Datasheet BTS5012SDAAUMA1 Specification

Page 1
Datasheet, Rev. 1.1, Nov. 2008
BTS5012SDA
Smart High-Side Power Switch PROFET™ One Channel
Automotive Power
Page 2
Smart High-Side Power Switch
BTS5012SDA

Table of Contents

Table of Contents
1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2 Block Diagram and Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.1 Pin Assignment BTS5012SDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2 Pin Definitions and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
4 General Product Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4.1 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4.2 Thermal Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
5 Power Stages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
5.1 Input Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
5.2 Output On-State Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
5.3 Output Inductive Clamp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
5.3.1 Maximum Load Inductance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
5.4 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
6 Protection Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
6.1 Overload Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
6.2 Short circuit impedance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
6.3 Reverse Polarity Protection - Reversave™ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
6.4 Overvoltage Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
6.5 Loss of Ground Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
6.6 Loss of Vbb Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
6.7 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
7 Diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
7.1 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
8 Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
9 Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Datasheet 2 Rev. 1.1, 2008-11-04
Page 3
Smart High-Side Power Switch PROFET™ One Channel

1Overview

Features
Part of scalable product family
Load current sense
Reversave™
Very low standby current
Current controlled input pin
Improved electromagnetic compatibility (EMC)
Fast demagnetization of inductive loads
Stable behavior at under-voltage
Green Product (RoHS compliant)
AEC Qualified
BTS5012SDA
PG-TO252-5-11
Operating voltage
Minimum overvoltage protection
Maximum on-state resistance at
Nominal load current
Minimum current limitation
Maximum stand-by current for whole device with load at
The BTS5012SDA is a one channel high-side power switch in PG-TO252-5-11 package providing embedded protective functions.
The power transistor is built by a N-channel vertical power MOSFET with charge pump. The design is based on Smart SIPMOS chip on chip technology.
The BTS5012SDA has a current controlled input and offers a diagnostic feedback with load current sense and a defined fault signal in case of overload operation, overtemperature shutdown and/or short circuit shutdown.
T
= 150 °C R
j
T
= 25 °C I
j
V
bb(on)
V
ON(CL)
DS(ON)
I
L(nom)
I
L4(SC)
bb(OFF)
5.5..20V
39 V
24 m
6.5 A
65 A
6µA
Type Package Marking
BTS5012SDA PG-TO252-5-11 5012SDA
Datasheet 3 Rev. 1.1, 2008-11-04
Page 4
Smart High-Side Power Switch
BTS5012SDA
Protective Functions
Reversave™, channel switches on in case of reverse polarity
Reverse battery protection without external components
Short circuit protection with latch
Overload protection
Multi-step current limitation
Thermal shutdown with restart
Overvoltage protection (including load dump)
Loss of ground protection
Loss of V
Electrostatic discharge protection (ESD)
Diagnostic Functions
Proportional load current sense (with defined fault signal in case of overload operation, overtemperature shutdown and/or short circuit shutdown)
Open load detection in ON-state by load current sense
Applications
µC compatible high-side power switch with diagnostic feedback for 12 V grounded loads
All types of resistive, inductive and capacitive loads
Most suitable for loads with high inrush currents, so as lamps
Replaces electromechanical relays, fuses and discrete circuits
protection (with external diode for charged inductive loads)
bb
Overview
Datasheet 4 Rev. 1.1, 2008-11-04
Page 5
Smart High-Side Power Switch
BTS5012SDA

2 Block Diagram and Terms

2.1 Block Diagram

logic IC base chip
tem per ature
IN
I
IN
IS
V
IS
V
IN
I
IS
R
IS
logic
ES D
driver
gate control
char ge pum p
load current
for w ar d voltage dr op detecti on
vol tage sensor
over
&
sens e
inducti ve load
clamp for
current
limitation
R
Block Diagram and Terms
V
bb
T
bb
OUT
I
L
LOAD
Figure 1 Block Diagram

2.2 Terms

Following figure shows all terms used in this data sheet.
V
Figure 2 Terms
V
bb
bIN
V
IN
V
bIS
I
IN
IN
R
IN
I
IS
V
IS
R
IS
BTS5012SDA
IS
VBB
Ov er vi ew . e mf
I
bb
OUT
V
ON
I
L
V
OUT
Ter m s. e m f
Datasheet 5 Rev. 1.1, 2008-11-04
Page 6
Smart High-Side Power Switch
BTS5012SDA

3 Pin Configuration

3.1 Pin Assignment BTS5012SDA

TAB
OUT
1
Figure 3 Pin Configuration

3.2 Pin Definitions and Functions

IN
2
V
bb
Pin Configuration
bb
IS
V
OUT
3
4
5
TO252-5.emf
Pin Symbol Function
1OUT Output; output to the load; pin 1 and 5 must be externally shorted.
2IN Input; activates the power switch if shorted to ground.
3V
4IS Sense Output; Diagnostic feedback; provides at normal operation a sense current
5OUT Output; output to the load; pin 1 and 5 must be externally shorted.
TAB V
1) Not shorting all outputs will considerably increase the on-state resistance, reduce the peak current capability, the clamping capability and decrease the current sense accuracy.
bb
bb
Supply Voltage; positive power supply voltage; tab and pin 3 are internally shorted.
proportional to the load current; in case of overload, overtemperature and/or short circuit a defined current is provided (see Table 1 “Truth Table” on Page 21).
Supply Voltage; positive power supply voltage; tab and pin 3 are internally shorted.
1)
1)
Datasheet 6 Rev. 1.1, 2008-11-04
Page 7
Smart High-Side Power Switch
BTS5012SDA
General Product Characteristics

4 General Product Characteristics

4.1 Absolute Maximum Ratings

Absolute Maximum Ratings
T
= 25 °C (unless otherwise specified)
j
Pos. Parameter Symbol Limit Values Unit Conditions
Supply Voltages
4.1.1 Supply voltage
4.1.2 Supply voltage for short circuit protection
(single pulse)
4.1.3 Supply Voltage for Load Dump
protection
3)
Logic Pins
4.1.4 Voltage at input pin
4.1.5 Current through input pin
4.1.6 Voltage at current sense pin
4.1.7 Current through sense pin
4.1.8 Input voltage slew rate
Power Stages
4.1.9 Load current
4.1.10 Maximum energy dissipation per
channel (single pulse)
1)
Min. Max.
V
bb
V
2)
4)
5)
bb(SC)
V
bb(LD)
V
bIN
I
IN
V
bIS
I
IS
dV
/dt -20 20 V/µs
bIN
I
L
E
AS
-16 38 V
020V
–45VRI = 2 Ω,
R
= 1.5 Ω,
L
-16 63 V
-140 15 mA
-16 63 V
-140 15 mA
- I
Lx(SC)
A–
-0.2JVbb = 12 V,
I
= 20 A,
L(0)
T
= 150 °C
j(0)
Temperatures
4.1.11 Junction temperature
4.1.12 Storage temperature
T
j
T
stg
-40 150 °C
-55 150 °C
ESD Susceptibility
4.1.13 ESD susceptibility HBM
Pin 2 (IN) Pin 4 (IS) Pin1/5 (OUT)
1) Not subject to production test, specified by design.
2) Short circuit is defined as a combination of remaining resistances and inductances. See Figure 13.
3) Load Dump is specified in ISO 7637, RI is the internal resistance of the Load Dump pulse generator.
4) Slew rate limitation can be achieved by means of using a series resistor for the small signal driver or in series in the input path. A series resistor RIN in the input path is also required for reverse operation at Vbb≤-16V. See also Figure 14.
5) Current limitation is a protection feature. Operation in current limitation is considered as “outside” normal operating range. Protection features are not designed for continuous repetitive operation.
V
ESD
-2
-2
-4
2 2 4
kV according to
EIA/JESD 22-A 114B
Note: Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute
maximum rating conditions for extended periods may affect device reliability.
Datasheet 7 Rev. 1.1, 2008-11-04
Page 8
Smart High-Side Power Switch
BTS5012SDA
General Product Characteristics
Note: Integrated protection functions are designed to prevent IC destruction under fault conditions described in the
data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are not designed for continuous repetitive operation.

4.2 Thermal Resistance

Pos. Parameter Symbol Limit Values Unit Conditions
Min. Typ. Max.
4.2.1 Junction to Case
4.2.2 Junction to Ambient
free air device on PCB device on PCB
1) Not subject to production test, specified by design.
2) Device mounted on PCB (50 mm x 50 mm x 1.5mm epoxy, FR4) with 6 cm2 copper heatsinking area (one layer, 70 µm
V
thick) for
3) Specified R (Chip+Package) was simulated on a 76.2 x 114.3 x 1.5 mm board with 2 inner copper layers (2 x 70µm Cu, 2 x 35µm Cu). Where applicable a thermal via array under the exposed pad contacted the first inner copper layer.
connection. PCB is vertical without blown air.
bb
value is according to Jedec JESD51-2,-5,-7 at natural convection on FR4 2s2p board; The Product
thJA
1)
1)
2)
3)
R
thjc
R
thja
––1.3K/W
K/W
-
-
-
80 45 22
-
-
-
Datasheet 8 Rev. 1.1, 2008-11-04
Page 9
Smart High-Side Power Switch
BTS5012SDA
Power Stages

5 Power Stages

The power stage is built by a N-channel vertical power MOSFET (DMOS) with charge pump.

5.1 Input Circuit

Figure 4 shows the input circuit of the BTS5012SDA. The current source to Vbb ensures that the device switches
off in case of open input pin. The zener diode protects the input circuit against ESD pulses.
V
bIN
I
IN
V
IN
I
IN
R
V
Z,IN
Figure 4 Input Circuit
A high signal at the required external small signal transistor pulls the input pin to ground. A logic supply current is flowing and the power DMOS switches on with a dedicated slope, which is optimized in terms of EMC emission.
V
bb
bb
Input.emf
I
IN
I
IN
V
OUT
90%
50%
25%
10%
Figure 5 Switching a Load (resistive)
t
(dV/dt)
ON
ON
t
OFF
(d V/dt)
OFF
t
t
SwitchOn.emf
Datasheet 9 Rev. 1.1, 2008-11-04
Page 10
Smart High-Side Power Switch
BTS5012SDA
Power Stages

5.2 Output On-State Resistance

The on-state resistance R shows these dependencies for the typical on-state resistance. The voltage drop in reverse polarity mode is described in Section 6.3.



ȍ

depends on the supply voltage as well as the junction temperature Tj. Figure 6
DS(ON)





ȍ




    
Figure 6 Typical On-State Resistance
Vbb = 12 V
T
= 25°C
j










  





Figure 7 Typical Output Voltage Drop Limitation
Datasheet 10 Rev. 1.1, 2008-11-04
Page 11
Smart High-Side Power Switch
BTS5012SDA
Power Stages

5.3 Output Inductive Clamp

When switching off inductive loads, the output voltage V inductance ( -d
i
/dt =-vL/L ; -V
L
OUT
V
bb
≅ -V
).
L
Figure 8 Output Clamp
To prevent destruction of the device, there is a voltage clamp mechanism implemented that keeps the voltage drop across the device at a certain level (
V
ON(CL)
). See Figure 8 and Figure 9 for details. The maximum allowed load
inductance is limited.
drops below ground potential due to the involved
OUT
V
VBB
OUT
ON
I
L
V
OUT
L, R
L
Out p ut Cl am p . em f
V
V
OUT(CL)
OUT
V
bb
I
L
ON OFF
V
ON(CL)
t
t
Induct iveLoad. emf
Figure 9 Switching an Inductance

5.3.1 Maximum Load Inductance

While de-energizing inductive loads, energy has to be dissipated in the BTS5012SDA. This energy can be calculated via the following equation:
EV
ON CL()
V
------------------------------------
⋅⋅=
bb
V
ON CL()
R
L
RLI

ln 1
-----------------------------------+

V
ON(CL)
L
+
V
bb
L
----- -
I
L
R
L
R
In the event of de-energizing very low ohmic inductances (
1
2
-- -
E
LI
=
L
2
0) the following, simplified equation can be used:
L
V
ON(CL)
-----------------------------------
V
ON(CL)
V
bb
Datasheet 11 Rev. 1.1, 2008-11-04
Page 12
Smart High-Side Power Switch
BTS5012SDA
The energy, which is converted into heat, is limited by the thermal design of the component. For given starting currents the maximum allowed inductance is therefore limited. See Figure 10 for the maximum allowed inductance at
V
bb
T
j(o)
V
bb
= 12 V 150°C
=12V.

Power Stages



 
Figure 10 Maximum load inductance for single pulse,
T
150°C.
j(0)
Datasheet 12 Rev. 1.1, 2008-11-04
Page 13
Smart High-Side Power Switch
BTS5012SDA
Power Stages

5.4 Electrical Characteristics

V
= 12 V, Tj = -40 ... 150 °C (unless otherwise specified) Typical values are given at Vbb = 12 V, Tj = 25 °C
bb
Pos. Parameter Symbol Limit Values Unit Conditions
Min. Typ. Max.
General
5.4.1 Operating voltage
5.4.2 Undervoltage shutdown
5.4.3 Undervoltage restart of charge
pump
5.4.4 Operating current
5.4.5 Stand-by current
T
= -40 °C, Tj = 25 °C
j
T
= 150 °C
j
Input characteristics
5.4.6 Input current for
turn-on
5.4.7 Input current for
turn-off
1)
2)
V
bb(on)
V
bIN(u)
V
bb(ucp)
I
IN
I
bb(OFF)
I
IN(on)
I
IN(off)
5.5 - 20 V VIN = 0 V
-2.53.5VTj = 25 °C
-45.5V–
-1.42.2mA–
I
µA
-
-
3 9
6
16
-1.42.2mAV
= 0 A
IN
bIN
V
--30µA
bb(ucp)
- V
IN
Output characteristics
5.4.8 On-state resistance
T
=25°C
j
T
=150°C
j
V
=5.5V, Tj=25°C
bb
V
=5.5V, Tj=150°C
bb
5.4.9 Output voltage drop limitation at
small load currents
5.4.10 Nominal load current
3) 4)
5.4.11
(Tab to pin1 & 5)
Output clamp V
5.4.12 Inverse current output voltage
2) 5)
drop (Tab to pin 1 and 5)
T
= 25 °C
j
T
= 150 °C
j
Timings
5.4.13 Turn-on time to
90%
V
OUT
5.4.14 Turn-off time to
10%
V
OUT
5.4.15 Turn-on delay after inverse
operation
2)
R
DS(ON)
V
ON(NL)
I
L(nom)
ON(CL)
-
V
t
ON
t
OFF
t
d(inv)
ON(inv)
-
-
-
-
12 21 15 27
24
32
m
-
V
=0V, IL=7.5A,
IN
(Tab to pin 1 and 5)
-
-3065mV
6.5 8 - A Ta = 85 °C,
V
0.5 V,
ON
T
150 °C
j
39 42 - V IL = 40mA,
T
= 25 °C
j
mV
-
-
800 600
-
-
I
= -7.5 A,
L
R
= 1 k
IS
- 250 500 µs RL = 2.2
- 250 500 µs RL = 2.2
-1-msVbb> V
V V
IN(inv)
IN(fwd)
OUT
=
=0V
Datasheet 13 Rev. 1.1, 2008-11-04
Page 14
Smart High-Side Power Switch
BTS5012SDA
V
= 12 V, Tj = -40 ... 150 °C (unless otherwise specified) Typical values are given at Vbb = 12 V, Tj = 25 °C
bb
Power Stages
Pos. Parameter Symbol Limit Values Unit Conditions
Min. Typ. Max.
5.4.16 Slew rate On
25% to 50%
V
OUT
5.4.17 Slew rate Off
50% to 25%
1) Please mind the limitations of the embedded protection functions. See Chapter 4.1 and Chapter 6 for details.
2) Not subject to production test, specified by design
3) Device mounted on PCB (50 mm x 50 mm x 1.5mm epoxy, FR4) with 6 cm
V
thick) for
4) Not subject to production test, parameters are calculated from
5) During inverse operation (IL<0A, V results in a delayed switch on with a time delay t
I
IS(fault)
connection. PCB is vertical without blown air.
bb
can be provided by the pin IS until standard forward operation is reached.
V
OUT
bIN
(dV/ dt)
-(dV/ dt)
> 0V), a current through the intrinsic body diode causing a voltage drop of V
ON
OFF
after the transition from inverse to forward operation. A sense current
d(inv)
-0.30.6V/µsRL = 2.2 Ω,
-0.30.6V/µsRL = 2.2 Ω,
2
copper heatsinking area (one layer, 70 µm
R
and R
DS(ON)
th
Note: Characteristics show the deviation of parameter at the given supply voltage and junction temperature.
Typical values show the typical parameters expected from manufacturing.
ON(inv)
Datasheet 14 Rev. 1.1, 2008-11-04
Page 15
Smart High-Side Power Switch
BTS5012SDA
Protection Functions

6 Protection Functions

The device provides embedded protective functions. Integrated protection functions are designed to prevent IC destruction under fault conditions described in the data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are neither designed for continuous nor repetitive operation.

6.1 Overload Protection

The load current IL is limited by the device itself in case of overload or short circuit to ground. There are multiple steps of current limitation power DMOS. Please note that the voltage at the OUT pin is typical device.
I
which are selected automatically depending on the voltage drop VON across the
Lx(SC)
V
- VON. Figure 11 shows the dependency for a
bb



Tj = 25°C





 

Figure 11 Typical Current Limitation
Depending on the severity of the short condition as well as on the battery voltage the resulting voltage drop across the device varies.
Whenever the resulting voltage drop switch off immediately and latch until being reset via the input. The V when
V
> 10V typ. and the blanking time t
bIN
In the event that either the short circuit detection via senses overtemperature before the blanking time overtemperature detection. After cooling down with thermal hysteresis, the device switches on again. The device will react as during normal switch on triggered by the input signal. Please refer to Figure 12 and Figure 19 for details.
V
exceeds the short circuit detection threshold V
ON
expired after switch on.
d(SC1)
V
is not activated or that the on chip temperature sensor
ON(SC)
t
expired, the device switches off resulting from
d(SC1)

, the device will
ON(SC)
detection functionality is activated,
ON(SC)
Datasheet 15 Rev. 1.1, 2008-11-04
Page 16
Smart High-Side Power Switch
BTS5012SDA
detection
ON(SC)
I
IN
V
ON
V
> V
ONx
I
Lx(SC)
I
L
Figure 12 Overload Behavior
t
d(SC1)
t
m
ON(SC)
t
t
t
V_ON _detect .emf
Overtemperature detectionV
I
IN
I
L
Τ
j
Protection Functions
t
t
thermal hysteresis
t
Over_Temp.emf

6.2 Short circuit impedance

The capability to handle single short circuit events depends on the battery voltage as well as on the primary and secondary short impedance. Figure 13 outlines allowable combinations for a single short circuit event of maximum, secondary inductance for given secondary resistance.
5µH
IN
PROFET
10m
V
bb
SHORT
CIRCUIT
Figure 13 Short circuit
V
bb
OUT
IS
L
SC
R
SC
LOAD
short_ci rcuit.emf
L
15
SC
Vbb = 16V 18V 20V
µH
12,5
10
7,5
5
2,5
0
0 50 100 150 200 250
m
R
SC
Datasheet 16 Rev. 1.1, 2008-11-04
Page 17
Smart High-Side Power Switch
BTS5012SDA
Protection Functions

6.3 Reverse Polarity Protection - Reversave™

The device can not block a current flow in reverse polarity condition. In order to minimize power dissipation, the device offers Reversave™ functionality. In reverse polarity condition the channel will be switched on provided a sufficient gate to source voltage is generated
R
IN
-I
IN
D
Figure 14 Reverse battery protection
IN
R
IS
IS
V
V
GS
I
-I
Rbb
. Please refer to Figure 14 for details.
Rbb
-V
R
bb
V
bb
Logic
IS
powe r groundsignal ground
-I
L
LOAD
bb
Rev ers e.emf
Additional power is dissipated by the integrated dissipation
P
diss(rev)
in reverse polarity mode.
R
resistor. Use following formula for estimation of overall power
bb
P
diss(rev)
For reverse battery voltages up to ground. This can be achieved e.g. by using a small signal diode D in parallel to the input switch or by using a small signal MOSFET driver. For reverse battery voltages higher then recommended. The overall current through R
Note: No protection mechanism is active during reverse polarity. The IC logic is not functional.
V
< 16V the pin IN or the pin IS should be low ohmic connected to signal
bb
1
---------
R
IN
R
ON(rev)IL
should not be above 80 mA.
bb
1
+
--------
R
IS
2
R
0.08A
-------------------------------=
V
bb
2
+
bbIRbb
V
bb
12V
= 16V an additional resistor R
IN
is
Datasheet 17 Rev. 1.1, 2008-11-04
Page 18
Smart High-Side Power Switch
BTS5012SDA
Protection Functions

6.4 Overvoltage Protection

Beside the output clamp for the power stage as described in Section 5.3 there is a clamp mechanism implemented for all logic pins. See Figure 15 for details.
R
IN
Figure 15 Overvoltage Protection
Z,IS
Z,IN
V
V
Logic
IS OUT
bb
V
bb
OverVoltage .emf

6.5 Loss of Ground Protection

In case of complete loss of the device ground connections the BTS5012SDA securely changes to or remains in off state.

6.6 Loss of Vbb Protection

In case of complete loss of Vbb the BTS5012SDA remains in off state.
In case of loss of V provided, to demagnetize the charged inductances. It is recommended to use a diode, a Z-diode, or a varistor (
V
+ VD<30V or VZb+ VD<16V if RIN = 0). For higher clamp voltages currents through IN and IS have to be
ZL
limited to -120 mA. Please refer to Figure 16 for details.
V
bb
IN
IS
R
IN
Figure 16 Loss of V
R
connection with charged inductive loads a current path with load current capability has to be
bb
R
Logic
IS
bb
inductive
bb
V
bb
LOAD
V
D
V
ZL
Vbb_disconnect _A. emf
V
bb
V
D
IS
R
Lo g ic
IS
R
IN
IN
V
Zb
R
V
bb
bb
inductive
LOAD
Vbb_dis connec t_B.emf
Datasheet 18 Rev. 1.1, 2008-11-04
Page 19
Smart High-Side Power Switch
BTS5012SDA
Protection Functions

6.7 Electrical Characteristics

V
= 12 V, Tj = -40 ... 150 °C (unless otherwise specified) Typical values are given at Vbb = 12 V, Tj = 25 °C
bb
Pos. Parameter Symbol Limit Values Unit Conditions
Min. Typ. Max.
Overload Protection
6.7.1 Load current limitation
T
= -40 °C
j
T
= +25 °C
j
T
= +150 °C
j
6.7.2 Load current limitation
T
= -40 °C
j
T
= +25 °C
j
T
= +150 °C
j
6.7.3 Load current limitation
T
= -40 °C
j
T
= +25 °C
j
T
= +150 °C
j
6.7.4 Load current limitation
T
= -40 °C
j
T
= +25 °C
j
T
= +150 °C
j
6.7.5 Load current limitation
T
= -40 °C
j
T
= +25 °C
j
T
= +150 °C
j
6.7.6 Load current limitation
T
= -40 °C
j
T
= +25 °C
j
T
= +150 °C
j
1) 2)
1) 2)
2)
1) 2)
1) 2)
1) 2)
6.7.7 Short circuit shutdown detection
voltage
1)
6.7.8 Short circuit shutdown delay after
input current pos. slope
3)
6.7.9 Thermal shut down temperature T
6.7.10 Thermal hysteresis
1)
I
L4(SC)
I
L6(SC)
I
L12(SC)
I
L18(SC)
I
L24(SC)
I
L30(SC)
V
ON(SC)
t
d(SC1)
j(SC)
T
j
140
130
120
65
50
40
27
16
-
-
110 105
90
-
-
95 90 75
-
-
90 80 70
-
-
50 45 40
-
-
30 30 25
-
-
-
20 20 20
2.5 3.5 4.5 V V
200 650 1200 µs VON > V
150 165
1)
-10-K-
A
V
ON
(Tab to pin 1 and 5)
-
-
A
V
ON
(Tab to pin 1 and 5)
-
-
A
-
V
ON
t
= 170 µs,
m
(Tab to pin 1 and 5)
-
A
70
V
ON
(Tab to pin 1 and 5)
-
-
A
50
V
ON
(Tab to pin 1 and 5)
-
-
A
-
V
ON
(Tab to pin 1 and 5)
-
-
bIN
T
= 25 °C
j
C -
= 4V,
= 6 V,
= 12 V,
= 18 V,
= 24 V,
= 30 V,
> 10 V typ.,
ON(SC)
Reverse Polarity
V
6.7.11 On-State resistance in case of
reverse polarity
V
=-8V, Tj=25°C
bb
V
=-8V, Tj= 150 °C
bb
V
=-12V, Tj=25°C
bb
V
=-12V, Tj=150°C
bb
6.7.12 Integrated resistor in V
1)
1)
line R
bb
R
ON(rev)
bb
m
-
-
-
-
14 24
13.5 23
-
33
-
30
-100150 Tj = 25 °C
= 0 V,
IN
I
= -7.5 A,
L
R
= 1 kΩ,
IS
(pin 1 and 5 to TAB)
Datasheet 19 Rev. 1.1, 2008-11-04
Page 20
Smart High-Side Power Switch
BTS5012SDA
V
= 12 V, Tj = -40 ... 150 °C (unless otherwise specified) Typical values are given at Vbb = 12 V, Tj = 25 °C
bb
Pos. Parameter Symbol Limit Values Unit Conditions
Min. Typ. Max.
Overvoltage
6.7.13 Overvoltage protection
Input pin
Sense pin
1) Not subject to production test, specified by design
2) Short circuit current limit for max. duration of
3) min. value valid only if input “off-signal” time exceeds 30 µs
V
Z
V
Z,IN
V
Z,IS
t
, prior to shutdown, see also Figure 12.
d(SC1)
63 - - V
63 - - V
Protection Functions
V I
= 15 mA
bb
Datasheet 20 Rev. 1.1, 2008-11-04
Page 21
Smart High-Side Power Switch
BTS5012SDA
Diagnosis

7 Diagnosis

For diagnosis purpose, the BTS5012SDA provides an IntelliSense signal at the pin IS.
The pin IS provides during normal operation a sense current, which is proportional to the load current as long as
V
> 5V. The ratio of the output current is defined as k
bIS
the forward voltage drops below
V
< 1V typ. The output sense current is limited to I
ON
The pin IS provides in case of any fault conditions a defined fault current conditions are overcurrent (
V
> 1V typ.), current limit or overtemperature switch off.
ON
= IL/ IIS. During switch-on no current is provided, until
ILIS
IS(lim)
I
IS(fault)
as long as V
>8V. Fault
bIS
The pin IS provides no current during open load in ON and de-energisation of inductive loads.
V
b,I S
R
V
bb
bb
I
IS
I
IS(fault)
V
Z,IS
IS
Figure 17 Block Diagram: Diagnosis
V
IS
R
IS
Sense.emf
Table 1 Truth Table
Parameter Input Current Level Output Level Current Sense
Normal operation L
Overload L
Short circuit to GND L
Overtemperature L
Short circuit to V
bb
Open load L
1) H = “High” Level, L = “Low” Level, Z = high impedance, potential depends on external circuit
2) Low ohmic short to Vbb may reduce the output current IL and therefore also the sense current IIS.
1)
1)
H
H
H
H
L H
H
L H
L H
L L
L L
H H
1)
Z H
0 (I
IS(LL)
nominal
0 (
I
IS(LL)
I
IS(fault)
0 (I
IS(LL)
I
IS(fault)
0 (I
IS(LL)
I
IS(fault)
0 (I
IS(LL)
< nominal
I
0 (
IS(LL)
0 (
I
IS(LH)
I
IS
)
)
)
)
)
2)
)
)
k
The accuracy of the provided current sense ratio (
Figure 18 for details. A typical resistor
R
of 1 kis recommended.
IS
= IL/ IIS) depends on the load current. Please refer to
ILIS
Datasheet 21 Rev. 1.1, 2008-11-04
Page 22
Smart High-Side Power Switch
A
BTS5012SDA
Diagnosis
25000
k
ILIS
20000
15000
max.
10000
typ.
min.
5000
0
0 5 10 15 20 25 30
I
L
Figure 18 Current sense ratio
Details about timings between the diagnosis signal IIS, the forward voltage drop VON and the load current IL in ON­state can be found in Figure 19.
Note: During operation at low load current and at activated forward voltage drop limitation the “two level control”
of
V
frequency increases at reduced load currents.
can cause a sense current ripple synchronous to the “two level control” of V
ON(NL)
1)
k
ILIS
. The ripple
ON(NL)
shortnormal operation
ON(SC)
I
Lx(SC)
I
IS(fault)
V
0.9*I
I
IN
I
IS(LL)
tVON<1V t yp.
t
t
ON
I
L
I
IS
IS1
I
L1
I
IS1
VON>1V typ.
I
L2
I
IS( lim)
I
IS2
I
IS( f ault)
I
IN
V
ON
I
L
I
IS
t
t
son(I S)
Figure 19 Timing of Diagnosis Signal in ON-state
1) The curves show the behavior based on characterization data. The marked points are specified in this Datasheet in
Section 7.1 (Position 7.1.1).
t
slc(IS)
t
delay(fault)
over-temperature
VON<1V typ.
I
L
I
IS( f ault)
Swit chOn.emf
tVON>V
t
t
t
Datasheet 22 Rev. 1.1, 2008-11-04
Page 23
Smart High-Side Power Switch
BTS5012SDA
Diagnosis

7.1 Electrical Characteristics

V
= 12 V, Tj = -40 ... 150 °C (unless otherwise specified) Typical values are given at Vbb = 12 V, Tj = 25 °C
bb
Pos. Parameter Symbol Limit Values Unit Conditions
Min. Typ. Max.
Load Current Sense
7.1.1 Current sense ratio, static on­condition
I
=30A
L
I
=7.5A
L
I
=2.5A
L
I
=0.5A
L
I
= 0 (e.g. during de energizing of
IN
inductive loads)
7.1.2 Sense saturation current
1)
1)
7.1.3 Sense current under fault conditions
7.1.4 Current sense leakage current
7.1.5 Current sense offset current
7.1.6 Current sense settling time to 90%
1)
I
IS_stat.
7.1.7 Current sense settling time to 90%
1)
I
IS_stat.
7.1.8 Fault-Sense signal delay after input current positive slope
1) Not subject to production test, specified by design
k
ILIS
I
IS(lim)
I
IS(fault)
I
IS(LL)
I
IS(LH)
t
son(IS)
t
slc(IS)
t
delay(fault)
-10-kVIN = 0 V,
I
< I
IS
IS(lim)
8.4
8.0
7.2
4.8
10 10 10 12
11.3 12 14
21.5
disabled - -
4.067.5mAVON < 1 V, typ.
4.0 5.2 7.5 mA VON > 1 V, typ.
–0.10.5µAIIN = 0
–0.11µAV
= 0, IL 0
IN
–350700µsIL=0 20A
–50100µsIL=10 20A
200 650 1200 µs VON > 1 V, typ.
Datasheet 23 Rev. 1.1, 2008-11-04
Page 24
Smart High-Side Power Switch
BTS5012SDA

8 Package Outlines

Package Outlines
Figure 20 PG-TO252-5-11
Green Product
To meet the world-wide customer requirements for environmentally friendly products and to be compliant with government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).
You can find all of our packages, sorts of packing and others in our Infineon Internet Page “Products”: http://www.infineon.com/packages.
Datasheet 24 Rev. 1.1, 2008-11-04
Dimensions in mm
Page 25
Smart High-Side Power Switch
BTS5012SDA

9 Revision History

Version Date Changes
Datasheet Rev. 1.1
Datasheet Rev. 1.0
2008-11-04 Page 13: Parameter IIN(off) updated from maximum 10µA to maximum 30µA.
2008-01-22 Initial version of datasheet
Revision History
Datasheet 25 Rev. 1.1, 2008-11-04
Page 26
Edition 2008-11-04
Published by Infineon Technologies AG 81726 Munich, Germany
© 2008 Infineon Technologies AG
All Rights Reserved.
Legal Disclaimer
The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.
Information
For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).
Warnings
Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.
Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.
Page 27
www.infineon.com
Published by Infineon Technologies AG
Loading...