SO4– SO0 outputs fill then represent the normalization shift distance for each vector element in turn. By use of an external latch and comparator, the maximum shift distance encountered across all elements in the vector is saved for use in the next block opera­tion (or block normalization). During this subsequent pass through the data, the shift code saved from the previous pass is applied uniformly across all elements of the vector. Since the LSH32 is not used in the internal normalize mode, this operation can be pipelined, thereby obtaining the desired shift distance for the next pass while simultaneously applying the normalization required from the previous pass.
Special Arithmetic Functions
5
08/16/2000–LDS.32-Q
Page 6
DEVICES INCORPORATED
LSH32
32-bit Cascadable Barrel Shifter
MAXIMUM RATINGS
Storage temperature ........................................................................................................... –65°C to +150°C
Operating ambient temperature........................................................................................... –55°C to +125°C
VCC supply voltage with respect to ground............................................................................ –0.5 V to +7.0V
Input signal with respect to ground ........................................................................................ –3.0 V to +7.0 V
Signal applied to high impedance output ............................................................................... –3.0 V to +7.0 V
Output current into low outputs............................................................................................................. 25 mA
Latchup current ............................................................................................................................... > 400 mA
OPERATING CONDITIONS
Active Operation, Commercial 0°C to +70°C 4.75 V VCC 5.25 V Active Operation, Military –55°C to +125°C 4.50 V VCC 5.50 V
ELECTRICAL CHARACTERISTICS
Above which useful life may be impaired (Notes 1, 2, 3, 8)
To meet specified electrical and switching characteristics
Mode Temperature Range (Ambient) Supply Voltage
Over Operating Conditions (Note 4)
Symbol Parameter Test Condition Min Typ Max Unit
VOH Output High Voltage VCC = Min., IOH = –2.0 mA 2.4 V VOL Output Low Voltage VCC = Min., IOL = 8.0 mA 0.4 V VIH Input High Voltage 2.0 VCC V V IL Input Low Voltage (Note 3) 0.0 0.8 V IIX Input Current Ground VIN VCC (Note 12) ±20 µA IOZ Output Leakage Current Ground VOUT VCC (Note 12) ±20 µA ICC1 VCC Current, Dynamic (Notes 5, 6) 10 30 mA ICC2 VCC Current, Quiescent (Note 7) 1.5 mA
ffs6
Special Arithmetic Functions
08/16/2000–LDS.32-Q
Page 7
DEVICES INCORPORATED
1234567890123456
1
6
1
6
1
6
1
6
1
6
1
6
1
6
1
6
1
6
1
6
1
6
1
6
1
6
1
6
1
6
1
6
1
6
1
6
1
6
1
6
1
6
1
6
1
6
1
6
1
6
1
6
1
6
1234567890123456
1234567890123456789012345678901212345678901234
1
4
1
4
1
4
1
4
1
4
1
4
1
4
1
4
1
4
1
4
1
4
1
4
1
4
1
4
1
4
1
4
1
4
1
4
1
4
1
4
1
4
1
4
1
4
1
4
1
4
1
4
1
4
1234567890123456789012345678901212345678901234
4
4
SWITCHING CHARACTERISTICS
LSH32
32-bit Cascadable Barrel Shifter
COMMERCIAL OPERATING RANGE (0°C to +70°C)
Symbol Parameter Min Max Min Max Min Max
tIY I, SIGN Inputs to Y Outputs 42 32 20 tIYN I, SIGN Inputs to Y Outputs, Normalize Mode 75 60 20 tISO I, SIGN Inputs to SO Outputs 55 42 20 tSIY SI, RIGHT/LEFT to Y Outputs 52 40 20 tMSY MS/LS Select to Y Outputs 28 24 15 tDIS Three-State Output Disable Delay (Note 11) 20 20 15 tENA Three-State Output Enable Delay (Note 11) 20 20 15
MILITARY OPERATING RANGE (–55°C to +125°C)
Symbol Parameter Min Max Min Max Min Max
tIY I, SIGN Inputs to Y Outputs 50 40 30 tIYN I, SIGN Inputs to Y Outputs, Normalize Mode 85 75 58 tISO I, SIGN Inputs to SO Outputs 65 52 42 tSIY SI, RIGHT/LEFT to Y Outputs 62 52 40 tMSY MS/LS Select to Y Outputs 32 26 24 tDIS Three-State Output Disable Delay (Note 11) 22 20 17 tENA Three-State Output Enable Delay (Note 11) 22 20 17
Notes 9, 10 (ns)
23456789012345
23456789012345
23456789012345
23456789012345
23456789012345
23456789012345
23456789012345
23456789012345
23456789012345
23456789012345
23456789012345
23456789012345
23456789012345
23456789012345
23456789012345
23456789012345
23456789012345
23456789012345
23456789012345
23456789012345
23456789012345
23456789012345
23456789012345
23456789012345
23456789012345
23456789012345
23456789012345
Notes 9, 10 (ns)
23456789012345678901234567890121234567890123
23456789012345678901234567890121234567890123
23456789012345678901234567890121234567890123
23456789012345678901234567890121234567890123
23456789012345678901234567890121234567890123
23456789012345678901234567890121234567890123
23456789012345678901234567890121234567890123
23456789012345678901234567890121234567890123
23456789012345678901234567890121234567890123
23456789012345678901234567890121234567890123
23456789012345678901234567890121234567890123
23456789012345678901234567890121234567890123
23456789012345678901234567890121234567890123
23456789012345678901234567890121234567890123
23456789012345678901234567890121234567890123
23456789012345678901234567890121234567890123
23456789012345678901234567890121234567890123
23456789012345678901234567890121234567890123
23456789012345678901234567890121234567890123
23456789012345678901234567890121234567890123
23456789012345678901234567890121234567890123
23456789012345678901234567890121234567890123
23456789012345678901234567890121234567890123
23456789012345678901234567890121234567890123
23456789012345678901234567890121234567890123
23456789012345678901234567890121234567890123
23456789012345678901234567890121234567890123
42
50
LSH32–
*
32 20
LSH32–
*
40
*
30
*
SWITCHING WAVEFORMS
I
31-I0
SIGN
SI
4
-SI
SO
MS/LS
4
-SO
Y
31-Y0
OE
Y
31-Y0
0
0
t
DIS
RIGHT/LEFT
2345678901234567890123
2345678901234567890123
*DISCONTINUED SPEED GRADE
t
IY,tIYN
t
t
ISO
t
SIY
HIGH IMPEDANCE
t
ENA
Special Arithmetic Functions
7
MSY
08/16/2000–LDS.32-Q
Page 8
DEVICES INCORPORATED
OE
0.2 V
t
DIS
t
ENA
0.2 V
1.5 V 1.5 V
3.5V Vth
1
Z
0
Z
Z
1
Z
0
1.5 V
1.5 V
0V Vth
VOL*
V
OH
*
V
OL
*
V
OH
*
Measured V
OL
with IOH = –10mA and IOL = 10mA
Measured V
OH
with IOH = –10mA and IOL = 10mA
NOTES
LSH32
32-bit Cascadable Barrel Shifter
1. Maximum Ratings indicate stress specifications only. Functional oper­ation of these products at values beyond those indicated in the Operating Condi­tions table is not implied. Exposure to maximum rating conditions for ex­tended periods may affect reliability.
2. The products described by this spec­ification include internal circuitry de­signed to protect the chip from damag­ing substrate injection currents and ac­cumulations of static charge. Neverthe­less, conventional precautions should be observed during storage, handling, and use of these circuits in order to avoid exposure to excessive electrical stress values.
3. This device provides hard clamping of transient undershoot and overshoot. In­put levels below ground or above VCC will be clamped beginning at –0.6 V and VCC + 0.6 V. The device can withstand indefinite operation with inputs in the range of –0.5 V to +7.0 V. Device opera­tion will not be adversely affected, how­ever, input current levels will be well in excess of 100 mA.
9. AC specifications are tested with input transition times less than 3 ns, output reference levels of 1.5 V (except
tDIS test), and input levels of nominally
0 to 3.0 V. Output loading may be a resistive divider which provides for specified IOH and IOL at an output voltage of VOH min and VOL max respectively. Alternatively, a diode bridge with upper and lower current sources of IOH and IOL respectively, and a balancing voltage of 1.5 V may be used. Parasitic capacitance is 30 pF minimum, and may be distributed.
This device has high-speed outputs ca­pable of large instantaneous current pulses and fast turn-on/turn-off times. As a result, care must be exercised in the testing of this device. The following measures are recommended:
a. A 0.1 µF ceramic capacitor should be installed between VCC and Ground leads as close to the Device Under Test (DUT) as possible. Similar capacitors should be installed between device VCC and the tester common, and device ground and tester common.
11. For the tENA test, the transition is measured to the 1.5 V crossing point with datasheet loads. For the tDIS test, the transition is measured to the ±200mV level from the measured steady-state output voltage with ±10mA loads. The balancing volt­age, VTH, is set at 3.5 V for Z-to-0 and 0-to-Z tests, and set at 0 V for Z­to-1 and 1-to-Z tests.
12. These parameters are only tested at the high temperature extreme, which is the worst case for leakage current.
FIGURE A. OUTPUT LOADING CIRCUIT
DUT
S1
I
OL
V
C
L
I
TH
OH
FIGURE B. THRESHOLD LEVELS
4. Actual test conditions may vary from those designated but operation is guar­anteed as specified.
5. Supply current for a given applica­tion can be accurately approximated by:
2
NCV F
where
4
N = total number of device outputs C = capacitive load per output V = supply voltage F = clock frequency
b. Ground and VCC supply planes must be brought directly to the DUT socket or contactor fingers.
c. Input voltages should be adjusted to compensate for inductive ground and VCC noise to maintain required DUT input levels relative to the DUT ground pin.
10. Each parameter is shown as a min­imum or maximum value. Input re­quirements are specified from the point of view of the external system driving the chip. Setup time, for example, is specified as a minimum since the exter-
6. Tested with all outputs changing ev­ery cycle and no load, at a 5 MHz clock rate.
nal system must supply at least that much time to meet the worst-case re­quirements of all parts. Responses from the internal circuitry are specified from
7. Tested with all inputs within 0.1 V of
VCC or Ground, no load.
8. These parameters are guaranteed but not 100% tested.
the point of view of the device. Output delay, for example, is specified as a maximum since worst-case operation of any device always provides data within that time.
Special Arithmetic Functions
ffs8
08/16/2000–LDS.32-Q
Page 9
DEVICES INCORPORATED
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
LSH32
32-bit Cascadable Barrel Shifter
Speed
32 ns 20 ns
ORDERING INFORMATION
68-pin
I29I28I27I26I25I24I23I22I21I20I19I18I17I16I15I14GND
3
46663 6212
I I
SIGN
SO SO SO SO SO
NORM
SI SI SI SI SI
R/L
F/W
31/15
Y
10
30
11
31
12 13
4
14
3
15
2
16
1
17
0
18 19
4
20
3
21
2
22
1
23
0
24 25 26
27 32 33 34 35 36 37 386139 40941 42 43
28 29 30 31
30/14Y29/13Y28/12Y27/11Y26/10
Y
5867
25/9Y24/8Y23/7Y22/6Y21/5Y20/4Y19/3Y18/2Y17/1Y16/0
Y
Plastic J-Lead Chip Carrier
0°C to +70°C — COMMERCIAL SCREENING
LSH32JC32 LSH32JC20
–55°C to +125°C — COMMERCIAL SCREENING
–55°C to +125°C — MIL-STD-883 COMPLIANT
Top
View
(J2)
6768 6465
OE
60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44
MS/LS
23456789012345678901234567890121234567890123456
23456789012345678901234567890121234567890123456
23456789012345678901234567890121234567890123456
68-pin
23456789012345678901234567890121234567890123456
23456789012345678901234567890121234567890123456
23456789012345678901234567890121234567890123456
23456789012345678901234567890121234567890123456
23456789012345678901234567890121234567890123456
23456789012345678901234567890121234567890123456
23456789012345678901234567890121234567890123456
23456789012345678901234567890121234567890123456
23456789012345678901234567890121234567890123456
23456789012345678901234567890121234567890123456
23456789012345678901234567890121234567890123456
23456789012345678901234567890121234567890123456
23456789012345678901234567890121234567890123456
23456789012345678901234567890121234567890123456
23456789012345678901234567890121234567890123456
23456789012345678901234567890121234567890123456
GND
23456789012345678901234567890121234567890123456
13
I
23456789012345678901234567890121234567890123456
23456789012345678901234567890121234567890123456
I
12
23456789012345678901234567890121234567890123456
23456789012345678901234567890121234567890123456
I
11
23456789012345678901234567890121234567890123456
23456789012345678901234567890121234567890123456
I
10
23456789012345678901234567890121234567890123456
23456789012345678901234567890121234567890123456
I
9
23456789012345678901234567890121234567890123456
23456789012345678901234567890121234567890123456
I
8
23456789012345678901234567890121234567890123456
23456789012345678901234567890121234567890123456
I
7
23456789012345678901234567890121234567890123456
23456789012345678901234567890121234567890123456
I
6
23456789012345678901234567890121234567890123456
23456789012345678901234567890121234567890123456
I
5
23456789012345678901234567890121234567890123456
I
4
23456789012345678901234567890121234567890123456
23456789012345678901234567890121234567890123456
I
3
23456789012345678901234567890121234567890123456
23456789012345678901234567890121234567890123456
I
2
23456789012345678901234567890121234567890123456
23456789012345678901234567890121234567890123456
I
1
23456789012345678901234567890121234567890123456
23456789012345678901234567890121234567890123456
I
0
23456789012345678901234567890121234567890123456
23456789012345678901234567890121234567890123456
V
CC
23456789012345678901234567890121234567890123456
23456789012345678901234567890121234567890123456
V
CC
23456789012345678901234567890121234567890123456
23456789012345678901234567890121234567890123456
23456789012345678901234567890121234567890123456
23456789012345678901234567890121234567890123456
23456789012345678901234567890121234567890123456
23456789012345678901234567890121234567890123456
23456789012345678901234567890121234567890123456
23456789012345678901234567890121234567890123456
23456789012345678901234567890121234567890123456
23456789012345678901234567890121234567890123456
23456789012345678901234567890121234567890123456
23456789012345678901234567890121234567890123456
23456789012345678901234567890121234567890123456
23456789012345678901234567890121234567890123456
23456789012345678901234567890121234567890123456
23456789012345678901234567890121234567890123456
23456789012345678901234567890121234567890123456
23456789012345678901234567890121234567890123456
1234567 8 9 10 11
A
I
29
I
28
I
26
I
24
I
22
I
20
I
18
B
I
30
I
I
31
27
I
25
I
23
I
21
I
19
I
17
C
SIGN
SO
4
D
3
SO
2
SO
SO
SO
1
0
NORM
SI
4
Top View
Through Package
(i.e., Component Side Pinout)
E
F
G
3
SI
2
SI
H
SI
1
SI
0
J
R/L
F/W
K
30/14
Y
Y
31/15
28/12
Y
Y
26/10
Y
24/8
Y
22/6
Y
20/4
Y
18/2
L
Y
29/13
Y
27/11
Y
25/9
Y
23/7
Y
21/5
Y
19/3
Y
17/1
Discontinued Package
Y
Ceramic Pin Grid Array
(G1)
Special Arithmetic Functions
9
I
I
16
14
I
15
GND
GND
12
I
13
I
I
10
I
11
I
8
I
9
I
6
I
7
I
4
I
5
I
2
I
3
I
0
I
1
16/0
V
CC
V
CC
MS/LS
OE
08/16/2000–LDS.32-Q
Loading...