
BFP620
NPN Silicon Germanium RF Transistor
3
4
High gain low noise RF transistor
Provides outstanding performance
for a wide range of wireless applications
Ideal for CDMA and WLAN applications
Outstanding noise figure F = 0.7 dB at 1.8 GHz
Outstanding noise figure F = 1.3 dB at 6 GHz
Maximum stable gain
G
G
= 21.5 dB at 1.8 GHz
ms
= 11 dB at 6 GHz
ma
Gold metallization for extra high reliability
ESD: Electrostatic discharge sensitive device, observe handling precaution!
Type Marking Pin Configuration Package
BFP620 ACs
1=B 2=E 3=C 4=E - - SOT343
1
2
VPS05605
Maximum Ratings
Parameter Symbol Value Unit
Collector-emitter voltage V
Collector-emitter voltage V
Collector-base voltage V
Emitter-base voltage V
Collector current I
Base current I
Total power dissipation1)
T
95°C
S
P
Junction temperature T
Ambient temperature T
Storage temperature T
CEO
CES
CBO
EBO
C
B
tot
st
2.3 V
7.5
7.5
1.2
80 mA
3
185 mW
150 °C
-65 ... 150
-65 ... 150
Thermal Resistance
Parameter
Junction - soldering point
2)
Symbol Value Unit
R
thJS
300
K/W
1
TS is measured on the collector lead at the soldering point to the pcb
2
For calculation of R
please refer to Application Note Thermal Resistance
thJA
1
Apr-07-2003

Electrical Characteristics at TA = 25°C, unless otherwise specified
BFP620
Parameter
DC Characteristics
Collector-emitter breakdown voltage
= 1 mA, IB = 0
I
C
Collector-emitter cutoff current
= 7.5 V, VBE = 0
V
CE
Collector-base cutoff current
= 5 V, IE = 0
V
CB
Emitter-base cutoff current
= 0.5 V, IC = 0
V
EB
DC current gain
= 50 mA, VCE = 1.5 V
I
C
Symbol Values Unit
min. typ. max.
V
(BR)CEO
I
CES
I
CBO
I
EBO
h
FE
2.3 2.8 - V
- - 10 µA
- - 100 nA
- - 3 µA
100 180 320 -
2
Apr-07-2003

BFP620
Electrical Characteristics at T
= 25°C, unless otherwise specified
Parameter
AC Characteristics (verified by random sampling)
Transition frequency
= 50 mA, VCE = 1.5 V, f = 1 GHz
I
C
Collector-base capacitance
= 2 V, f = 1 MHz
V
CB
Collector emitter capacitance
= 2 V, f = 1 MHz
V
CE
Emitter-base capacitance
= 0.5 V, f = 1 MHz
V
EB
Noise figure
= 5 mA, VCE = 1.5 V, f = 1.8 GHz, ZS = Z
I
C
= 5 mA, VCE = 1.5 V, f = 6 GHz, ZS = Z
I
C
Sopt
Sopt
Symbol Values Unit
min. typ. max.
f
T
C
cb
C
ce
C
eb
F
- 65 - GHz
- 0.12 0.2 pF
- 0.22 -
- 0.46 -
-
-
0.7
1.3
dB
-
-
Power gain, maximum stable1)
= 50 mA, VCE = 1.5 V, ZS = Z
I
C
= Z
Z
L
, f = 1.8 GHz
Lopt
Sopt
,
Power gain, maximum available1)
= 50 mA, VCE = 1.5 V, ZS = Z
I
C
= Z
Z
L
, f = 6 GHz
Lopt
Sopt
,
Transducer gain
= 50 mA, VCE = 1.5 V, ZS = ZL = 50 ,
I
C
f = 1.8 GHz
= 50 mA, VCE = 1.5 V, ZS = ZL = 50 ,
I
C
f = 6 GHz
Third order intercept point at output2)
= 2 V, IC = 50 mA, f = 1.8 GHz,
V
CE
= ZL = 50
Z
S
1dB Compression point at output
= 50 mA, VCE = 2 V, ZS = ZL = 50 ,
I
C
f = 1.8 GHz
G
G
|S
IP
P
ms
ma
21e
3
-1dB
- 21.5 - dB
- 11 - dB
2
|
-
-
20
9.5
dB
-
-
- 25 - dBm
- 15 -
1
G
= |S
ma
2
IP3 value depends on termination of all intermodulation frequency components.
Termination used for this measurement is 50
21e
/ S
| (k-(k²-1)
12e
1/2
), Gms = |S
/ S
21e
from 0.1 MHz to 6 GHz
12e
|
3
Apr-07-2003

SPICE Parameter (Gummel-Poon Model, Berkley-SPICE 2G.6 Syntax):
Transitor Chip Data:
BFP620
IS =
VAF =
NE =
VAR =
NC =
RBM =
CJE =
TF =
ITF =
VJC =
TR =
MJS =
XTI =
AF = 2TITF1 -0.0065 -
All parameters are ready to use, no scalling is necessary.
0.22 fA
1000 V
22V
2-
2.707
250.7 fF
1.43 ps
2.4 A
0.6 V
0.2 ns
0.5 3-
BF = 425
IKF = 0.25
BR = 50
IKR = 10
RB = 3.129
RE = 0.6
VJE = 0.75
XTF = 10
PTF = 0
MJC = 0.5
CJS = 128.1
NK = -1.42
FC = 0.8
KF = 7.291E-11
TITF2 1.0E-5
A
mA
V
deg
fF
-
Package Equivalent Circuit:
RCBS
CBCC
C
BF P620_C hip
LBB LC B
B C
T = 25°C
Itf = 2400* ( 1 - 6.5e-3 * (T-25) + 1.0e-5 * (T-25)^2 )
For examples and ready to use parameters
please contact your local Infineon Technologies
distributor or sales office to obtain a Infineon
Technologies CD-ROM or see Internet:
http//www.infineon.com/silicondiscretes
LBC
CBEC
LEC
S
B
E
LEB
CCEOCBEO
E
LC C
RCCS
RCES
CCEICBEI
NF =
ISE =
NR =
ISC =
IRB =
RC =
MJE =
VTF =
CJC =
XCJC =
VJS =
EG =
TNOM
LBC =
LCC =
LEC =
1.025 21 fA
118 pA
1.522 mA
2.364
0.3 -
1.5 V
124.9 fF
1-
0.52 V
1.078 eV
298 K
60
50
15
pH
pH
pH
LBB = 764.5 pH
LCB = 725.4 pH
LEB = 259.6 pH
CBEC =
CBCC =
CES =
CBS =
CCS =
CCEO =
CBEO =
98.4
55.9
140
54
50
106.5
106.7
fF
fF
fF
fF
fF
fF
fF
CCEI = 132.4 fF
CBEI = 99.6 fF
RBS =
1200
RCS = 1200
RES = 300
Valid up to 6GHz
4
Apr-07-2003

BFP620
Total power dissipation P
200
mW
160
140
tot
P
120
100
80
60
40
20
0
0 20 40 60 80 100 120
= (TS)
tot
°C
Permissible Pulse Load R
3
10
K/W
thJS
R
thJS
D = 0.5
= (tp)
0.2
10
2
0.1
0.05
0.02
0.01
0.005
0
1
10
-7
-6
-5
-4
-3
150
T
S
10
10
10
10
10
10
-2
0
°C
10
t
p
Permissible Pulse Load
10
-6
= (tp)
D = 0
0.005
0,01
0,02
0,05
0,1
0,2
0,5
-5
10
10
-4
P
totmax/PtotDC
1
10
totDC
/ P
totmax
P
0
10
-7
10
10
Collector-base capacitance C
= (VCB)
cb
f = 1MHz
0.5
pF
0.4
0.35
CB
C
0.3
0.25
0.2
0.15
0.1
0.05
-3
10
-2
0
°C
10
t
p
0
0 1 2 3 4 5
V
7
V
CB
5
Apr-07-2003

BFP620
Transition frequency f
f = 1GHz
V
= Parameter in V
CE
65
GHz
55
50
45
T
40
f
35
30
25
20
15
10
5
0
0 10 20 30 40 50 60 70 80
0.3
= (IC)
T
0.5
1.3 to 2.3
1
0.8
mA
100
I
C
Power gain G
V
= 1.5V
CE
, Gms = (IC)
ma
f = Parameter in GHz
30
dB
26
24
22
G
20
18
16
14
12
10
8
0 10 20 30 40 50 60 70 80
0.9
1.8
2.4
3
4
5
6
mA
I
100
C
Power Gain G
|
S
|² = f (f)
21
V
= 1.5V, IC = 50mA
CE
55
dB
45
40
35
G
30
25
20
15
10
|S21|²
5
0 1 2 3 4
, Gms = (f),
ma
Gms
Gma
GHz
Power gain G
I
= 50mA
C
, Gms = (VCE)
ma
f = Parameter in GHz
30
dB
20
G
15
10
5
0
6
-5
0.2 0.6 1 1.4 1.8
f
0.9
1.8
2.4
3
4
5
6
V
2.6
V
CE
6
Apr-07-2003