Datasheet ILD5, ILQ2, ILD2, ILQ5, ILQ1 Datasheet (Siemens)

...
Page 1
. .
) )
DUAL CHANNEL
QUAD CHANNEL
ILD1/2/5
ILQ1/2/5
PHOTOTRANSISTOR
OPTOCOUPLER
FEATURES
• Current Transfer Ratio at I
F
ILD/Q1, 20% Min. ILD/Q2, 100% Min. ILD/Q5, 50% Min.
• High Collector-Emitter Voltage ILD/Q1: BV ILD/Q2, ILD/Q5: BV
CEO
=50 V
CEO
=70 V
• Field-Effect Stable by TRansparent IOn Shield (TRIOS) Isolation Test Voltage, 5300 VAC
RMS
• Underwriters Lab File #E52744
V
VDE 0884 Available with Option 1
DE
Maximum Ratings (Each Channel) Emitter
Reverse Voltage ................................................6 V
Forward Current ...........................................60 mA
Surge Current................................................. 2.5 A
Power Dissipation.......................................100 mW
Derate Linearly from 25 °
C..................... 1.3 mW/ ° C
Detector
Collector-Emitter Reverse Voltage
ILD/Q1........................................................... 50 V
ILD/Q2, ILD/Q5...............................................70 V
Collector Current.......................................... 50 mA
Collector Current (t<1 ms)...........................400 mA
Power Dissipation.......................................200 mW
Derate Linearly from 25 °
C......................2.6 mW/ ° C
Package
Isolation Test V oltage (between
emitter and detector referred to standard climate 23 °
DIN 50014) ....................................5300 VAC
C/50%RH,
RMS
Creepage............................................... min. 7 mm
Clearance...............................................min. 7 mm
Isolation Resistance
V
=500 V, T
IO
V
=500 V, T
IO
=25 ° C .........................R
A
=100 ° C .......................R
A
IO IO
=10 =10
12 11
Package Power Dissipation ...................... 250 mW
Derate Linearly from 25 °
Storage Temperature................... –40 °
Operating Temperature................–40 °
C..................... 3.3 mW/ ° C
C to +150 ° C
C to +100 ° C
Junction Temperature....................................100 °
Soldering Temperature
(2 mm from case bottom)..........................260 °
Dimensions in inches (mm)
Dual Channel
Pin One I.D.
12
87
.150 (3.81) .130 (3.30)
.040 (1.02) .030 (.76 )
.100 (2.54) Typ.
.790 (20.07) .779 (19.77 )
Anode Cathode Cathode
Anode
1 2 3 4
.305 Typ.
(7.75) Typ.
10° Typ.
3°–9°
.012 (.30) .008 (.20)
Pin One I.D.
.150 (3.81) .130 (3.30)
.040 (1.02) .030 (.76 )
8 7 6 5
Anode Cathode Cathode
Anode
Anode Cathode Cathode
Anode
Emitter Collector Collector Emitter
.135 (3.43) .115 (2.92)
1 2 3 4 5 6 7 8
.305 Typ.
(7.75) Typ.
10° Typ.
3°–9°
.012 (.30) .008 (.20)
.268 (6.81) .255 (6.48)
4° Typ.
.022 (.56) .018 (.46)
Quad Channel
268 (6.81) 255 (6.48)
4° Typ.
.022 (.56) .018 (.46)
34
65
.390 (9.91) .379 (9.63)
.045 (1.14) .030 (.76)
.045 (1.14) .030 (.76)
.100 (2.54) Typ.
DESCRIPTION
The ILD/Q1/2/5 are optically coupled isolated pairs employing GaAs infrared
LEDs and silicon NPN phototransistor. Signal information, including a DC
level, can be transmitted by the drive while maintaining a high degree of electrical isolation between input and output. The ILD/Q1/2/5 are especially designed for driving medium-speed logic and can be used to eliminate trou­blesome ground loop and noise problems. Also these couplers can be used
C C
to replace relays and transformers in many digital interface applica­tions such as CRT modulation. The ILD1/2/5 has two isolated channels in a single DIP package and the ILQ1/2/5 has four isolated channels per pack­age.
See Appnote 45, “How to Use Optocoupler Normalized Curves.”
16 15 14 13 12 11 10 9
Emitter Collector Collector Emitter Emitter Collector Collector Emitter
.135 (3.43 .115 (2.92
5–1
Page 2
Characteristics
Emitter
Symbol Min. Typ. Max. Unit Condition
Forward Voltage V Reverse Current I Capacitance C Thermal Resistance, Junction to Lead R
F
R
0
THJL
1.25 1.65 V I
0.01 10
µ AV
25 pF V 750
° C/W
Detector
Capacitance C Leakage Current, Collector-Emitter I Saturation Voltage, Collector-Emitter V
CE
CEO
CESAT
6.8 pF V 550nAV
0.25 0.4 I DC Forward Current Gain HFE 200 650 1800 V Saturated DC Forward Current Gain HFE Thermal Resistance, Junction to Lead R
THJL
120 400 600 V
SAT
500
° C/W
Package Transfer Characteristics (Each Channel)
Symbol Min. Typ. Max. Unit Condition
ILD/Q1
Saturated Current Transfer Ratio (Collector-Emitter) CTR Current Transfer Ratio (Collector-Emitter) CTR
ILD/Q2
CESAT
CE
20 90 300 % I
75 % I
=60 mA
F
=6 V
R
=0 V, f=1 MHz
R
=5 V, f=1 MHz
CE
=10 V
CE
=1 mA, I
CE
= 10 V, I
CE
= 0.4 V, I
CE
=10 mA, V
F
=10 mA, V
F
=20 µ A
B
=20 µ A
B
=20 µ A
B
CE
CE
=0.4 V =10 V
Saturated Current Transfer Ratio (Collector-Emitter) CTR Current Transfer Ratio (Collector-Emitter) CTR
ILD/Q5
Saturated Current Transfer Ratio (Collector-Emitter) CTR Current Transfer Ratio (Collector-Emitter) CTR
Isolation and Insulation
Common Mode Rejection, Output High C Common Mode Rejection, Output Low C Common Mode Coupling Capacitance C Package Capacitance C
MH
ML
CM
IO
CESAT
CE
CESAT
CE
170 % I
100 200 500 % I
100 % I
50 130 400 % I
5000 V/ µ sV 5000 V/ µ sV
0.01 pF
0.8 pF V
=10 mA, V
F
=10 mA, V
F
=10 mA, V
F
=10 mA, V
F
=50 V
CM
CM
IO
P-P
=50 V
P-P
=0 V, f=1 MHz
CE
CE
CE
CE
, R , R
=0.4 V =10 V
=0.4 V
=10 V
=1 k Ω , I
L
=1 k Ω , I
L
=0 mA
F
=10 mA
F
5–2
ILD/Q1/2/5
Page 3
Typical Switching Times
I
V
V
I
V
µ
Figure 1. Non-saturated switching timing
VCC=5 V
=10 mA
F
F=10 KHz, DF=50%
V
O
RL=75
Figure 2. Non-saturated switching timing
I
F
Characteristic ILD/Q1
I
=20 mA
F
Delay, t
D
Rise time, t Storage, t
S
Fall Time, t Propagation
H-L, t
PHL
Propagation L-H, t
PLH
0.8 1.7 1.7
1.9 2.6 2.6
R
0.2 0.4 0.4
1.4 2.2 2.2
F
0.7 1.2 1.1
1.4 2.3 2.5 µs
ILD/Q2 I
=5 mA
F
ILD/Q5 I
=10 mA
F
Unit Condition
µ s µ s
V
µ s µ s
CE
R
L
50% of V
s
=5 V
=75 k Ω
PP
t
t
O
PLH
t
t
R
D
PHL
t
S
Figure 3. Saturated switching timing
F=10 KHz, DF=50%
=10 mA
F
VCC=5
R
L
V
O
Figure 4. Saturated switching timing
I
F
t
50%
F
Characteristic ILD/Q1
IF=20 mA
Delay, t
D
Rise time, t Storage, t
S
Fall Time, t Propagation
H-L, t
PHL
Propagation L-H, t
PLH
0.8 1 1.7
1.2 2 7
R
7.4 5.4 4.6
7.6 13.5 20
F
1.6 5.4 2.6
8.6 7.4 7.2
ILD/Q2 IF=5 mA
ILD/Q5 IF=10 mA
Unit Condition
µs µs µs µs µs
µs
Figure 5. Normalized non-saturated and saturated CTR at T
=25 ° C versus LED current
A
1.4
1.3
1.2
1.1
1.0
0.9
Vf-Forward Voltage - V
0.8
0.7
.1 1 10 100
Ta = -55°C
Ta = 25°C
Ta = 100°C
If - Forward Current - mA
VCE=0.4 V RL=1 k VCC=5 V VTH=1.5 V
t
D
t
O
R
t
PLH
VTH=1.5 V
t
t
t
PHL
S
F
Figure 6. Normalized non-saturated and saturated CTR at T
=25 ° C versus LED current
A
1.5
Normalized to:
Vce = 10V, IF = 10mA Ta = 25°C
CTRce(sat) Vce = 0.4V
1.0
0.5
NCTR(SAT) NCTR
0.0
CTRNF - Normalized CTR Factor
.1 1 10 100
IF - LED Current - mA
5–3
ILD/Q1/2/5
Page 4
Figure 7. Normalized non-saturated and saturated CTR at T
CTRNF - Normalized CTR Factor
=50°C versus LED current
A
1.5 Normalized to:
Vce = 10V, IF = 10mA, Ta = 25°C CTRce(sat) Vce = 0.4V
1.0
0.5
0.0
Ta = 50°C
NCTR(SAT) NCTR
.1 1 10 100
IF - LED Current - mA
Figure 10. Collector-emitter current versus tempera­ture and LED current
35 30
25 20 15
10
5 0
Ice - Collector Current - mA
50°C
25°C
85°C
IF - LED Current - mA
70°C
6050403020100
Figure 8. Normalized non-saturated and saturated CTR at T
CTR - Normalized CTR Factor
=70°C versus LED current
A
1.5
1.0
0.5
0.0
Normalized to: Vce = 10V, IF = 10mA Ta = 25°C
CTRce(sat) Vce = 0.4V
Ta = 70°C
NCTR(SAT) NCTR
.1 1 10 100
IF - LED Current - mA
Figure 9. Normalized non-saturated and saturated CTR at T
=85°C versus LED current
A
1.5 Normalized to: Vce = 10V, IF = 10mA, Ta = 25°C CTRce(sat) Vce = 0.4V
1.0
0.5
NCTR - Normalized CTR
0.0
IF - LED Current - mA
Ta = 85°C
NCTR(SAT) NCTR
100101.1
Figure 11. Collector-emitter leakage current versus temperature
5
10
4
10
3
10
2
10
1
10
0
10
-1
10
Iceo - Collector-Emitter - nA
-2
10
Vce = 10V
TYPICAL
100806040200-20
Ta - Ambient Temperature - °C
Figure 12. Propagation delay versus collector load resistor
1000
Ta = 25°C, IF = 10mA
Vcc = 5V, Vth = 1.5V
tPLH
100
10
tPHL
1
.1 1 10 100
tPLH - Propagation Low-High - µs
RL - Collector Load Resistor - K
2.5
2.0
1.5
1.0
tPHL - Propagation High-Low - µs
5–4
ILD/Q1/2/5
Loading...