Datasheet FDC6302P Datasheet (Fairchild Semiconductor)

Page 1
October 1997
FDC6302P Digital FET, Dual P-Channel
General Description Features
These Dual P-Channel logic level enhancement mode field effect transistors are produced using Fairchild's proprietary, high cell density, DMOS technology. This very high density process is especially tailored to minimize on-state resistance. This device has been designed especially for low voltage applications as a replacement for digital transistors in load switchimg applications. Since bias resistors are not required this one P-Channel FET can replace several digital transistors with different bias resistors like the IMBxA series.
SOT-23
SuperSOTTM-6
SuperSOTTM-8
-25 V, -0.12 A continuous, -0.5 A Peak. R
= 13 @ VGS= -2.7 V
DS(ON)
R
= 10 @ V
DS(ON)
= -4.5 V.
GS
Very low level gate drive requirements allowing direct operation in 3V circuits. V
GS(th)
< 1.5V.
Gate-Source Zener for ESD ruggedness. >6kV Human Body Model
Replace multiple PNP digital transistors (IMHxA series) with one DMOS FET.
SO-8
SOT-223
SOIC-16
3
2
1
Absolute Maximum Ratings T
4
5
6
= 25oC unless other wise noted
A
Symbol Parameter FDC6302P Units
V
DSS
V
GSS
I
D
Drain-Source Voltage -25 V Gate-Source Voltage -8 V Drain Current - Continuous -0.12 A
- Pulsed -0.5
P
D
Maximum Power Dissipation (Note 1a) 0.9 W
(Note 1b) 0.7 TJ,T ESD Electrostatic Discharge Rating MIL-STD-883D
Operating and Storage Temperature Range -55 to 150 °C
STG
6.0 kV
Human Body Model (100pf / 1500 Ohm)
THERMAL CHARACTERISTICS
R
JA
θ
R
JC
θ
© 1997 Fairchild Semiconductor Corporation
Thermal Resistance, Junction-to-Ambient (Note 1a) 140 °C/W
Thermal Resistance, Junction-to-Case (Note 1) 60 °C/W
FDC6302P Rev.C
Page 2
Electrical Characteristics (T
= 25 OC unless otherwise noted )
A
Symbol Parameter Conditions Min Typ Max Units OFF CHARACTERISTICS
BV
BV
I
DSS
I
GSS
DSS
DSS
Drain-Source Breakdown Voltage VGS = 0 V, ID = -250 µA -25 V Breakdown Voltage Temp. Coefficient
/T
J
Zero Gate Voltage Drain Current
ID = -250 µA, Referenced to 25 o C VDS = -20 V, V
GS
= 0 V
-20
-1 µA
TJ = 55°C
Gate - Body Leakage Current VGS = -8 V, VDS= 0 V -100 nA
mV /o C
-10 µA
ON CHARACTERISTICS (Note 2)
V
V R
GS(th)
GS(th)
DS(ON)
Gate Threshold Voltage Temp. Coefficient
/T
J
Gate Threshold Voltage
ID = -250 µA, Referenced to 25 o C VDS = VGS, ID = -250 µA
-0.65 -1 -1.5 V
Static Drain-Source On-Resistance VGS = -2.7 V, ID = -0.05A 10.6 13
VGS = -4.5 V, ID = -0.2 A
1.9
7.9 10
mV /o C
TJ =125°C 12 18 I g
D(ON)
FS
On-State Drain Current
VGS = -2.7 V, VDS = -5 V
Forward Transconductance VDS = -5 V, ID= -0.2 A 0.135 S
-0.05 A
DYNAMIC CHARACTERISTICS
C
iss
C
oss
C
rss
Input Capacitance Output Capacitance 7 pF
VDS = -10 V, VGS = 0 V, f = 1.0 MHz
Reverse Transfer Capacitance 1.4 pF
11 pF
SWITCHING CHARACTERISTICS (Note 2)
t t t t Q Q Q
D(on)
r
D(off)
f
g
gs
gd
Turn - On Delay Time VDD = -6 V, ID = -0.2 A, Turn - On Rise Time 8 16 ns
VGS = -4.5 V, R
GEN
= 50
5 12 ns
Turn - Off Delay Time 9 18 ns Turn - Off Fall Time 5 10 ns Total Gate Charge VDS = -5 V, ID = - 0.2 A, Gate-Source Charge 0.12 nC
VGS = -4.5 V
0.22 0.31 nC
Gate-Drain Charge 0.05 nC
DRAIN-SOURCE DIODE CHARACTERISTICS AND MAXIMUM RATINGS
I
S
V
SD
Notes:
1. R
JA
θ
design while R
Maximum Continuous Drain-Source Diode Forward Current -0.7 A Drain-Source Diode Forward Voltage
is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. R
is determined by the user's board design.
CA
θ
VGS = 0 V, IS = -0.7 A
(Note 2)
-1 -1.3 V
is guaranteed by
JC
θ
a. 140OC/W on a 0.125 in2 pad of
2oz copper.
2. Pulse Test: Pulse Width < 300µs, Duty Cycle < 2.0%.
b. 180OC/W on a 0.005 in2 of pad
of 2oz copper.
FDC6302P Rev.C
Page 3
Typical Electrical Characteristics
R
0.15
0.2
V = -5.0V
GS
-4.5
-4.0
-3.5
-3.0
-2.7
0.1
0.05
D
-I , DRAIN-SOURCE CURRENT (A) 0
0 1 2 3 4
-V , DRAIN-SOURCE VOLTAGE (V)
DS
-2.5
Figure 1. On-Region Characteristics.
1.6
I = -0.05A
D
V = -2.7V
1.4
GS
1.2
1
DS(ON)
0.8
R , NORMALIZED
0.6
DRAIN-SOURCE ON-RESISTANCE (OHMS)
-50 -25 0 25 50 75 100 125 150 T , JUNCTION TEMPERATURE (°C)
J
-2.0
2
V = -2.0 V
GS
1.5
-2.5
-2.7
-3.0
1
DS(ON)
R , NORMALIZED
DRAIN-SOURCE ON-RESISTANCE
0.5 0 0.05 0.1 0.15 0.2
-I , DRAIN CURRENT (A)
D
Figure 2. On-Resistance Variation with
Drain Current and Gate Voltage.
25
T = 25°C
A
20
15
10
5
,DRAIN-SOURCE ON-RESISTANCE
0
0 1 2 3 4 5 6 7 8
DS(ON)
125 °C
-V ,GATE TO SOURCE VOLTAGE (V)
GS
-4.0
-3.5
I = -0.05A
D
-4.5
Figure 3. On-Resistance Variation
with Temperature.
-1
V = -5V
DS
-0.75
-0.5
-0.25
D
I , DRAIN CURRENT (A)
0
V , GATE TO SOURCE VOLTAGE (V)
GS
Figure 5. Transfer Characteristics.
T = -55°C
J
25°C
125°C
Figure 4. On Resistance Variation with
Gate-To- Source Voltage.
0.5
V = 0V
GS
0.1
0.01
S
-3-2.5-2-1.5-1-0.5
-I , REVERSE DRAIN CURRENT (A)
0.0001 0 0.2 0.4 0.6 0.8 1 1.2
-V , BODY DIODE FORWARD VOLTAGE (V)
SD
T = 125°C
J
25°C
-55°C
Figure 6. Body Diode Forward Voltage
Variation with Source Current and
Temperature.
FDC6302P Rev.C
Page 4
Typical Electrical And Thermal Characteristics
8
I = -0.2A
D
6
4
2
GS
-V , GATE-SOURCE VOLTAGE (V) 0
0 0.1 0.2 0.3 0.4 0.5
Q , GATE CHARGE (nC)
V = -5V
DS
-10
-15
g
Figure 7. Gate Charge Characteristics.
0.8
0.5
0.2
0.1
0.05
D
-I , DRAIN CURRENT (A)
0.02
0.01
RDS(ON) LIMIT
DC
V = -2.7V
GS
SINGLE PULSE
R =See Note 1b
JA
θ
T = 25°C
A
1 2 5 10 20 40
- V , DRAIN-SOURCE VOLTAGE (V)
DS
10ms
100ms
1s
1ms
25
15
C
C
C
iss
oss
rss
10
5
3
CAPACITANCE (pF)
2
f = 1 MHz V = 0 V
GS
1
0.1 0.3 1 2 5 10 15 25
-V , DRAIN TO SOURCE VOLTAGE (V)
DS
Figure 8. Capacitance Characteristics.
5
4
3
2
POWER (W)
1
0
0.01 0.1 1 10 100 300 SINGLE PULSE TIME (SEC)
SINGLE PULSE
R =See note 1b
JA
θ
T = 25°C
A
Figure 9. Maximum Safe Operating Area.
1
D = 0.5
0.5
0.2
0.2
0.1
0.1
0.05
r(t), NORMALIZED EFFECTIVE
0.02
TRANSIENT THERMAL RESISTANCE
0.01
0.05
0.02
0.01 Single Pulse
0.0001 0.001 0.01 0.1 1 10 100 300
Figure 11. Transient Thermal Response Curve.
Note: Thermal characterization performed using the conditions described in note 1b.Transient thermal response will change depending on the circuit board design.
t , TIME (sec)
1
Figure 10. Single Pulse Maximum Power
Dissipation.
R (t) = r(t) * R
JA
θ
R = See Note 1b
JA
θ
P(pk)
t
1
t
2
T - T = P * R (t)
J
A
Duty Cycle, D = t / t
θ
JA
θ
JA
2
1
FDC6302P Rev.C
Loading...