1-43
Package Characteristics
Over recommended temperature (TA = 0°C to 25°C) unless otherwise specified.
Parameter Sym. Device Min. Typ.* Max. Units Test Conditions Fig. Note
Input-Output V
ISO
HCPL-4504 2500 V rms RH ≤ 50%, 6, 13
Momentary HCPL-0454 t = 1 min.,
Withstand TA = 25° C
Voltage†
HCPL-4504 5000 6, 11,
(Option 020) 14
Input-Output R
I-O
HCPL-4504 10
12
Ω V
I-O
= 500 Vdc 6
Resistance HCPL-0454
HCNW4504 10
12
10
13
TA = 25° C
10
11
TA = 100° C
Input-Output C
I-O
HCPL-4504 0.6 pF f = 1 MHz 6
Capacitance HCPL-0454
HCNW4504 0.5 0.6
*All typicals at TA = 25°C..
†The Input-Output Momentary Withstand Voltage is a dielectric voltage rating that should not be interpreted as an input-output
continuous voltage rating. For the continuous voltage rating refer to the VDE 0884 Insulation Related Characteristics Table (if
applicable), your equipment level safety specification or HP Application Note 1074 entitled “Optocoupler Input-Output Endurance
Voltage.”
HCNW4504 5000
Notes:
1. Derate linearly above 70°C free-air temperature at a rate of 0.8 mA/°C (8-Pin DIP).
Derate linearly above 85°C free-air temperature at a rate of 0.5 mA/°C (SO-8).
2. Derate linearly above 70°C free-air temperature at a rate of 1.6 mA/°C (8-Pin DIP).
Derate linearly above 85°C free-air temperature at a rate of 1.0 mA/°C (SO-8).
3. Derate linearly above 70°C free-air temperature at a rate of 0.9 mW/°C (8-Pin DIP).
Derate linearly above 85°C free-air temperature at a rate of 1.1 mW/°C (SO-8).
4. Derate linearly above 70°C free-air temperature at a rate of 2.0 mW/°C (8-Pin DIP).
Derate linearly above 85°C free-air temperature at a rate of 2.3 mW/°C (SO-8).
5. CURRENT TRANSFER RATIO in percent is defined as the ratio of output collector current, IO, to the forward LED input current,
IF, times 100.
6. Device considered a two-terminal device: Pins 1, 2, 3, and 4 shorted together and Pins 5, 6, 7, and 8 shorted together.
7. Under TTL load and drive conditions: Common mode transient immunity in a Logic High level is the maximum tolerable (positive)
dVCM/dt on the leading edge of the common mode pulse, VCM, to assure that the output will remain in a Logic High state
(i.e., VO> 2.0 V). Common mode transient immunity in a Logic Low level is the maximum tolerable (negative) dVCM/dt on the
trailing edge of the common mode pulse signal, VCM, to assure that the output will remain in a Logic Low state (i.e., VO < 0.8 V).
6, 14
8. Under IPM (Intelligent Power Module) load and LED drive conditions: Common mode transient immunity in a Logic High level is
the maximum tolerable dVCM/dt on the leading edge of the common mode pulse, VCM, to assure that the output will remain in a
Logic High state (i.e., VO > 3.0 V). Common mode transient immunity in a Logic Low level is the maximum tolerable dVCM/dt on
the trailing edge of the common mode pulse signal, VCM, to assure that the output will remain in a Logic Low state
(i.e., VO< 1.0 V).
9. The 1.9 kΩ load represents 1 TTL unit load of 1.6 mA and the 5.6 kΩ pull-up resistor.
10. The RL = 20 kΩ, CL = 100 pF load represents an IPM (Intelligent Power Module) load.
11. See Option 020 data sheet for more information.
12. Use of a 0.1 µF bypass capacitor connected between pins 5 and 8 is recommended.
13. In accordance with UL 1577, each optocoupler is proof tested by applying an insulation test voltage ≥ 3000 V rms for 1 second
(leakage detection current limit, I
i-o
≤ 5 µA). This test is performed before the 100% Production test shown in the VDE 0884
Insulation Related Characteristics Table, if applicable.
14. In accordance with UL 1577, each optocoupler is proof tested by applying an insulation test voltage ≥ 6000 V rms for 1 second
(leakage detection current limit, I
i-o
≤ 5 µA). This test is performed before the 100% Production test shown in the VDE 0884
Insulation Related Characteristics Table, if applicable.
15. The difference between t
PLH
and t
PHL
between any two devices (same part number) under the same test condition. (See Power
Inverter Dead Time and Propagation Delay Specifications section.)