Datasheet CA3080EZ Specification

Page 1
CA3080, CA3080A
Data Sheet September 1998 File Number 475.4
2MHz, Operational Transconductance Amplifier (OTA)
The CA3080 and CA3080A types are Gatable-Gain Blocks which utilize the unique operational-transconductance­amplifier (OTA) concept described in Application Note AN6668, “Applications of the CA3080 and CA3080A High­Performance Operational Transconductance Amplifiers”.
The CA3080 and CA3080A types have differential input and a single-ended, push-pull, class A output. In addition, these types haveanamplifierbiasinputwhichma ybeused either for gating or for linear gain control. These types also hav e a high output impedance and their transconductance (g proportional to the amplifier bias current (I
) is directly
M
).
ABC
The CA3080 and CA3080A types are notable for their excellent slew rate (50V/µs), which makes them especially useful for multiplexer and fast unity-gain voltage followers . These types are especially applicable for multiple xer applications because power is consumed only when the devices are in the “ON” channel state.
The CA3080A’s characteristics are specifically controlled for applications such as sample-hold, gain-control, multiplexing, etc.
Ordering Information
PART NUMBER
(BRAND)
CA3080A -55 to 125 8 Pin Metal Can T8.C CA3080AE -55 to 125 8 Ld PDIP E8.3 CA3080AM
(3080A) CA3080AM96
(3080A) CA3080E 0 to 70 8 Ld PDIP E8.3 CA3080M
(3080) CA3080M96
(3080)
TEMP.
RANGE (oC) PACKAGE
-55 to 125 8 Ld SOIC M8.15
-55 to 125 8 Ld SOIC Tape and Reel
0 to 70 8 Ld SOIC M8.15
0 to 70 8 Ld SOIC Tape
and Reel
M8.15
M8.15
PKG.
NO.
Features
• Slew Rate (Unity Gain, Compensated). . . . . . . . . . 50V/µs
• Adjustable Power Consumption. . . . . . . . . . . . .10µW to 30µW
• Flexible Supply Voltage Range. . . . . . . . . . . . . ±2V to ±15V
• Fully Adjustable Gain . . . . . . . . . . . . . . . . 0 to g
• Tight g
Spread:
M
MRL
Limit
- CA3080. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2:1
- CA3080A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1.6:1
• Extended g
Linearity . . . . . . . . . . . . . . . . . . . 3 Decades
M
Applications
• Sample and Hold • Multiplier
• Multiplexer • Comparator
• Voltage Follower
Pinouts
CA3080
(PDIP, SOIC)
TOP VIEW
NC
INV.
INPUT
NON-INV.
INPUT
INV. INPUT
NON-INV. INPUT
1
2
3
4
V-
-
+
CA3080
(METAL CAN)
TOP VIEW
8
1
-
2
+
3
4
V-
TAB
7
5
8
7
6
5
V+
OUTPUT
6
BIAS
NC
V+
OUTPUT AMPLIFIER
BIAS INPUT
1
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.
1-888-INTERSIL or 321-724-7143
| Copyright © Intersil Corporation 1999
Page 2
CA3080, CA3080A
Absolute Maximum Ratings Thermal Information
Supply Voltage (Between V+ and V- Terminal) . . . . . . . . . . . . . 36V
Differential Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5V
Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V+ to V-
Input Signal Current. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1mA
Amplifier Bias Current (I
). . . . . . . . . . . . . . . . . . . . . . . . . . . 2mA
ABC
Output Short Circuit Duration (Note 1). . . . . . . . . . . . . No Limitation
Operating Conditions
Temperature Range
CA3080 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0oC to 70oC
CA3080A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -55oC to 125oC
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTES:
1. Short circuit may be applied to ground or to either supply.
2. θJA is measured with the component mounted on an evaluation PC board in free air.
Thermal Resistance (Typical, Note 2) θJA (oC/W) θJC (oC/W)
PDIP Package . . . . . . . . . . . . . . . . . . . 130 N/A
SOIC Package . . . . . . . . . . . . . . . . . . . 170 N/A
Metal Can Package . . . . . . . . . . . . . . . 200 120
Maximum Junction Temperature (Metal Can). . . . . . . . . . . . . . 175oC
Maximum Junction Temperature (Plastic Package) . . . . . . . 150oC
Maximum Storage Temperature Range. . . . . . . . . . -65oC to 150oC
Maximum Lead Temperature (Soldering 10s) . . . . . . . . . . . . 300oC
(SOIC - Lead Tips Only)
Electrical Specifications For Equipment Design, V
PARAMETER TEST CONDITIONS TEMP
Input Offset Voltage I
Input Offset Voltage Change I Input Offset Voltage Temp. Drift I Input Offset Voltage
Sensitivity
Positive I
Negative 25 - - 150 - - 150 µV/V Input Offset Current I Input Bias Current I
Differential Input Current I Amplifier Bias Voltage I Input Resistance I Input Capacitance I Input-to-Output Capacitance I Common-Mode Input-Voltage
Range Forward Transconductance
(Large Signal)
Output Capacitance I Output Resistance I Peak Output Current I
= 5µA 25 - 0.3 - - 0.3 2 mV
ABC
= 500µA 25 - 0.4 5 - 0.4 2 mV
I
ABC
= 500µA to 5µA 25 - 0.2 - - 0.1 3 mV
ABC
= 100µA Full - - - - 3.0 - µV/oC
ABC
= 500µA 25 - - 150 - - 150 µV/V
ABC
= 500µA 25 - 0.12 0.6 - 0.12 0.6 µΑ
ABC
= 500µA25-25-25µA
ABC
= 0, V
ABC
= 500µA 25 - 0.71 - - 0.71 - V
ABC
= 500µA 25 10 26 - 10 26 - k
ABC
= 500µA, f = 1MHz 25 - 3.6 - - 3.6 - pF
ABC
= 500µA, f = 1MHz 25 - 0.024 - - 0.024 - pF
ABC
= 500µA 25 12 to
I
ABC
= 500µA 25 6700 9600 13000 7700 9600 12000 µS
I
ABC
= 500µA, f = 1MHz 25 - 5.6 - - 5.6 - pF
ABC
= 500µA 25 - 15 - - 15 - M
ABC
= 5µA, RL = 0 25 - 5 - 3 5 7 µA
ABC
= 500µA, RL = 0 25 350 500 650 350 500 650 µA
I
ABC
= 4V 25 - 0.008 - - 0.008 5 nA
DIFF
= ±15V, Unless Otherwise Specified
SUPPLY
CA3080 CA3080A
Full - - 6 - - 5 mV
Full - - 7 - - 15 µA
-12
13.6 to
-14.6
- 12 to
-12
13.6 to
-14.6
Full 5400 - - 4000 - - µS
Full 300 - - 300 - - µA
UNITSMIN TYP MAX MIN TYP MAX
-V
2
Page 3
CA3080, CA3080A
Electrical Specifications For Equipment Design, V
= ±15V, Unless Otherwise Specified (Continued)
SUPPLY
CA3080 CA3080A
Peak Output Voltage
PARAMETER TEST CONDITIONS TEMP
Positive I
= 5µA, RL = 25 - 13.8 - 12 13.8 - V
ABC
Negative 25 - -14.5 - -12 -14.5 - V
Positive I
= 500µA, RL = 25 12 13.5 - 12 13.5 - V
ABC
UNITSMIN TYP MAX MIN TYP MAX
Negative 25 -12 -14.4 - -12 -14.4 - V Amplifier Supply Current I Device Dissipation I
Magnitude of Leakage Current
Propagation Delay I Common-Mode Rejection Ratio I Open-Loop Bandwidth I
= 500µA 25 0.8 1 1.2 0.8 1 1.2 mA
ABC
= 500µA25243036243036mW
ABC
= 0, VTP = 0 25 - 0.08 - - 0.08 5 nA
I
ABC
I
= 0, VTP = 36V 25 - 0.3 - - 0.3 5 nA
ABC
= 500µA 25 - 45 - - 45 - ns
ABC
= 500µA 25 80 110 - 80 110 - dB
ABC
= 500µA 25 - 2 - - 2 - MHz
ABC
Slew Rate Uncompensated 25 - 75 - - 75 - V/µs
Compensated 25 - 50 - - 50 - V/µs
Schematic Diagram
+
7
V
9
OUTPUT
6
10
V-
4
INVERTING INPUT
NON­INVERTING INPUT
AMPLIFIER BIAS INPUT
D
Q6Q
3
7
D
4
Q
4
D
2
Q
5
2
Q
Q
1
2
3
5
Q
3
D
1
D
3
Q
Q
8
Q
Q
11
D
6
Typical Applications
V+ = 15V
51
10k
300
0.01µF
3
390pF
2
10k
0.001µF
7
+
CA3080, A
-
4
V- = -15V
5
0.01µF
62k
LOAD
(SCOPE PROBE)
6
1M
5pF
OUTPUT
1V/DIV.
INPUT
5V/DIV.
FIGURE 1. SCHEMATIC DIAGRAM OF THE CA3080 AND CA3080A IN A UNITY-GAIN VOLTAGE FOLLOWER CONFIGURATION AND
ASSOCIATED WAVEFORM
3
VS = ±15V
TIME (0.1µs/DIV.)
Page 4
Typical Applications (Continued)
20pF
8.2k
CA3080, CA3080A
VOLTAGE-CONTROLLED
CURRENT SOURCE
1k
1k
7.5V +7.5V
+7.5V
10k 6.2k 500
3
2
2M
SYMMETRY
100k
MAX FREQ. SET
430pF
10k
4 - 60
2k
HIGH-FREQ.
LEVEL
ADJUST
CENTERING
100k
6.8M
C
4
2
3
+7.5V
7
+
CA3080A
-
5
4.7k
FREQ.
ADJUST
6
4
-7.5V
EXTERNAL SWEEPING INPUT
MIN FREQ. SET
-7.5V
500
0.9 - 7pF C
1
6.2k
10 - 80pF C
2
BUFFER VOLTAGE
FOLLOWER
HIGH­FREQ. SHAPE
+
3
4 - 60pF C
CA3160
3
-
2
+7.5V
7
4
-7.5V
0.1µF
6
0.1 µF
FIGURE 2. 1,000,000/1 SINGLE-CONTROL FUNCTION GENERATOR - 1MHz TO 1Hz
THRESHOLD
DETECTOR
+7.5V-7.5V
30k
5
-
CA3080
+
50k
C
5
15 - 115
7
4
10k
+7.5V
6
-7.5V
2-1N914
NOTE: A Square-Wave Signal Modulates The External Sweeping Input to Produce 1Hz and 1MHz, showing the 1,000,000/1 frequency range of the function generator.
FIGURE 3A. TWO-TONE OUTPUT SIGNAL FROM THE
FUNCTION GENERATOR
FIGURE 3. FUNCTION GENERATOR DYNAMIC CHARACTERISTICS WAVEFORMS
4
NOTE: The bottom trace is the sweeping signal and the top tr ace is theactual generatoroutput. The center trace displaysthe 1MHz signal via delayed oscilloscope triggering of the upper swept output signal.
FIGURE 3B. TRIPLE-TRACE OF THE FUNCTION GENERATOR
SWEEPING TO 1MHz
Page 5
Typical Applications (Continued)
CA3080, CA3080A
2.0k
SAMPLE 0V
HOLD -15V
2.0k
2
3
7
-
CA3080A
+
5
30k
0.01µF
6
220
4
0.01µF 300pF
STORAGE AND PHASE COMPENSATION NETWORK
NOTE: Time required for output to settle within ±3mV of a 4V step.
FIGURE 4. SCHEMATIC DIAGRAM OF THE CA3080A IN A SAMPLE-HOLD CONFIGURATION
30k
-15
STROBE
0
SAMPLE
HOLD
2k
INPUT
1N914
1N914
3
2
2k
200pF
0.1µF
+15V
5
+
CA3080A
-
7
4
-15V
200pF
400
0.1µF
3N138
6
V+ = +15V
3k
V- = -15V
2k
OUTPUTINPUT
SLEW RATE (IN SAMPLE MODE) = 1.3V/µs ACQUISITION TIME = 3µs (NOTE)
+15V
0.1µF
7
+
3
CA3140
-
2
100k
4
1
5
2k
6
-15V
0.1
µF
3.6k
2k
0.1µF
SIMULATED LOAD NOT REQUIRED
30pF
FIGURE 5. SAMPLE AND HOLD CIRCUIT
5
Page 6
Typical Applications (Continued)
FIGURE 6. LARGE SIGNAL RESPONSE AND SETTLING TIME FOR CIRCUIT SHOWN IN FIGURE 5
CA3080, CA3080A
Top Trace: Output Signal
5V/Div., 2µs/Div.
Bottom Trace: Input Signal
5V/Div., 2µs/Div.
Center Trace: Difference of Input and Output Signals Through
Tektronix Amplifier 7A13 5mV/Div., 2µs/Div.
Top Trace: System Output; 100mV/Div., 500ns/Div.
Bottom Trace: Sampling Signal; 20V/Div., 500ns/Div.
FIGURE 7. SAMPLING RESPONSE FOR CIRCUIT SHOWN IN
FIGURE 5
THERMOCOUPLE
20K
6.2K
6.2K
8
2K
150K
2K
2
3
7
5
-
CA3080A
+
4
1N914
1N914
50K
R
+
100µF
-
13
6
6
F
Top Trace: Output; 50mV/Div., 200ns/Div.
Bottom Trace: Input; 50mV/Div., 200ns/Div.
FIGURE 8. INPUT AND OUTPUT RESPONSE FOR CIRCUIT
SHOWN IN FIGURE 5
LOAD
MT
2
MT
120V AC
60Hz
1
G
4
CA3079
8
5K 4W
2
5
11
9
10
7
NOTE: All resistors 1/2 watt,
unless otherwise specified.
FIGURE 9. THERMOCOUPLE TEMPERATURE CONTROL WITH CA3079 ZERO VOLTAGE SWITCH AS THE OUTPUT AMPLIFIER
6
Page 7
Typical Applications (Continued)
CA3080, CA3080A
SAMPLE
HOLD0V-7.5
INPUT
R
1
2K
STROBE
SAMPLE
CONTROL
AMPLIFIER
+
3
CA3080A (OTA)
2
-
R
2
2K
C
2
0.1µF
R
2
15K
+7.5V
7
R
6
4
5
-7.5V
C
1
200pF
R
3
400
4
2K
STORAGE AND PHASE COMPENSATION
SAMPLE READ-OUT AMPLIFIER
3
2
NULLING
R
100K
CA3130
5
6
+7.5V
C
3
7
+
-
0.1µF
6
4
8
C
4
C
156 pF
0.1 µF
5
-7.5V
1
R 2K
R
7
2K
5
FIGURE 10. SCHEMATIC DIAGRAM OF THE CA3080A IN A SAMPLE-HOLD CIRCUIT WITH BIMOS OUTPUT AMPLIFIER
0
OUTPUT C
e.g. 30pF (TYP)
C
6
0.1µF
L
0
0
Top Trace: Output; 5V/Div., 2µs/Div.
Center Trace: Differential Comparison of Input and Output
2mV/Div., 2µs/Div.
Bottom Trace: Input; 5V/Div., 2µs/Div.
FIGURE 11. LARGE-SIGNAL RESPONSE FOR CIRCUIT
SHOWN IN FIGURE 10
0
0
Top Trace: Output
20mV/Div., 100ns/Div.
Bottom Trace: Input
200mV/Div., 100ns/Div.
FIGURE12. SMALL-SIGNAL RESPONSE FOR CIRCUIT SHOWN
IN FIGURE 10
7
Page 8
Typical Applications (Continued)
50mV
0
-50mV
FIGURE 13. PROPAGATION DELAY TEST CIRCUIT AND ASSOCIATED WAVEFORMS
IN
51
OUTPUT
Typical Performance Curves
5
SUPPLY VOLTS: VS = ±15V
4 3 2
-55oC
1 0
-1
-2
-3
-4
-5
-6
INPUT OFFSET VOLTAGE (mV)
-7
-8
0.1 1 10 100 1000
70oC
90oC
25oC
125oC
AMPLIFIER BIAS CURRENT (µA)
90oC
-55oC
INPUT
125oC
CA3080, CA3080A
V+ = 15V
56k
7
5
+
3
CA3080,A
-
2
4
V- = -15V
t
PLH
25oC
70oC
I
= 500µA
ABC
6
1.2M
1N914
t
PHL
3
10
SUPPLY VOLTS: VS = ±15V
2
10
10
1
0.1
INPUT OFFSET CURRENT (nA)
0.01
0.1 1 10 100 1000
OUT
125oC
AMPLIFIER BIAS CURRENT (µA)
0
-55oC
25oC
FIGURE 14. INPUT OFFSET VOLTAGE vs AMPLIFIER BIAS
CURRENT
4
10
SUPPLY VOLTS: VS = ±15V
3
10
2
10
10
1
INPUT BIAS CURRENT (nA)
0.1
0.1 1 10 100 1000
AMPLIFIER BIAS CURRENT (µA)
125oC
-55oC
25oC
FIGURE 15. INPUT OFFSET CURRENT vs AMPLIFIER BIAS
CURRENT
4
10
SUPPLY VOLTS: VS = ±15V LOAD RESISTANCE = 0
3
10
2
10
10
1
PEAK OUTPUT CURRENT (µA)
0.1
0.1 1 10 100 1000
AMPLIFIER BIAS CURRENT (µA)
125oC
25oC
-55oC
FIGURE 16. INPUT BIAS CURRENT vs AMPLIFIER BIAS CURRENT FIGURE 17. PEAK OUTPUT CURRENT vs AMPLIFIER BIAS
CURRENT
8
Page 9
Typical Performance Curves (Continued)
CA3080, CA3080A
15
SUPPLY VOLTS: VS = ±15V
= 25oC
T
A
14.5 LOAD RESISTANCE =
14
13.5
13
0
-13
-13.5
-14
PEAK OUTPUT VOLTAGE (V)
-14.5
COMMON MODE INPUT VOLTAGE (V)
-15
0.1 1 10 100 1000
AMPLIFIER BIAS CURRENT (µA)
V+
V+
V-
OM
V-
CMR
FIGURE 18. PEAK OUTPUT VOLTAGE vs AMPLIFIER BIAS
CURRENT
5
10
TA = 25oC
4
10
3
10
2
10
10
DEVICE POWER DISSIPATION (µW)
1
0.1 1 10 100 1000
VS = ±15V
VS = ±6V
VS = ±3V
AMPLIFIER BIAS CURRENT (µA)
CMR
OM
4
10
SUPPLY VOLTS: VS = ±15V
3
10
2
10
10
125oC
1
AMPLIFIER SUPPLY CURRENT (µA)
0.1
-55oC, 25oC
0.1 1 10 100 1000
AMPLIFIER BIAS CURRENT (µA)
125oC
25oC
-55oC
FIGURE 19. AMPLIFIER SUPPLYCURRENT vs AMPLIFIER
BIAS CURRENT
5
10
SUPPLY VOLTS: VS = ±15V
4
10
3
10
2
10
10
FORWARD TRANSCONDUCTANCE (µS)
1
0.1 1 10 100 1000
125oC
25oC
AMPLIFIER BIAS CURRENT (µA)
-55oC
FIGURE 20. TOTALPOWER DISSIPATION vs AMPLIFIER BIAS
CURRENT
+36V
36V
0V
1
TEST POINT
)
(V
TP
2
CA3080, A
3
7
6
5
4
FIGURE 22. LEAKAGE CURRENT TEST CIRCUIT
9
FIGURE 21. TRANSCONDUCTANCE vs AMPLIFIER BIAS
CURRENT
100
SUPPLY VOLTS: VS = ±15V
10
V2 = V3 = V6 = 36V
1
0V
0.1
MAGNITUDE OF LEAKAGE CURRENT (nA)
0.01
-25 50 100
-50 0 25 75 125 TEMPERATURE (
o
C)
FIGURE 23. LEAKAGE CURRENT vs TEMPERATURE
Page 10
CA3080, CA3080A
Typical Performance Curves (Continued)
SUPPLY VOLTS: VS = ±15V
V+ = 15V
7
2
1
V
DIFF
= ±4V
CA3080, A
3
4
V- = -15V
6
5
FIGURE 24. DIFFERENTIAL INPUT CURRENT TEST CIRCUIT FIGURE 25. INPUT CURRENT vs INPUT DIFFERENTIAL VOL TA GE
4
10
3
10
125oC
2
10
10
1
DIFFERENTIAL INPUT CURRENT (pA)
01234 567
INPUT DIFFERENTIAL VOLTAGE (V)
25oC
SUPPLY VOLTS: VS = ±15V
= 25oC
T
A
100
10
1
0.1
INPUT RESISTANCE (M)
0.01
0.1 1 10 100 1000
AMPLIFIER BIAS CURRENT (µA)
SUPPLY VOLTS: VS = ±15V
900 800
700 600
500 400
300 200 100
AMPLIFIER BIAS VOLTAGE (mV)
0
0.1 1 10 100 1000
AMPLIFIER BIAS CURRENT (µA)
-55oC
25oC
125oC
FIGURE 26. INPUT RESISTANCE vs AMPLIFIER BIAS CURRENT FIGURE 27. AMPLIFIER BIAS VOLTAGEvs AMPLIFIER BIAS
CURRENT
7
SUPPLY VOLTS: VS = ±15V f = 1 MHz
6
TA = 25oC
5
4
3
2
1
C
O
C
I
5
10
4
10
3
10
2
10
10
OUTPUT RESISTANCE (M)
SUPPLY VOLTS: VS = ±15V
= 25oC
T
A
INPUT AND OUTPUT CAPACITANCE (pF)
0
0.1 1 10 100 1000
AMPLIFIER BIAS CURRENT (µA)
FIGURE28. INPUT AND OUTPUT CAPACITANCEvsAMPLIFIER
BIAS CURRENT
10
1
0.1 1 10 100 1000
AMPLIFIER BIAS CURRENT (µA)
FIGURE 29. OUTPUTRESISTANCEvsAMPLIFIER BIAS
CURRENT
Page 11
Typical Performance Curves (Continued)
V+
CA3080, CA3080A
0.06
f = 1 MHz
= 25oC
T
A
0.05
0.04
0.03
0.02
0.01
INPUT - TO - OUTPUT CAPACITANCE (pF)
0 2 4 6 8 10121416 18
POSITIVE AND NEGATIVE SUPPLY VOLTAGE (V)
2
3
CA3080, A
4
V-
7
5
0.01µF
6
0.01µF
FIGURE 30. INPUT-TO-OUTPUT CAPACITANCE TEST CIRCUIT FIGURE 31. INPUT-TO-OUTPUT CAPACITANCEvs SUPPLY
VOLTAGE
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.
Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time with­out notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.
For information regarding Intersil Corporation and its products, see web site www.intersil.com
Sales Office Headquarters
NORTH AMERICA
Intersil Corporation P. O. Box 883, Mail Stop 53-204 Melbourne, FL 32902 TEL: (321) 724-7000 FAX: (321) 724-7240
11
EUROPE
Intersil SA Mercure Center 100, Rue de la Fusee 1130 Brussels, Belgium TEL: (32) 2.724.2111 FAX: (32) 2.724.22.05
ASIA
Intersil (Taiwan) Ltd. 7F-6, No. 101 Fu Hsing North Road Taipei, Taiwan Republic of China TEL: (886) 2 2716 9310 FAX: (886) 2 2715 3029
Loading...