
2/28/08
Benefits
l Improved Gate, Avalanche and Dynamic
dv/dt Ruggedness
l Fully Characterized Capacitance and
Avalanche SOA
l Enhanced body diode dV/dt and dI/dt
Capability
www.irf.com 1
Applications
l High Efficiency Synchronous Rectification in
SMPS
l Uninterruptible Power Supply
l High Speed Power Switching
l Hard Switched and High Frequency Circuits
HEXFET® Power MOSFET
S
D
G
PD - 97125
D2Pak
IRF1018ESPbF
TO-220AB
IRF1018EPbF
TO-262
IRF1018ESLPbF
S
D
G
S
D
G
S
D
G
D
D
D
GDS
Gate Drain Source
IRF1018EPbF
IRF1018ESPbF
IRF1018ESLPbF
V
DSS
60V
R
DS(on)
typ.
7.1m
:
max.
8.4m
:
I
D
79A
Absolute Maximum Ratings
Symbol Parameter Units
ID @ TC = 25°C Continuous Drain Current, VGS @ 10V
I
D
@ TC = 100°C Continuous Drain Current, VGS @ 10V
A
I
DM
Pulsed Drain Current
c
P
D
@TC = 25°C
Maximum Power Dissipation
W
Linear Derating Factor
W/°C
V
GS
Gate-to-Source Voltage
V
dv/dt
Peak Diode Recovery
e
V/ns
T
J
Operating Junction and
°C
T
STG
Storage Temperature Range
Soldering Temperature, for 10 seconds
(1.6mm from case)
Mounting torque, 6-32 or M3 screw
k
Avalanche Characteristics
E
AS (Thermally limited)
Single Pulse Avalanche Energy
d
mJ
I
AR
Avalanche Current
c
A
E
AR
Repetitive Avalanche Energy
f
mJ
Thermal Resistance
Symbol Parameter Typ. Max. Units
R
θ
JC
Junction-to-Case
j –––
1.32
R
θ
CS
Case-to-Sink, Flat Greased Surface , TO-220
0.50 –––
R
θ
JA
Junction-to-Ambient, TO-220
j ––– 62
R
θ
JA
Junction-to-Ambient (PCB Mount) , D2Pak
ij
––– 40
11
110
21
-55 to + 175
± 20
0.76
10lbxin (1.1Nxm)
°C/W
300
Max.
79
56
315
88
47

IRF1018E/S/SLPbF
2 www.irf.com
Notes:
Repetitive rating; pulse width limited by max. junction
temperature.
Limited by T
Jmax
, starting TJ = 25°C, L = 0.08mH
RG = 25Ω, I
AS
= 47A, VGS =10V. Part not recommended for
use above this value.
I
SD
≤ 47A, di/dt ≤ 1668A/μs, V
DD
≤ V
(BR)DSS
, TJ ≤ 175°C.
Pulse width ≤ 400μs; duty cycle ≤ 2%.
S
D
G
C
oss
eff. (TR) is a fixed capacitance that gives the same charging time
as C
oss
while V
DS
is rising from 0 to 80% V
DSS
.
C
oss
eff. (ER) is a fixed capacitance that gives the same energy as
C
oss
while V
DS
is rising from 0 to 80% V
DSS
.
When mounted on 1" square PCB (FR-4 or G-10 Material). For recom
mended footprint and soldering techniques refer to application note #AN-994.
R
θ
is measured at TJ approximately 90°C.
This is only applied to TO-220
Static @ TJ = 25°C (unless otherwise specified)
Symbol Parameter Min. Typ. Max. Units
V
(BR)DSS
Drain-to-Source Breakdown Voltage 60 ––– ––– V
ΔV
(BR)DSS
/ΔT
J
Breakdown Voltage Temp. Coefficient ––– 0.073 ––– V/°C
R
DS(on)
Static Drain-to-Source On-Resistance ––– 7.1 8.4
mΩ
V
GS(th)
Gate Threshold Voltage 2.0 ––– 4.0 V
I
DSS
Drain-to-Source Leakage Current ––– ––– 20 μA
––– ––– 250
I
GSS
Gate-to-Source Forward Leakage ––– ––– 100 nA
Gate-to-Source Reverse Leakage ––– ––– -100
Dynamic @ TJ = 25°C (unless otherwise specified)
Symbol Parameter Min. Typ. Max. Units
gfs Forward Transconductance 110 ––– ––– S
Q
g
Total Gate Charge ––– 46 69 nC
Q
gs
Gate-to-Source Charge ––– 10 –––
Q
gd
Gate-to-Drain ("Miller") Charge ––– 12 –––
Q
sync
Total Gate Charge Sync. (Qg - Qgd)
––– 34 –––
R
G(int)
Internal Gate Resistance
–––
0.73 ––– Ω
t
d(on)
Turn-On Delay Time ––– 13 ––– ns
t
r
Rise Time ––– 35 –––
t
d(off)
Turn-Off Delay Time ––– 55 –––
t
f
Fall Time ––– 46 –––
C
iss
Input Capacitance ––– 2290 –––
C
oss
Output Capacitance ––– 270 –––
C
rss
Reverse Transfer Capacitance ––– 130 ––– pF
C
oss
eff. (ER)
Effective Output Capacitance (Energy Related)
––– 390 –––
C
oss
eff. (TR)
Effective Output Capacitance (Time Related)
g
––– 630 –––
Diode Characteristics
Symbol Parameter Min. Typ. Max. Units
I
S
Continuous Source Current ––– –––
79
A
(Body Diode)
I
SM
Pulsed Source Current ––– ––– 315
(Body Diode)
c
V
SD
Diode Forward Voltage ––– ––– 1.3 V
t
rr
Reverse Recovery Time ––– 26 39 ns
TJ = 25°C VR = 51V,
––– 31 47
T
J
= 125°C IF = 47A
Q
rr
Reverse Recovery Charge ––– 24 36 nC
TJ = 25°C
di/dt = 100A/μs
f
––– 35 53
T
J
= 125°C
I
RRM
Reverse Recovery Current ––– 1.8 ––– A
TJ = 25°C
t
on
Forward Turn-On Time Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
Conditions
VDS = 50V, ID = 47A
I
D
= 47A
V
GS
= 20V
V
GS
= -20V
MOSFET symbol
showing the
V
DS
= 30V
Conditions
VGS = 10V
f
V
GS
= 0V
V
DS
= 50V
ƒ = 1.0MHz
V
GS
= 0V, VDS = 0V to 60V
h
V
GS
= 0V, VDS = 0V to 60V
g
T
J
= 25°C, IS = 47A, VGS = 0V
f
integral reverse
p-n junction diode.
Conditions
VGS = 0V, ID = 250μA
Reference to 25°C, I
D
= 5mA
c
V
GS
= 10V, ID = 47A
f
V
DS
= VGS, ID = 100μA
V
DS
= 60V, VGS = 0V
V
DS
= 48V, VGS = 0V, TJ = 125°C
I
D
= 47A
R
G
= 10Ω
V
GS
= 10V
f
VDD = 39V
I
D
= 47A, VDS =0V, VGS = 10V

IRF1018E/S/SLPbF
www.irf.com 3
Fig 1. Typical Output Characteristics
Fig 3. Typical Transfer Characteristics
Fig 4. Normalized On-Resistance vs. Temperature
Fig 2. Typical Output Characteristics
Fig 6. Typical Gate Charge vs. Gate-to-Source VoltageFig 5. Typical Capacitance vs. Drain-to-Source Voltage
0.1 1 10 100
VDS, Drain-to-Source Voltage (V)
1
10
100
1000
I
D
,
D
r
a
i
n
-
t
o
-
S
o
u
r
c
e
C
u
r
r
e
n
t
(
A
)
VGS
TOP 15V
10V
8.0V
6.0V
5.5V
5.0V
4.8V
BOTTOM 4.5V
≤60μs PULSE WIDTH
Tj = 25°C
4.5V
0.1 1 10 100
VDS, Drain-to-Source Voltage (V)
1
10
100
1000
I
D
,
D
r
a
i
n
-
t
o
-
S
o
u
r
c
e
C
u
r
r
e
n
t
(
A
)
VGS
TOP 15V
10V
8.0V
6.0V
5.5V
5.0V
4.8V
BOTTOM 4.5V
≤60μs PULSE WIDTH
Tj = 175°C
4.5V
2 3 4 5 6 7 8 9
VGS, Gate-to-Source Voltage (V)
0.1
1
10
100
1000
I
D
,
D
r
a
i
n
-
t
o
-
S
o
u
r
c
e
C
u
r
r
e
n
t
(
A
)
TJ = 25°C
TJ = 175°C
V
DS
= 25V
≤
60μs PULSE WIDTH
-60 -40 -20 0 20 40 60 80 100120 140160180
TJ , Junction Temperature (°C)
0.5
1.0
1.5
2.0
2.5
R
D
S
(
o
n
)
,
D
r
a
i
n
-
t
o
-
S
o
u
r
c
e
O
n
R
e
s
i
s
t
a
n
c
e
(
N
o
r
m
a
l
i
z
e
d
)
ID = 47A
V
GS
= 10V
1 10 100
VDS, Drain-to-Source Voltage (V)
0
1000
2000
3000
4000
C
,
C
a
p
a
c
i
t
a
n
c
e
(
p
F
)
V
GS
= 0V, f = 1 MHZ
C
iss
= C
gs
+ Cgd, C
ds
SHORTED
C
rss
= C
gd
C
oss
= C
ds
+ C
gd
C
oss
C
rss
C
iss
0 102030405060
Q
G
Total Gate Charge (nC)
0
4
8
12
16
V
G
S
,
G
a
t
e
-
t
o
-
S
o
u
r
c
e
V
o
l
t
a
g
e
(
V
)
VDS= 48V
VDS= 30V
VDS= 12V
ID= 47A

IRF1018E/S/SLPbF
4 www.irf.com
Fig 8. Maximum Safe Operating Area
Fig 10. Drain-to-Source Breakdown Voltage
Fig 7. Typical Source-Drain Diode Forward Voltage
Fig 11. Typical C
OSS
Stored Energy
Fig 9. Maximum Drain Current vs. Case Temperature
Fig 12. Maximum Avalanche Energy vs. DrainCurrent
0.0 0.5 1.0 1.5 2.0
VSD, Source-to-Drain Voltage (V)
0.1
1
10
100
1000
I
S
D
,
R
e
v
e
r
s
e
D
r
a
i
n
C
u
r
r
e
n
t
(
A
)
TJ = 25°C
TJ = 175°C
V
GS
= 0V
0.1 1 10 100
VDS, Drain-toSource Voltage (V)
0.1
1
10
100
1000
10000
I
D
,
D
r
a
i
n
-
t
o
-
S
o
u
r
c
e
C
u
r
r
e
n
t
(
A
)
Tc = 25°C
Tj = 175°C
Single Pulse
1msec
10msec
OPERATION IN THIS AREA
LIMITED BY RDS(on)
100μsec
DC
0 10 20 30 40 50 60
V
DS,
Drain-to-Source Voltage (V)
0.0
0.2
0.4
0.6
0.8
E
n
e
r
g
y
(
μ
J
)
25 50 75 100 125 150 175
TC , CaseTemperature (°C)
0
20
40
60
80
I
D
,
D
r
a
i
n
C
u
r
r
e
n
t
(
A
)
-60 -40 -20 0 20 40 60 80 100120140160180
TJ , Temperature ( °C )
60
65
70
75
80
V
(
B
R
)
D
S
S
,
D
r
a
i
n
-
t
o
-
S
o
u
r
c
e
B
r
e
a
k
d
o
w
n
V
o
l
t
a
g
e
(
V
)
Id = 5mA
25 50 75 100 125 150 175
Starting TJ, Junction Temperature (°C)
0
50
100
150
200
250
300
350
400
E
A
S
,
S
i
n
g
l
e
P
u
l
s
e
A
v
a
l
a
n
c
h
e
E
n
e
r
g
y
(
m
J
)
I
D
TOP
5.3A
11A
BOTTOM
47A

IRF1018E/S/SLPbF
www.irf.com 5
Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case
Fig 14. Typical Avalanche Current vs.Pulsewidth
Fig 15. Maximum Avalanche Energy vs. Temperature
Notes on Repetitive Avalanche Curves , Figures 14, 15:
(For further info, see AN-1005 at www.irf.com)
1. Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a temperature far in
excess of T
jmax
. This is validated for every part type.
2. Safe operation in Avalanche is allowed as long asT
jmax
is not exceeded.
3. Equation below based on circuit and waveforms shown in Figures 16a, 16b.
4. P
D (ave)
= Average power dissipation per single avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase
during avalanche).
6. I
av
= Allowable avalanche current.
7. ΔT = Allowable rise in junction temperature, not to exceed T
jmax
(assumed as
25°C in Figure 14, 15).
t
av =
Average time in avalanche.
D = Duty cycle in avalanche = t
av
·f
Z
thJC
(D, tav) = Transient thermal resistance, see Figures 13)
P
D (ave)
= 1/2 ( 1.3·BV·Iav) = DT/ Z
thJC
I
av =
2DT/ [1.3·BV·Zth]
E
AS (AR)
= P
D (ave)·tav
1E-006 1E-005 0.0001 0.001 0.01 0.1
t1 , Rectangular Pulse Duration (sec)
0.001
0.01
0.1
1
10
T
h
e
r
m
a
l
R
e
s
p
o
n
s
e
(
Z
t
h
J
C
)
0.20
0.10
D = 0.50
0.02
0.01
0.05
SINGLE PULSE
( THERMAL RESPONSE )
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
Ri (°C/W)
τι
0.026741 0.000007
0.28078 0.000091
0.606685 0.000843
0.406128 0.005884
τ
J
τ
J
τ
1
τ
1
τ
2
τ
2
τ
3
τ
3
R
1
R
1
R
2
R
2
R
3
R
3
τ
C
τ
4
τ
4
R
4
R
4
1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01
tav (sec)
0.1
1
10
100
A
v
a
l
a
n
c
h
e
C
u
r
r
e
n
t
(
A
)
0.05
Duty Cycle = Single Pulse
0.10
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming ΔΤj = 25°C and
Tstart = 150°C.
0.01
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming ΔTj = 150°C and
Tstart =25°C (Single Pulse)
25 50 75 100 125 150 175
Starting TJ , Junction Temperature (°C)
0
20
40
60
80
100
E
A
R
,
A
v
a
l
a
n
c
h
e
E
n
e
r
g
y
(
m
J
)
TOP Single Pulse
BOTTOM 10% Duty Cycle
ID = 47A

IRF1018E/S/SLPbF
6 www.irf.com
Fig. 17 - Typical Recovery Current vs. dif/dt
Fig 16. Threshold Voltage vs. Temperature
Fig. 19 - Typical Stored Charge vs. dif/dtFig. 18 - Typical Recovery Current vs. dif/dt
Fig. 20 - Typical Stored Charge vs. dif/dt
-75 -50 -25 0 25 50 75 100 125 150 175
TJ , Temperature ( °C )
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
V
G
S
(
t
h
)
G
a
t
e
t
h
r
e
s
h
o
l
d
V
o
l
t
a
g
e
(
V
)
ID = 1.0A
ID = 1.0mA
ID = 250μA
ID = 100μA
0 200 400 600 800 1000
diF /dt (A/μs)
0
2
4
6
8
10
12
14
I
R
R
(
A
)
IF = 32A
VR = 51V
TJ = 25°C
TJ = 125°C
0 200 400 600 800 1000
diF /dt (A/μs)
0
2
4
6
8
10
12
14
I
R
R
(
A
)
IF = 47A
VR = 51V
TJ = 25°C
TJ = 125°C
0 200 400 600 800 1000
diF /dt (A/μs)
0
40
80
120
160
200
240
280
320
Q
R
R
(
A
)
IF = 47A
VR = 51V
TJ = 25°C
TJ = 125°C
0 200 400 600 800 1000
diF /dt (A/μs)
0
40
80
120
160
200
240
280
320
Q
R
R
(
A
)
IF = 32A
VR = 51V
TJ = 25°C
TJ = 125°C

IRF1018E/S/SLPbF
www.irf.com 7
Fig 23a. Switching Time Test Circuit
Fig 23b. Switching Time Waveforms
V
GS
V
DS
90%
10%
t
d(on)
t
d(off)
t
r
t
f
Fig 22b. Unclamped Inductive Waveforms
Fig 22a. Unclamped Inductive Test Circuit
t
p
V
(BR)DSS
I
AS
R
G
I
AS
0.01
Ω
t
p
D.U.T
L
V
DS
+
-
V
DD
DRIVER
15V
20V
V
GS
Fig 24a. Gate Charge Test Circuit
Fig 24b. Gate Charge Waveform
V
DS
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
R
D
V
GS
R
G
D.U.T.
10V
+
-
V
DD
Vds
Vgs
Id
Vgs(th)
Qgs1
Qgs2QgdQgodr
1K
VCC
DUT
0
L
20K
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
P.W.
Period
di/dt
Diode Recovery
dv/dt
Ripple ≤ 5%
Body Diode Forward Drop
Re-Applied
Voltage
Reverse
Recovery
Current
Body Diode Forward
Current
VGS=10V
V
DD
I
SD
Driver Gate Drive
D.U.T. ISDWaveform
D.U.T. VDSWaveform
Inductor Curent
D =
P. W.
Period
*** V
GS
= 5V for Logic Level Devices
***
+
-
+
+
+
-
-
-
R
G
V
DD
• dv/dt controlled by R
G
• Driver same type as D.U.T.
• I
SD
controlled by Duty Factor "D"
• D.U.T. - Device Under Test
D.U.T
**
*
*
Use P-Channel Driver for P-Channel Measurements
** Reverse Polarity for P-Channel
Fig 21. Diode Reverse Recovery Test Circuit for HEXFET® Power MOSFETs

IRF1018E/S/SLPbF
8 www.irf.com
TO-220AB packages are not recommended for Surface Mount Application.
TO-220AB Part Marking Information
TO-220AB Package Outline
Dimensions are shown in millimeters (inches)
LOT CODE 1789
EXAMPLE: T HIS IS AN IRF 1010
Note: "P" in assembly line position
indi cates "L ead - F r ee"
IN THE ASSEMBLY LINE "C"
ASS EMBLE D ON WW 19, 2000
INTE RNAT IONAL
PART NUMBER
RECTIFIER
LOT CODE
ASSEMBLY
LOGO
YEAR 0 = 2000
DAT E CODE
WEEK 19
LINE C
Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/

IRF1018E/S/SLPbF
www.irf.com 9
TO-262 Part Marking Information
LOGO
RECTIFIER
INTERNATIONAL
LOT CODE
ASSEMBLY
LOGO
RECTIFIER
INTERNATIONAL
DAT E CODE
WE E K 1 9
YEAR 7 = 1997
PART NUMBER
A = AS S E MBL Y S I T E CODE
OR
PRODUCT (OPTIONAL)
P = D E S IGN AT E S L EAD - F R E E
EXAMPLE : THIS IS AN IRL3103L
LOT CODE 1789
ASSEMBLY
PART NUMBER
DATE CODE
WEEK 19
LINE C
LOT CODE
YEAR 7 = 1997
ASS EMBL ED ON WW 19, 1997
IN THE ASS EMBLY LINE "C"
TO-262 Package Outline (Dimensions are shown in millimeters (inches))
Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/

IRF1018E/S/SLPbF
10 www.irf.com
D2Pak Part Marking Information
F530S
THIS IS AN IRF530S WITH
LOT CODE 8024
AS S E MBL ED ON WW 02, 2000
IN T HE AS SEMBLY LINE "L"
ASSEMBLY
LOT CODE
INTE RNATIONAL
RECT IF IER
LOGO
PART NUMBER
DATE CODE
YEAR 0 = 2000
WEEK 02
LINE L
D2Pak Package Outline (Dimensions are shown in millimeters (inches))
DATE CODE
IN T HE AS SEMBLY LINE "L"
AS S E MBL ED ON WW 02, 2000
THIS IS AN IRF530S WITH
LOT CODE 8024
INTE RNATIONAL
LOGO
RECT IF IER
LOT CODE
PART NUMBER
F530S
For GB Production
Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/

IRF1018E/S/SLPbF
www.irf.com 11
Data and specifications subject to change without notice.
This product has been designed and qualified for the Industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.2/08
D2Pak Tape & Reel Information
3
4
4
TRR
FEED DIRECTION
1.85 (.073)
1.65 (.065)
1.60 (.063)
1.50 (.059)
4.10 (.161)
3.90 (.153)
TRL
FEED DIRECTION
10.90 (.429)
10.70 (.421)
16.10 (.634)
15.90 (.626)
1.75 (.069)
1.25 (.049)
11.60 (.457)
11.40 (.449)
15.42 (.609)
15.22 (.601)
4.72 (.136)
4.52 (.178)
24.30 (.957)
23.90 (.941)
0.368 (.0145)
0.342 (.0135)
1.60 (.063)
1.50 (.059)
13.50 (.532)
12.80 (.504)
330.00
(14.173)
MAX.
27.40 (1.079)
23.90 (.941)
60.00 (2.362)
MIN.
30.40 (1.197)
MAX.
26.40 (1.039)
24.40 (.961)
NOTES :
1. COMFORMS TO EIA-418.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION MEASURED @ HUB.
4. INCLUDES FLANGE DISTORTION @ OUTER EDGE.
Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/