Danfoss MP1 28/32, MP1 38/45 User guide

Technical Information
MP1 Axial Piston Pumps
Size 28/32, 38/45
www.danfoss.com
Technical Information
Revision history Table of revisions
Date Changed Rev
February 2022 Added option A3 endcap option to 38/45cc 0503
January 2022 Corrected the number of charge pressure in operating parameters 0502
December 2021 Added HDC control options 0501
April 2021 Corrected interface with ECU (EDC) graphic 0407
April 2020 Added model code option 0406
March 2020 Removed restricted model code options and changed document number from BC00000352 0405
January 2020 Added option A5 to system port type model code options 0303
November 2019 Fixed on P108935P400313, P400325, 0302
October 2019 Updated with new control options 0301
March 2019 Updated with new control options 0201
May 2018 Add 14 tooth shaft, minor edits 0106
March 2018 Update MDC control illustrations 0105
January 2018 Add NFPE control 0104
October 2017 Minor edits 0103
April 2017 Minor edits 0102
August 2016 First Edition 0101
2 | © Danfoss | February 2022 BC178386485160en-000503
Technical Information

Contents

General description
Overview..............................................................................................................................................................................................6
Features................................................................................................................................................................................................6
System diagram................................................................................................................................................................................ 7
Schematic............................................................................................................................................................................................8
Technical specifications
Design specifications...................................................................................................................................................................... 9
Technical data....................................................................................................................................................................................9
Operating parameters..................................................................................................................................................................10
Fluid specifications........................................................................................................................................................................10
Operation
High Pressure Relief Valve (HPRV) and charge checkHPRV and charge check........................................................11
Bypass function...............................................................................................................................................................................11
Charge Pressure Relief Valve (CPRV)CPRV function...........................................................................................................12
Loop flushing valve.......................................................................................................................................................................13
Electrical displacement control (EDC).................................................................................................................................... 13
EDC principle..............................................................................................................................................................................13
EDC operation............................................................................................................................................................................14
Control signal requirements, EDC MP1............................................................................................................................ 14
EDC solenoid data.................................................................................................................................................................... 15
Control response.......................................................................................................................................................................15
EDC response time..............................................................................................................................................................15
Manual override (MOR)...........................................................................................................................................................15
Hydraulic displacement control (HDC).................................................................................................................................. 17
HDC principle.............................................................................................................................................................................17
HDC operation...........................................................................................................................................................................17
Hydraulic signal pressure range..........................................................................................................................................18
Pump output flow direction vs. control pressure.........................................................................................................18
Control response.......................................................................................................................................................................18
Response time, HDC................................................................................................................................................................ 19
Swashplate angle sensor for EDC controls........................................................................................................................... 20
Swash plate angle sensor parameters (EDC).................................................................................................................. 20
Swash plate angle sensor connector.................................................................................................................................21
Interface with ECU (EDC)........................................................................................................................................................21
Manual displacement control....................................................................................................................................................21
MDC principle............................................................................................................................................................................ 21
MDC operation.......................................................................................................................................................................... 23
MDC shaft rotation...................................................................................................................................................................23
Control response.......................................................................................................................................................................24
MDC response time............................................................................................................................................................ 24
Neutral start switch (NSS)...................................................................................................................................................... 24
Case gauge port M14.............................................................................................................................................................. 25
Lever..............................................................................................................................................................................................25
Forward-neutral-reverse (FNR) electic control....................................................................................................................26
FNR principle..............................................................................................................................................................................26
Control response.......................................................................................................................................................................28
Response time, FNR............................................................................................................................................................28
Non feedback proportional electric control (NFPE).......................................................................................................... 28
Control signal requirements.................................................................................................................................................29
Control response.......................................................................................................................................................................30
Response time......................................................................................................................................................................31
Non-feedback, proportional hydraulic (NFPH) control....................................................................................................31
Control response.......................................................................................................................................................................32
Response time......................................................................................................................................................................32
Automotive control (AC)............................................................................................................................................................. 33
Control-cut-off valve (CCO valve).............................................................................................................................................35
CCO solenoid data....................................................................................................................................................................36
Brake gauge port with MDC................................................................................................................................................. 37
©
Danfoss | February 2022 BC178386485160en-000503 | 3
Technical Information
Contents
Displacement limiter.....................................................................................................................................................................37
Displacement change (approximate)................................................................................................................................37
Speed sensor................................................................................................................................................................................... 38
Temperature range..................................................................................................................................................................38
Output pulses.............................................................................................................................................................................38
Mating connectors...................................................................................................................................................................38
Speed sensor 4.5 – 8 V technical data...............................................................................................................................38
Temperature sensor data............................................................................................................................................................39
Operating parameters
Input speed...................................................................................................................................................................................... 40
System pressure............................................................................................................................................................................. 40
Charge pressure..............................................................................................................................................................................41
Charge pump inlet pressure...................................................................................................................................................... 41
Case pressure...................................................................................................................................................................................41
Temperature.................................................................................................................................................................................... 41
Viscosity.............................................................................................................................................................................................42
System design parameters
Filtration system ............................................................................................................................................................................43
Filtration............................................................................................................................................................................................ 43
Suction filtration....................................................................................................................................................................... 43
Charge pressure filtration......................................................................................................................................................44
Independent braking system.................................................................................................................................................... 45
Fluid selection................................................................................................................................................................................. 45
Reservoir............................................................................................................................................................................................45
Case drain......................................................................................................................................................................................... 45
Charge pump...................................................................................................................................................................................45
Charge pump sizing/selection.............................................................................................................................................46
Charge pump output flow..........................................................................................................................................................47
Bearing life and external shaft loading.................................................................................................................................. 47
Hydraulic unit life...........................................................................................................................................................................49
Mounting flange loads.................................................................................................................................................................49
Shaft torques................................................................................................................................................................................... 51
Shaft selection........................................................................................................................................................................... 51
Shaft torque and splines lubrication................................................................................................................................. 51
Shaft torque for tapered shafts............................................................................................................................................51
Shaft availability and torque ratings.......................................................................................................................................52
Understanding and minimizing system noise.....................................................................................................................52
Sizing equations.............................................................................................................................................................................54
Model code
Model code (A - B - C)................................................................................................................................................................... 55
Model code (D)................................................................................................................................................................................56
Model code (F)................................................................................................................................................................................ 57
Model code (H - J - T).................................................................................................................................................................... 58
Model code (K)................................................................................................................................................................................ 59
Model code (E - M - N - Z - L)...................................................................................................................................................... 60
Model code (V - G - W)..................................................................................................................................................................61
Model code (X - Y)..........................................................................................................................................................................63
Installation drawings
28/32 ports....................................................................................................................................................................................... 64
38/45 ports....................................................................................................................................................................................... 65
28/32 dimensions...........................................................................................................................................................................66
28/32 dimensions with speed sensor.....................................................................................................................................68
38/45 dimensions...........................................................................................................................................................................69
38/45 dimensions with speed sensor.....................................................................................................................................72
Input shafts: option G4, F6 (SAE B, 13 teeth)........................................................................................................................73
Input shafts: option G1, F1 (SAE B, 14 teeth)........................................................................................................................74
Input shafts: option G5, F5 (SAE B, 15 teeth)........................................................................................................................75
4 | © Danfoss | February 2022 BC178386485160en-000503
Technical Information
Contents
Input shafts: option A7, A9 (SAE B, straight key shaft)......................................................................................................76
Input shafts: option G6, G7 (SAE B, 19 teeth).......................................................................................................................77
Input shafts: option A6, A8 (SAE B, straight key shaft)......................................................................................................78
Input shafts: option F2, F3 (SAE B, taper key shaft) ...........................................................................................................79
Tapered shaft customer acknowledgement...................................................................................................................79
Auxiliary mounting: option A16, B16, C16, D16, E16, F16 (SAE A, 9 teeth)............................................................... 80
Auxiliary mounting: option A19, B19, C19, D19, E19, F19 (SAE A, 11 teeth).............................................................81
Auxiliary mounting: option A22, B22, C22, D22, E22, F22 (SAE B, 13 teeth)............................................................. 82
Auxiliary mounting: option A25, B25, C25, D25, E25, F25 (SAE B-B 15 teeth) .........................................................83
Controls
Electric displacement control (EDC)........................................................................................................................................84
Electric displacement control with CCO (EDC+CCO)........................................................................................................85
EDC with ASNSR........................................................................................................................................................................86
Hydraulic displacement control (HDC).................................................................................................................................. 87
Manual displacement control (MDC)......................................................................................................................................88
MDC with NSS option M2...................................................................................................................................................... 89
MDC with CCO options M3, M4...........................................................................................................................................90
MDC with NSS and CCO options M5, M6......................................................................................................................... 91
Forward-neutral-reverse (FNR)..................................................................................................................................................92
Non-feedback proportional electric (NFPE)......................................................................................................................... 93
Non-feedback proportional hydraulic (NFPH).....................................................................................................................94
Automotive control (AC)............................................................................................................................................................. 95
AC connectors dimensions................................................................................................................................................... 96
Filtration
Suction filtration: option S..........................................................................................................................................................97
Remote full flow charge pressure filtration: option R.......................................................................................................98
External full flow charge pressure filtration: option E.......................................................................................................99
©
Danfoss | February 2022 BC178386485160en-000503 | 5
Technical Information

General description

MP1 overview
The MP1 pump is a variable displacement axial piston pump intended for closed circuit medium power applications. The swashplate motion is controlled via compact hydraulic servo control system. A variety of controls are available. These include mechanic or electric actuated feedback controls, electric or hydraulic actuated non-feedback type controls, and a three-position electric control.. These controls feature low hysteresis and responsive performance.
MP1 features
Designed for quality and reliability
Uniform design concept across frame sizes
Single piece housing to minimize leaks
Technologically advanced kit and servo system
Predictable, low friction swashplate bearing for precise machine control
Machine integration benefits
Industry leading pump length
Clean side for easier machine integration
Metric and Inch O-ring boss and Split flange (38/45 only) system port interfaces
Standard connection interfaces
Greater total efficiency
Increased pump efficiency
Lower control pressure for less power consumption
Control options
Electrical displacement control (EDC)
Manual displacement control (MDC)
Hydraulic displacement control (HDC)
Automotive control (AC-1, AC-2)
Forward-neutral-reverse (FNR)
Non-feedback proportional electric (NFPE)
Non-feedback proportional hydraulic (NFPH)
Common control across entire family
Expanded functionality
PLUS+1® Compliant control and options
Easy integration with Telematics
Integrated Flushing valve available
Modularity
Common control, charge pump and auxiliary pad options
Easy and quick conversion to the right configuration
6 | © Danfoss | February 2022 BC178386485160en-000503
5
10
9
8
4
1
Fixed Displacement Motor
MP1 Axial Piston Pump
7
6
2
3
P400327
Technical Information
General description
MP1 system diagram
Servo Pressure System High Pressure System Low Pressure
Charge Pressure Case Flow Suction Flow
1. Control 2. Heat Exchanger 3. Heat Exchanger Bypass
4. Reservoir 5. Filter 6. Servo Piston
7. Check Valves with High Pressure Relief Valves
10. Case Drain
8. Charge Relief Valve 9. Charge Pump
MP1 28/32 MP1 38/45
©
Danfoss | February 2022 BC178386485160en-000503 | 7
M14
C1
C2
EDC with CCO
EDC
MDC with NSS
Suction
filtration
Remote filtration
E F
E
M3 for 28/32
M3 for 38/45
F L2
A MA
MB B
L1S
M4M5
Check Relief with Bypass
Loop Flushing
X7M14
C2C1
M14
C1 C2
FNR
M14
AM3
MDC
M14
M14
NFPE
C2
C1
X1 M14 X2
HDC
Technical Information
General description
MP1 schematic
8 | © Danfoss | February 2022 BC178386485160en-000503
Technical Information

Technical specifications

MP1 design specifications
Features MP1
Design Axial piston pump with variable displacement using compact servo piston control. Direction of input rotation Clockwise or counterclockwise
Pump installation position is discretionary, however the recommended control position is on the top or at the side with the top position preferred. If the pump is installed with the control at the bottom, flushing flow must be provided through port M14 located on the
Recommended installation position
Filtration configuration Suction or charge pressure filtration
MP1 technical data
Feature 28 32 38 45
Displacement (cm3/rev [in3/rev]) 28.0 [1.71] 31.8 [1.94] 38.0 [2.32] 45.1 [2.75] Flow at rated (continuous) speed (l/min [US gal/min]) 95.3 [25.2] 108.1 [28.5] 125.3 [33.1] 149.5 [39.5] Torque at maximum displacement (N•m/bar [lbf•in/1000psi]) 0.45 [272.0] 0.51 [308.9] 0.60 [369.1] 0.72 [438.1] Mass moment of inertia of rotating components (kg•m2 [slug•ft2]) 0.0020 [0.0015] 0.0030 [0.0022] Mass (kg [lb]) 29.6 [65.3] 38 [83.8] Oil volume (liter [US gal]) 1.5 [0.40] 2.0 [0.53] Mounting flange ISO 3019-1 flange 101-2 (SAE B) Input shaft outer diameter, splines and tapered shafts ISO 3019-1, outer Ø22mm - 4 (SAE B, 13 teeth)
Auxiliary mounting flange with metric fasteners, shaft outer diameter and splines
Main port configuration A, B
Case drain ports L1, L2
Suction ports S
Other ports ISO 11926-1, (Inch O-ring boss)
Customer interface threads Metric fasteners
EDC, HDC, FNR, NFPE, NFPH, AC-1, AC-2 and MDC control. Vertical input shaft installation is acceptable. The housing must always be filled with hydraulic fluid. Recommended mounting for a multiple pump stack is to arrange the highest power flow towards the input source. Consult Danfoss for non-conformance to these guidelines.
ISO 3019-1, outer Ø25mm - 4 (SAE B-B, 15 teeth)
ISO 3019-1, outer Ø31mm - 4 (19 teeth)
ISO 3019-1, outer Ø22mm - 1 (Straight Key)
ISO 3019-1, flange 82-2, outer Ø16mm - 4 (SAE A, 9 teeth) ISO 3019-1, flange 82-2, outer Ø19mm - 4 (SAE A, 11 teeth) ISO 3019-1, flange 101-2, outer Ø22mm - 4 (SAE B, 13 teeth) ISO 3019-1, flange 101-2, outer Ø25mm - 4 (SAE B-B, 15 teeth)
ISO 11926-1 - 1 1/16 - 12 (Inch O-ring boss)
ISO 6149-1, M27x2 (Metric o-ring boss)
ISO 11926-1, 1 1/16 -12 (Inch O-ring boss) ISO 6149-1, M27x2 (Metric O-ring boss)
ISO 11926-1 - 1 1/16-12 (Inch O-ring boss) ISO 6149-1 - M27x2 (Metric O-ring
boss)
ISO 6149 -1, (Metric O-ring boss)
ISO 3019-1, outer Ø25mm - 4 (Straight Key) ISO 3019-1, outer Ø25mm -3 (Conical keyed, taper 1:8)
ISO 11926-1 - 1 5/16 - 12 (Inch O-ring boss)
ISO 6162, Ø19mm, (Split flange boss, M10x1.5)
ISO 6149-1 - M33x2 (Metric O-ring boss)
ISO 11926-1 - 1 5/16-12 (Inch O-ring boss) ISO 6149-1 - M33x2 (Metric O-ring
boss)
©
Danfoss | February 2022 BC178386485160en-000503 | 9
Technical Information
Technical specifications
MP1 operating parameters
Features Units 28/32 38/45
Input speed Minimum
Rated 3400 3300 Maximum 4000 3900
System pressure Maximum working pressure bar [psi] 350 [5000] 350 [5000]
Maximum pressure 380 [5429] 380 [5429]
Minimum low loop (above case) 10 [143] 10 [143] Charge pressure (minimum) bar [psi] 16 [232] 16 [232] Charge pump inlet
pressure
Minimum (continuous) bar (absolute) [in Hg vacuum] 0.8 [6] 0.8 [6]
Minimum (cold start) 0.2 [24] 0.2 [24]
Maximum 2.0 2.0 Case pressure Rated bar [psi] 3 [43] 3 [43]
Maximum 5 [71] 5 [71]
1
No load condition. Refer to System Design Parameters/Charge Pump for details.
1
min-1 (rpm) 500 500
MP1 fluid specifications
Features Units 28/32/38/45
Viscosity Intermittent
Minimum 7 [49] Recommended range 12 - 80 [66 - 370] Maximum (cold start)
Temperature range
3
Minimum (cold start) °C [°F] -40 [-40] Recommended range 60 - 85 [140 - 185] Maximum continuous 104 [220] Maximum intermittent 115 [240]
Filtration (recommended minimum)
Cleanliness per ISO 4406 22/18/13 Efficiency (charge pressure filtration) β-ratio β15-20=75(β10≥10) Efficiency (suction filtration) β35-45=75(β10≥2) Recommended inlet screen mesh size µm 100 - 125
1
Intermittent=Short term t <1 min per incident and not exceeding 2 % of duty cycle based load-life.
2
Cold start = Short term t < 3 min, p < 50 bar [725 psi], n < 1000 min-1 (rpm)
3
At the hottest point, normally case drain port.
1
2
mm2/sec. [ SUS] 5 [42]
1600 [7500]
10 | © Danfoss | February 2022 BC178386485160en-000503
P400353
High Pressure
Low Pressure
Technical Information

Operation

MP1 high pressure relief valve (HPRV) and charge check
All MP1 pumps are equipped with a combination high pressure relief and charge check valve. The high­pressure relief function is a dissipative (with heat generation) pressure control valve for the purpose of limiting excessive system pressures. The charge check function acts to replenish the low-pressure side of the working loop with charge oil. Each side of the transmission loop has a dedicated HPRV valve that is non-adjustable with a factory set pressure. When system pressure exceeds the factory setting of the valve, oil is passed from the high pressure system loop, into the charge gallery, and into the low pressure system loop via the charge check.
The pump order code allows for different pressure settings to be used at each system port. The system pressure order code for pumps with only HPRV is a reflection of the HPRV setting.
HPRV´s are factory set at a low flow condition. Any application or operating condition which leads to elevated HPRV flow will cause a pressure rise with flow above a valve setting. Consult factory for application review. Excessive operation of the HPRV will generate heat in the closed loop and may cause damage to the internal components of the pump.

Bypass function

The bypass function allows a machine or load to be moved without rotating the pump shaft or prime mover. The single pump HPRV valve also provides a loop bypass function when each of the two HPRV hex plugs are mechanically backed out three full turns.
Engaging the bypass function mechanically connects both A & B sides of the working loop to the common charge gallery.
Possible damage to hydromotor(s). Excessive speeds and extended load/vehicle movement must be avoided. The load or vehicle should be moved not more than 20% of maximum speed and for a duration not exceeding 3 minutes. When the bypass function is no longer needed, care should be taken to re-seat the HPRV hex plugs to the normal operating position.
©
Danfoss | February 2022 BC178386485160en-000503 | 11
Charge Pressure
Case Drain
P400341
Technical Information
Operation
MP1 charge pressure relief valve (CPRV) function
An internal charge pressure relief valve (CPRV) regulates charge pressure within the hydraulic circuit. The CPRV is a direct acting poppet valve that regulates charge pressure at a designated level above case pressure.
The charge pressure relief valve setting is specified within the model code of the pump. MP1 pumps with charge pump have the CPRV set at 1800 rpm while MP1 pumps without charge pump have the CPRV set with 18.9 l/min [5.0 US gal/min] of external supply flow. The charge pressure rise rate, with flow, is approximately 1 bar/10 liter [5.4 psi/US gal].
12 | © Danfoss | February 2022 BC178386485160en-000503
P003 191
Feedback from Swash plate
PTF00B
M14
C1 C2
F00A
P003 478E
Technical Information
Operation

Loop flushing valve

MP1 pumps are available with an optional integral loop flushing. A loop flushing valve will remove heat and contaminants from the main loop at a rate faster than otherwise possible.
The MP1 loop flushing design is a simple spring centered shuttle spool with an orifice plug. The shuttle shifts at approximately . The flushing flow is a function of the low loop system pressure (charge) and the size of the plug.
When a MP1 pump is used with an external loop flushing shuttle valve, ensure that the charge setting of the pump matches the setting of the loop flushing shuttle valve. Contact your Danfoss representative for the availability of additional charge relief settings.

Electrical displacement control (EDC)

EDC principle

An EDC is a displacement (flow) control. Pump swashplate position is proportional to the input command and therefore vehicle or load speed (excluding influence of efficiency), is dependent only on the prime mover speed or motor displacement.
The Electrical Displacement Control (EDC) consists of a pair of proportional solenoids on each side of a three-position, four-way porting spool. The proportional solenoid applies a force input to the spool, which ports hydraulic pressure to either side of a double acting servo piston. Differential pressure across the servo piston rotates the swashplate, changing the pump‘s displacement from full displacement in one direction to full displacement in the opposite direction. Under some circumstances, such as contamination, the control spool could stick and cause the pump to stay at some displacement.
A 170 μm screen is located in the supply line immediately before the control porting spool.
EDC control
©
Danfoss | February 2022 BC178386485160en-000503 | 13
EDC schematic
"0"
-b -a
ba
100 %
100 %
Displacement
Current mA
Technical Information
Operation

EDC operation

EDC’s are current driven controls requiring a Pulse Width Modulated (PWM) signal. Pulse width modulation allows more precise control of current to the solenoids. The PWM signal causes the solenoid pin to push against the porting spool, which pressurizes one end of the servo piston, while draining the other. Pressure differential across the servo piston moves the swashplate.
A swashplate feedback link, opposing control links, and a linear spring provide swashplate position force feedback to the solenoid. The control system reaches equilibrium when the position of the swashplate spring feedback force exactly balances the input command solenoid force from the operator. As hydraulic pressures in the operating loop change with load, the control assembly and servo/swashplate system work constantly to maintain the commanded position of the swashplate.
The EDC incorporates a positive neutral deadband as a result of the control spool porting, preloads from the servo piston assembly, and the linear control spring. Once the neutral threshold current is reached, the swashplate is positioned directly proportional to the control current. To minimize the effect of the control neutral deadband, we recommend the transmission controller or operator input device incorporate a jump up current to offset a portion of the neutral deadband.
The neutral position of the control spool does provide a positive preload pressure to each end of the servo piston assembly.
When the control input signal is either lost or removed, or if there is a loss of charge pressure, the spring­loaded servo piston will automatically return the pump to the neutral position.

Control signal requirements, EDC MP1

Pump displacement vs. control current
EDC control current
Voltage 12 V
Minimum current to stroke pump a
Pin connections any order
*
Factory test current, for vehicle movement or application actuation expect higher or lower value.
*
b 1640 mA 820 mA
DC
640 mA 330 mA
24 V
DC
14 | © Danfoss | February 2022 BC178386485160en-000503
Technical Information
Operation

EDC solenoid data

Description 12 V 24 V
Maximum current 1800 mA 920 mA Nominal coil resistance @ 20 °C [68 °F] 3.66 Ω 14.20 Ω
Inductance 33 mH 140 mH PWM signal frequency Range 70 – 200 Hz
IP Rating IEC 60 529 IP 67
Connector color Black
*
PWM signal required for optimum control performance.
Pump output flow direction vs. control signal
Shaft rotation CW CCW Coil energized
Port A out in in out Port B in out out in Servo port pressurized M4 M5 M4 M5
*
For coil location see Installation drawings.
*
@ 80 °C [176 °F] 4.52 Ω 17.52 Ω
Recommended
DIN 40 050, part 9 IP 69K with mating connector
*
100 Hz
C1 C2 C1 C2

Control response

MP1 controls are available with optional control passage orifices to assist in matching the rate of swash­plate response to the application requirements (e.g. in the event of electrical failure).
The time required for the pump output flow to change from zero to full flow (acceleration) or full flow to zero (deceleration) is a net function of spool porting, orifices, and charge pressure.
A swash-plate response times table is available for each frame size. Testing should be conducted to verify the proper orifice selection for the desired response. Typical response times at the following conditions:
Δ p = 250 bar [3626 psi] Charge pressure = 20 bar [290 psi] Viscosity and temperature = 30 mm²/s [141 SUS] and 50 °C [122 °F] Speed = 1800 min-1 (rpm)
MP1 EDC response time
Stroking direction 0.8 mm [0.03 in]
orifice 28/32 38/45 28/32 38/45 28/32 38/45 28/32 38/45
Neutral to full flow 1.3 s 2.1 s 0.9 s 1.3 s 0.6 s 0.9 s 0.4 s 0.6 s Full flow to neutral 1.0 s 1.5 s 0.7 s 0.9 s 0.4 s 0.6 s 0.2 s 0.3 s
1.0 mm [0.04 in] orifice
1.3 mm [0.05 in] orifice
No orifice

Manual override (MOR)

Initial actuation of the o-ring seal MOR plunger will require a force of 45 N. Additional actuations typically require less force to engage the MOR plunger. Proportional control of the pump via the MOR is not intended. The MOR plunger has a 4 mm diameter and must be manually depressed to be engaged. Depressing the plunger mechanically moves the control spool which allows the pump to go on stroke.
©
Danfoss | February 2022 BC178386485160en-000503 | 15
P003 204
Technical Information
Operation
Unintended MOR operation can cause the pump to go into stroke. The vehicle or device must always be in a safe condition (example: vehicle lifted off the ground) when using the MOR function. The MOR should be engaged anticipating a full stroke response from the pump.
Refer to control flow table for the relationship of solenoid to direction of flow.
MOR and schematic
16 | © Danfoss | February 2022 BC178386485160en-000503
P400520
P400519
X1
F00B
F00A
Feedback from
Swashplate
T P
X2M14
Technical Information
Operation

Hydraulic displacement control (HDC)

HDC principle

An HDC is a Hydraulic Displacement Control. Pump swashplate position is proportional to the input command and therefore vehicle speed or load speed (excluding influence of efficiency), is dependent only on the prime mover speed or motor displacement.
The HDC control uses a hydraulic input signal to operate a porting spool, which ports hydraulic pressure to either side of a double acting servo piston. The hydraulic signal applies a force input to the spool which ports hydraulic pressure to either side of a double acting servo piston. Differential pressure across the servo piston rotates the swashplate, changing the pump’s displacement from full displacement in one direction to full displacement in the opposite direction. Under some circumstances, such as contamination, the porting spool could stick and cause the pump to stay at some displacement.
A serviceable 175 μm screen is located in the supply line immediately before the control porting spool.
HDC control
HDC schematic

HDC operation

HDC’s are hydraulically driven control which ports hydraulic pressure to either side of a porting spool, which pressurizes one end of the servo piston, while draining the other end to case. Pressure differential across the servo piston moves the swashplate.
A swashplate feedback link, opposing control linkage, and a linear spring provide swashplate position force feedback to the hydraulic pressure. As hydraulic pressures in the operating loop change with load, the control assembly and servo/swashplate system work constantly to maintain the commanded position of the swashplate.
©
Danfoss | February 2022 BC178386485160en-000503 | 17
"0"
Signal pressure
Displacement
100 %
a b
-b -a
100 %
P102 031E
Technical Information
Operation
The HDC incorporates a positive neutral dead band as a result of the control spool porting, preloads from the servo piston assembly, and the linear control spring. Once the neutral threshold point is reached, the swashplate is positioned directly proportional to the control pressure.
When the control input is either lost or removed, or if there is a loss of charge pressure, the spring loaded servo piston will automatically return the pump to the neutral position.
Pump displacement vs signal pressure

Hydraulic signal pressure range

Type Unit Start of control End of control
Option bar 3.0 11.6 Standard 4.2 16.2

Pump output flow direction vs. control pressure

Shaft rotation HDC Clockwise (CW) seen from shaft Counter Clockwise (CCW) seen from shaft
Port energized X1 X2 X1 X2 Port A Out (high) In (low) In (low) Out (high) Port B In (low) Out (high) Out (high) In (low) Servo port high
pressure
M4 M5 M4 M5
For appropriate performance of HDC characteristic, keep the drain pressure of pilot valve to be equal or slightly higher than pump case pressure.

Control response

MP1 controls are available with optional control passage orifices to assist in matching the rate of swash­plate response to the application requirements (e.g. in the event of electrical failure).
The time required for the pump output flow to change from zero to full flow (acceleration) or full flow to zero (deceleration) is a net function of spool porting, orifices, and charge pressure.
A swash-plate response times table is available for each frame size. Testing should be conducted to verify the proper orifice selection for the desired response. Typical response times at the following conditions:
Δ p = 250 bar [3626 psi] Charge pressure = 20 bar [290 psi] Viscosity and temperature = 30 mm²/s [141 SUS] and 50 °C [122 °F] Speed = 1800 min-1 (rpm)
18 | © Danfoss | February 2022 BC178386485160en-000503
Technical Information
Operation

Response time, HDC

Stroking direction
Neutral to full flow
Full flow to neutral
0.8 mm [0.03 in] orifice 1.0 mm [0.04 in] orifice 1.3 mm [0.05 in] orifice No orifice 28/32 38/45 28/32 38/45 28/32 38/45 28/32 38/45
1.3 s 2.1 s 0.9 s 1.3 s 0.6 s 0.9 s 0.3 s 0.6 s
1.0 s 1.5 s 0.7 s 0.9 s 0.4 s 0.6 s 0.2 s 0.3 s
©
Danfoss | February 2022 BC178386485160en-000503 | 19
-18° -13° -8°
100%
90%
80%
70%
60%
50%
40%
30%
20%
10%
0%
Swashplate angle
Sensor output, % of supply voltage
-3° 12° 17°
W
Technical Information
Operation

Swashplate angle sensor for EDC controls

The angle sensor detects the swash plate position with an accuracy dependent upon the calibration effort done for the application and direction of rotation from the neutral position. At minimum the sensor can be used for forward, neutral and reverse (FNR) detection.
The sensor works on the hall-effect technology. The implemented technology is based on a measurement of the magnetic field direction in parallel to the chip surface. This field direction is converted to a voltage signal at the output.
Enhanced calibration of the non-linear behavior leads to more exact calculation of the pump swashplate angle. The 4-pin DEUTSCH connector is part of the sensor housing. The swashplate angle sensor is available for all EDC controls for 12 V and 24 V.
Swashplate angle vs. output of supply voltage
Warning
Strong magnetic fields in the proximity of the sensor can influence the sensor signal and must be avoided.
Contact your Danfoss representative in case the angle sensor will be used for safety functions.

Swash plate angle sensor parameters (EDC)

Parameter Minimum Typical Maximum Supply voltage range Supply protection Pump neutral output (% of supply voltage) Working range (swash plate angle) Required supply current Output current signal
20 | © Danfoss | February 2022 BC178386485160en-000503
Working temperature
Electrical Protection Standard Class
IP Rating IEC 60 529 IP 67
DIN 40 050, part 9 IP 69K with mating connector
EMC Immunity ISO 11452-2 100 V/m
4.5 V
DC
18 V
50%
–18° 18°
30 mA
9 mA 11 mA
–40 °C 80 °C 115 °C
5 V
DC
5.5 V
DC
DC
2
3
4
1
ECU
Supply
Signal
GND
GND
OUT
VCC
100 nF
20 kΩ
100 nF
Technical Information
Operation
Calibration of the sensor output within the software is mandatory. Vehicle neutral thresholds in the software (±0.5°) are vehicle dependent and must consider different conditions, example: system temperature, system pressure and/or shaft speed.
For safety function: If the sensor fails (invalid signal <10% or >90% of supply voltage), it must be sure that the ECU will go into a diagnostic mode and shift into limited mode in order for the driver to take the full control or the mechanical breaks should be activated. Strong magnetic fields in the proximity of the sensor can influence the sensor signal and must be avoided.

Swash plate angle sensor connector

Connector DEUTSCH, 4-pin
Pin assignment:
1. Ground (GND)
2. Not connected
3. Output signal 1 (SIG 1)
4. Supply (V+)
Connector order numbers
Description Quantity Order number
Mating connector DEUTSCH DTM06-4S-E004 1 11105824 Wedge lock WM-4S 1 Socket contact 0462-201-2031 3 Mating connector kit 1 11212713
not available

Interface with ECU (EDC)

Interface with ECU diagram

Manual displacement control

MDC principle

An MDC is a Manual proportional Displacement Control (MDC). The MDC consists of a handle on top of a rotary input shaft. The shaft provides an eccentric connection to a feedback link. This link is connected on its one end with a porting spool. On its other end the link is connected the pumps swashplate.
©
Danfoss | February 2022 BC178386485160en-000503 | 21
This design provides a travel feedback without spring. When turning the shaft the spool moves thus providing hydraulic pressure to either side of a double acting servo piston of the pump.
Differential pressure across the servo piston rotates the swash plate, changing the pump’s displacement. Simultaneously the swashplate movement is fed back to the control spool providing proportionality between shaft rotation on the control and swashplate rotation.
P301 749
"0"
Lever rotation
"A"
Displacement
100 %
a
-a
100 %
"B"
-b
-d b
c
d
-c
P301 752
P005 701
M14
M5
M4
M3
Technical Information
Operation
The MDC changes the pump displacement between no flow and full flow into opposite directions. Under some circumstances, such as contamination, the control spool could stick and cause the pump to stay at some displacement.
A 170 μm screen is located in the supply line immediately before the control porting spool. The MDC is sealed by means of a static O-ring between the actuation system and the control block. Its
shaft is sealed by means of a special O-ring which is applied for low friction. The special O-ring is protected from dust, water and aggressive liquids or gases by means of a special lip seal.
Manual Displacement Control
Pump displacement vs. control lever rotation
MDC schematic diagram
Where:
Deadband on B side – a = 3° ±1° Maximum pump stroke – b = 30° +2/-1°
22 | © Danfoss | February 2022 BC178386485160en-000503
C
CCW
CW
Technical Information
Operation
Required customer end stop – c = 36° ±3° Internal end stop – d = 40°
MDC torque
Torque required to move handle to maximum displacement Torque required to hold handle at given displacement Maximum allowable input torque

MDC operation

The MDC provides a mechanical dead-band required to overcome the tolerances in the mechanical actuation. The MDC contains an internal end stop to prevent turning the handle into any inappropriate position.
The MDC provides a permanent restoring moment appropriate for turning the MDC input shaft back to neutral position only. This is required to take the backlash out of the mechanical connections between the Bowden cable and the control.
High case pressure may cause excessive wear and the NSS to indicate that the control is not in neutral position. In addition, if the case pressure exceeds 5 bar there is a risk of an insufficient restoring moment. The MDC is designed for a maximum case pressure of 5 bar and a rated case pressure of 3 bar.
Customers must install some support to limit the setting range of their Bowden cable to avoid an
overload of the MDC. Customers can apply their own handle design but they must care about a robust clamping
connection between their handle and the control shaft and avoid overload of the shaft. Customers can connect two MDC’s on a tandem unit in such a way that the actuation force will be
transferred from the pilot control to the second control. The kinematic of the linkages must ensure that either control shaft is protected from torque overload.
1.4 N•m [12.39 lbf•in ]
0.6 N•m [5.31 lbf•in]
20 N•m [177 lbf•in]
Caution
Using the internal spring force on the input shaft is not an appropriate way to return the customer connection linkage to neutral, or to force a Bowden cable or a joystick back to neutral position. It is not applicable for any limitation of the Bowden cable stroke, except the applied torque to the shaft will never exceed 20 N•m.

MDC shaft rotation

Pump shaft rotation MDC shaft rotation CW CCW CW CCW
Port A in (low) out (high) out (high) in (low) Port B out (high) in (low) in (low) out (high) Servo port high pressure M5 M4 M5 M4
*
As seen from shaft side.
*
Clockwise (CW) Counter-clockwise (CCW)
©
Danfoss | February 2022 BC178386485160en-000503 | 23
P005 702
M14
M5
M4
M3
Technical Information
Operation

Control response

MP1 controls are available with optional control passage orifices to assist in matching the rate of swash­plate response to the application requirements (e.g. in the event of electrical failure).
The time required for the pump output flow to change from zero to full flow (acceleration) or full flow to zero (deceleration) is a net function of spool porting, orifices, and charge pressure.
A swash-plate response times table is available for each frame size. Testing should be conducted to verify the proper orifice selection for the desired response. Typical response times at the following conditions:
Δ p = 250 bar [3626 psi] Charge pressure = 20 bar [290 psi] Viscosity and temperature = 30 mm²/s [141 SUS] and 50 °C [122 °F] Speed = 1800 min-1 (rpm)
MP1 MDC response time
Code Orifice description (mm) Stroking direction (sec)
P A B Tank (A
C3 C6 C7 C8 C9 D1 D2 D3 D4 D5
0.3 0.3 0.3 0.3
1.0 0.5 1.0 0.5 0.7
1.3 0.4 0.7 0.5 0.5
0.8 0.6 1.5 2.6 1.4 1.9
1.0 0.6 1.3 2.4 1.1 1.8
1.0 0.8 0.9 1.6 0.8 1.1
1.3 0.8 0.8 1.5 0.7 1.1
1.3 1.0 0.6 1.1 0.6 0.8
1.3 1.3 1.3 1.0 0.8 1.3 0.7 0.9
0.6 0.8 0.8 0.6 3.2 4.0 2.0 2.9
+B)
Neutral to full flow Full flow to neutral 28/32 38/45 28/32 38/45

Neutral start switch (NSS)

The Neutral Start Switch (NSS) contains an electrical switch that provides a signal of whether the control is in neutral. The signal in neutral is Normally Closed (NC).
Neutral start switch schematic
24 | © Danfoss | February 2022 BC178386485160en-000503
P400344
Case gauge port M14
P005 701
M14
M5
M4
M3
P301 749
Technical Information
Operation
Neutral start switch data
Max. continuous current with switching Max. continuous current without switching Max. voltage Electrical protection class

Case gauge port M14

The drain port should be used when the control is mounted on the unit’s bottom side to flush residual contamination out of the control.
MDC w/h drain port shown
8.4 A
20 A
36 V
DC
IP67 / IP69K with mating connector
MDC schematic diagram

Lever

MDC controls are available with optional lever/handle. Align with Settings: Y module in the model code.
Standard orientation 90° from input shaft
©
Danfoss | February 2022 BC178386485160en-000503 | 25
P003 193
P003 189
C2C1
F00A
M14
T PF00B
Technical Information
Operation

Forward-neutral-reverse (FNR) electic control

FNR principle

The 3-position FNR control uses an electric input signal to switch the pump to a full stroke position. Under some circumstances, such as contamination, the control spool could stick and cause the pump to stay at some displacement.
A 170 μm screen is located in the supply line immediately before the control porting spool.
Forward-Neutral-Reverse electric control (FNR)
FNR hydraulic schematic
26 | © Danfoss | February 2022 BC178386485160en-000503
P003 190E
100 %
“0“
100 %
Voltage VDC
Displacement
1 2
P003 480
Technical Information
Operation
Pump displacement vs. electrical signal
Control current
Voltage Min. current to stroke pump Pin connections
12 V 750 mA any order 24 V 380 mA
DEUTSCH connector, 2-pin
Connector ordering data
Description Quantity Ordering data
Mating connector 1 DEUTSCH DT06-2S Wedge lock 1 DEUTSCH W2S Socket contact (16 and 18 AWG) 2 DEUTSCH 0462-201-16141 Danfoss mating connector kit 1 K29657
Solenoid data
Voltage 12 V 24 V
Minimum supply voltage
Maximum supply voltage (continuous)
Maximum current
Nominal coil resistance @ 20 °C [70 °F]
PWM Range
9.5 V
DC
14.6 V
DC
1050 mA 500 mA
8.4 Ω 34.5 Ω
70-200 Hz
19 V
29 V
DC
DC
©
Danfoss | February 2022 BC178386485160en-000503 | 27
Technical Information
Operation
Solenoid data (continued)
Voltage 12 V 24 V
PWM Frequency (preferred)
IP Rating (IEC 60 529) + DIN 40 050, part 9
Bi-directional diode cut off voltage
*
PWM signal required for optimum control performance.
Pump output flow direction vs. control signal
Shaft rotation CW CCW
Coil energized
Port A in out out in Port B out in in out Servo port pressurized M5 M4 M5 M4
*
For coil location see Installation Drawings.
*
*
100 Hz
IP 67 / IP 69K (part 9 with mating connector)
28 V
DC
C1 C2 C1 C2
53 V
DC

Control response

MP1 controls are available with optional control passage orifices to assist in matching the rate of swash­plate response to the application requirements (e.g. in the event of electrical failure).
The time required for the pump output flow to change from zero to full flow (acceleration) or full flow to zero (deceleration) is a net function of spool porting, orifices, and charge pressure.
A swash-plate response times table is available for each frame size. Testing should be conducted to verify the proper orifice selection for the desired response. Typical response times at the following conditions:
Δ p = 250 bar [3626 psi] Charge pressure = 20 bar [290 psi] Viscosity and temperature = 30 mm²/s [141 SUS] and 50 °C [122 °F] Speed = 1800 min-1 (rpm)
Response time, FNR
Stroking direction
Neutral to full flow
Full flow to neutral
0.8 mm [0.03 in] orifice 1.0 mm [0.04 in] orifice 1.3 mm [0.05 in] orifice No orifice 28/32 38/45 28/32 38/45 28/32 38/45 28/32 38/45
2.1 s 2.6 s 1.1 s 1.6 s 0.8 s 1.1 s 0.7 s 0.7 s
1.1 s 1.8 s 0.9 s 1.0 s 0.6 s 0.7 s 0.3 s 0.3 s

Non feedback proportional electric control (NFPE)

The Non Feedback Proportional Electric (NFPE) control is an electrical automotive control in which an electrical input signal activates one of two proportional solenoids that port charge pressure to either side of the pump servo cylinder. The NFPE control has no mechanical feedback mechanism.
A serviceable 170 μm screen is located in the supply line immediately before the control porting spool.
Under some circumstances, such as contamination, the control spool could stick and cause the pump to stay at some displacement.
28 | © Danfoss | February 2022 BC178386485160en-000503
P003 192
P003 188
C2C1
F00A
M14
T PF00B
"0"
Signal Current
mA(DC)
a b c
a
b
c
Displacement
100 %
100 %
NFPE control
p = 300 bar
p = 300 bar
p = 0 bar
p = 0 bar
P003 187E
Technical Information
Operation
NFPE control
NFPE schematic
The pump displacement is proportional to the solenoid signal current, but it also depends upon pump input speed and system pressure. This characteristic also provides a power limiting function by reducing the pump swashplate angle as system pressure increases. A typical response characteristic is shown in the accompanying graph. Under some circumstances, such as contamination, the control spool could stick and cause the pump to stay at some displacement.
NFPE pump displacement to input signal

Control signal requirements

Control current
Voltage a
12 V 600 mA 1080 mA 1360 mA any order 24 V 300 mA 540 mA 680 mA
*
Factory test current, for vehicle movement or application actuation expect higher or lower value.
©
Danfoss | February 2022 BC178386485160en-000503 | 29
*
b c Pin connections
1 2
P003 480
Technical Information
Operation
DEUTSCH connector, 2-pin
Connector ordering data
Description Quantity Ordering data
Mating connector 1 DEUTSCH DT06-2S Wedge lock 1 DEUTSCH W2S Socket contact (16 and 18 AWG) 2 DEUTSCH 0462-201-16141 Danfoss mating connector kit 1 K29657
Description 12 V 24 V
Maximum current 1800 mA 920 mA Nominal coil resistance @ 20 °C [68 °F] 3.66 Ω 14.20 Ω
Inductance 33 mH 140 mH PWM signal frequency Range 70 – 200 Hz
IP Rating IEC 60 529 IP 67
Connector color Black
*
PWM signal required for optimum control performance.
@ 80 °C [176 °F] 4.52 Ω 17.52 Ω
Recommended
DIN 40 050, part 9 IP 69K with mating connector
*
100 Hz
Pump output flow direction vs. control signal
Shaft rotation CW CCW Coil energized
Port A in out out in Port B out in in out Servo port pressurized M5 M4 M5 M4
*
For coil location see Installation drawings.
*
C1 C2 C1 C2

Control response

MP1 controls are available with optional control passage orifices to assist in matching the rate of swashplate response to the application requirements (e.g. in the event of electrical failure). The time required for the pump output flow to change from zero to full flow (acceleration) or full flow to zero (deceleration) is a net function of spool porting, orifices, and charge pressure. A swashplate response table is available for each frame indicating available swashplate response times. Testing should be conducted to verify the proper orifice selection for the desired response.
Typical response times at the following conditions:
∆p Viscosity and temperature Charge pressure Speed
250 bar [3626 psi]
30 mm2/s [141 SUS] and 50°C [122 °F]
24 bar [348 psi]
1800 min-1 (rpm)
30 | © Danfoss | February 2022 BC178386485160en-000503
Loading...
+ 70 hidden pages