Danfoss EXD 316 Data sheet

0 (0)

Data sheet

Superheat Controller

Type EXD 316

EXD 316 is a superheat controller for the stepper motor valve that can be used where there are requirements for accurate control of superheat in connection with refrigeration.

The controller and valve can be used where there are requirements for accurate control of superheat in connection with refrigeration.

Applications:

Processing plant (water chillers)

Cold store (air coolers)

A/C plant

Heat pumps

Air conditioning

Benefits

The superheat is regulated to the lowest

 

 

possible value.

 

The evaporator is charged optimally – even

 

 

when there are great variations of load and

 

 

suction pressure.

Main features

Regulation of superheat

 

MOP function

 

ON/OFF input for start/stop of regulation

 

Relay output to alarm

Energy savings – the adaptive regulation of the refrigerant injection ensures optimum utilisation of the evaporator and thus a high suction pressure.

CANbus communication

Safety features and

Alarm indications

© Danfoss | DCS (sw) | 2017.01

DKRCC.PD.RT0.A1.02 | 1

Data sheet | Superheat controller type EXD 316

Contents

Pages

Applications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . .

. 3

Function overview.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Data.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Accessories. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . .

. 4

Ordering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . .

. 4

Dimensions.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Connections.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Configuration.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Installation.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Data communication.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Installation sensors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . .

. 8

Start of controller. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . .

. 9

Settings and checks to be made before start.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Op.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Operation.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Types of regulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . .

12

Manually operating the valve. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . .

13

Finding the optimum settings.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

14

If the superheat fluctuates.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

14

Troubleshooting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . .

15

Alarms.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Appendix I. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . .

16

-Menu survey.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

-Survey of functions.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Appendix II.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1

- General information to CANbus communication via a PLC etc. .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 - EXD 316 – Parameter identification (CANbus).. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Installation considerations.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 3 List of literature.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Acronyms and abbreviations used in this manual:

LOC

Loss of charge indication

SH

Superheat

MOP

Maximum operating pressure

MSS

Minimum stable superheat

PNU

Parameter number

Te

Saturated suction temperature

Pe

Evaporator pressure

S2

Evaporator temperature

S4

Evaporator outlet temperature

OD

Opening degree

EEV

Electronic expansion valve

∆Tm

Temperature difference between media temperature and evaporating temperature

© Danfoss | DCS (sw) | 2017.01

DKRCC.PD.RT0.A1.02 | 2

Data sheet | Superheat controller type EXD 316

Applications

The following gives an idea of the application scope of the

EXD 316

EXD 316 controller.

 

Water chiller using direct expansion

The most common application is water chillers using direct expansion. The regulation can be single loop using an AKS 32R pressure transmitter to measure evaporator pressure and an S2 sensor to measure superheated gas. If double loop regulation is used, the S4 sensor should be located at the water outlet pipe to measure the leaving water temperature. It is recommended to start with factory settings.

The application diagram shows the use of EXD 316 as a superheat controller, where temperature sensor AKS 21A and pressure transmitter AKS 32R have been shown as an example.

<![if ! IE]>

<![endif]>Danfoss

<![if ! IE]>

<![endif]>84N386.10

 

 

 

 

Function overview

Minimum Stable Superheat (MSS)

The controller will search for the minimum stable superheat between an upper and lower boundry. If the superheat has been stable for a period, the superheat reference is decreased. If the superheat becomes unstable, the reference is raised again. This process continues as long as the superheat is within the bounds set by the user. The purpose of this is to search for the lowest possible superheat that can be obtained while still maintaining a stable system. The superheat reference can also be fixed, in which case this function is disabled.

Maximum Operating Pressure (MOP)

In order to reduce the strain of the compressor, a maximum operating pressure can be set. If the pressure comes above this limit, the controller will control the valve to provide a lower pressure instead of a low superheat. The limit for this function is usually a fixed pressure, but it is possible to offset the limit temporarily.

Stand-alone function

EXD 316 is designed to operate in conjunction with a system master controller, which will control the EXD 316 via CANBUS or analog signal. It is however possible to use it in a standalone mode using one temperature and one pressure transducer.

Manual Control as a valve driver

The valve can be controlled manually by setting the desired operating degree using CANBUS. Alternatively, the controller may also be started and stopped externally using the analog signal 4 to 20 mA/0 to 10 V d.c., /1 to 5 V d.c.

Forced opening during startup

In some applications it is necessary to open the valve quickly when the compressor turns on to prevent suction pressure becoming too low. This is ensured by setting a fixed opening degree and

a startup time for the controller. Note that this will give a fixed opening degree for the duration of the start time, regardless of the superheat value.

Relay

The relay for the alarm function is an alternating relay. In the event of an alarm, the relay will close, which may, for instance, be used for an alarm buzzer.

Back-up Battery

For safety reasons the liquid flow to the evaporator must be cut off if there is power failure for the controller. As the ETS valve is provided with step motor, it will remain open in such a situation. When mounting the battery backup, the valve will close in the event of a power cut.

© Danfoss | DCS (sw) | 2017.01

DKRCC.PD.RT0.A1.02 | 3

Data sheet | Superheat controller type EXD 316

Data

Compatible valves

ETS / CCM / CCMT 0 - 42 / CTR / ETS 6

 

 

 

 

24 V AC / DC +/-15% 50/60 Hz, 10 VA

Supply voltage

(the supply voltage is not galvanically

 

separated from the input and output signals)

Power consumption

Controller

5 VA

ETS step motor

1.3 VA

 

Input signal

Current signal *

4-20 mA or 0-20 mA

Voltage signal *

0-10 V or 1-5 V

*)Ri: mA: 400 ohm

Pressure transmitter

AKS 32R

V: 50 kohm

Digital input from external contact function

 

Sensor input

2 pcs. Pt 1000 ohm

 

Alarm relay

1 pcs. SPDT

AC-1: 4 A (ohmic)

AC-15: 3 A (inductive)

 

 

Step motor output

Pulsating 30 - 300 mA

 

Data communication

Via CANbus

 

 

0 to +55°C, during operations

Environments

-40 to +70°C, during transport

20 - 80% Rh, not condensed

 

 

No shock influence/vibrations

Enclosure

IP 20

 

Weight

300 g

 

Montage

DIN rail

 

Operation

Via CANbus

 

 

 

 

EU Low Voltage Directive and EMC demands re.

 

CE-marking complied with.

Approvals

LVD-tested acc. to EN 60730-1 and EN 60730-2-9

 

EMC-tested acc. to EN50081-1 and EN 50082-2

 

 

Battery backup

If battery backup is used, the requirements for

the battery are: 18-24 V DC.

 

Max. distance between

30 m

 

controller and valve

 

 

 

Ordering

Type

Function

Code no.

EXD 316

superheat controller

084B8042

(with terminals)

 

 

 

 

 

EKA 183A

Programming key

084B8582

 

 

 

Dimensions [mm]

Accessories

Pressure transducer

Temperature sensor

 

 

AKS 32R, NSK

AKS 21, AKS 11

 

 

© Danfoss | DCS (sw) | 2017.01

DKRCC.PD.RT0.A1.02 | 4

Danfoss EXD 316 Data sheet

Data sheet | Superheat controller type EXD 316

Connections

Necessary connections

Terminals:

1-2

Supply voltage 24 V AC / DC

 

 

3-4

Battery (the voltage will close the ETS valve if the

 

controller losses its supply voltage).

 

The battery voltage must not be connected from terminals 1

 

and 2.

5-8

Supply to stepper motor

9-13

Operation via data communication from a MCX

 

controller.

 

For manual for data communication, please see the

 

reference list on last page.

 

 

20-21

Switch function for start/stop of regulation.

 

Note:

 

If a switch is not connected, terminals 20 and 21 must be short

 

circuited.

Application-dependent connections

Superheat control

14-15 Pt 1000 sensor at evaporator outlet (S2)

15-16 Pt 1000 sensor for measuring air temperature (S4)

17-19 Pressure transmitter type AKS 32R

Note:

The signal can not be shared with other controllers

Control of the valves opening degree with analog signal

21-22 Current signal or voltage signal from other regulation (Ext. Ref.)

24-26 Alarm relay

There is connection between 24 and 26 in alarm situations. When the controller is off there is connection between 24 and 25.

Warning

Any external connection with grounding could create a ground loop through a diode in the rectifier bridge which could destroy the power supply in EXD 316.

1,2 3,4 21,22

Connection to earth will destroy the controller

EXD 316

AC / DC

<![if ! IE]>

<![endif]>Danfoss84N387.10

A dedicated transformer must be used.

Class II

R = 120

R

<![if ! IE]>

<![endif]>CANL CANH

GND

CANBUS

Data communication

Connections EXD 316

ETS / KVS / CCMT2 - CCMT42 / CCM / CTR

White

5

Black

6

Red

7

 

 

Green

8

 

 

Connections EXD 316 /

ETS 6 / CCMT 0 - CCMT 1

Orange

5

Yellow

6

Red

7

Black

8

CANbus transmission lines should be terminated in both ends with a resistor of approximately 120 Ohms.

© Danfoss | DCS (sw) | 2017.01

DKRCC.PD.RT0.A1.02 | 5

Data sheet | Superheat controller type EXD 316

Configuration

Independent superheat regulation

The superheat in the evaporator is controlled by one pressure transmitter P and one temperature sensor S2. This can be done setting o61 = 2.

Fitting the “S4” temperature sensor is optional, but the regulation is improved by an “inner loop control” when the sensor is fitted.

EXD 316

Valve driver (Via Analog Signal)

This is where the controller receives signals from another controller, after which it controls the valve’s opening degree. The signal can either be a current signal or a voltage signal. Details can be found on the section “valve overview”.

 

EXD 316

EXD 316

I/V

<![if ! IE]>

<![endif]>Danfoss 84N394.10

<![if ! IE]>

<![endif]>Danfoss 84N393.10

 

I/V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Function

 

Parameter

 

Value

Application Mode – superheat regulation

 

o61

 

2

Selection of normal control mode

 

056

 

1

OD

<![if ! IE]>

<![endif]>Danfoss 84B2707.10

I/V

EXD 316

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Function

 

Parameter

Value

Application Mode – superheat regulation

 

 

o61

2

Selection of inner loop control mode

 

056

 

2

We recommend this inner loop control application mode setting, if the superheating is to be regulated with precision. Here the S4 and T0 temperature are part of an inner loop control.

The regulation algorithms require that a temperature sensor be fitted in the chilled medium.

The temperature sensor is connected to input "S4" and mounted in the chilled medium after the evaporator. (Danfoss calls a sensor S4 when it is mounted in the refrigerant after the evaporator).

External start/stop of regulation

The controller can be started and stopped externally via a contact function connected to input terminals 20 and 21. Regulation is stopped when the connection is interrupted. The function must be used when the compressor is stopped. The controller then closes the ETS valve so that the evaporator is not charged with refrigerant.

Battery

For safety reasons the liquid flow to the evaporator must be cut off if there is a power failure to the controller. As the ETS valve is provided with a stepper motor, it will remain open in such a

situation. When mounting the battery backup, the valve will close in the event of a power cut.

Parameter

Value

Function

o61

1

Application Mode - control via analog signal

Relays

The relay for the alarm function is an alternating relay.

In the event of an alarm the relay will close to connect terminals 24 and 26. This can, for instance, be used for an alarm buzzer. When there is no alarm or the controller is off, terminals 24 and 25 are connected.

Parallel Evaporators with common suction line

Since the introduction of EEV, it has been observed the phenomena the so-called Sleeping Evaporators phenomena have been observed. This happens when the outlet of the evaporators has a common suction line.

This is seen when using the Adaptive superheat Mode in some of the controllers. What happens is that by controlling using the same superheat reference in both controllers, evaporator No. 1 might be controlling in the correct manner, but the EEV for evaporator No. 2 might be closed.

However, the measured superheat of controller No. 2 will be the same as No. 1 because both S2 sensors will measure the same temperature.

In other words, the open degree of the EEV integrates down to 0% but, the measured superheat complies with the reference valve.

One solution is to use the Load-defined superheat Mode in the controller because the measured superheat governs the opening degree of the connected EEV.

EXD 316

<![if ! IE]>

<![endif]>Danfoss84N391.10

EXD 316

 

 

 

 

 

© Danfoss | DCS (sw) | 2017.01

 

DKRCC.PD.RT0.A1.02 | 6

Data sheet | Superheat controller type EXD 316

Installation

The EXD 316 is normally mounted on a DIN rail, and the necessary connections are shown in the diagram. If the sensor S4 is not used to measure air temperature in connection with thermostat function or as part of the controlling loop, then it is not necessary to connect the S4 sensor. The 18-24 V battery input at terminals 15 and 16 is not required if battery back-up is not needed.

Power supply considerations

The terminals 1 and 2 for the voltage supply are not isolated from the rest of the controller terminals. This means care should be taken when connecting two or more controllers to the same voltage supply. In the example below, the two controllers are connected to the same voltage supply and on the input side, terminals 21 (Analogue Input) are connected to each controller and similarly terminals 22 (GND).

This way of connecting the controllers can cause damage and should be avoided.

Note:

The same applies to other signal inputs e.g. terminals 2 and 4. See warning page 5.

EXD 316

<![if ! IE]>

<![endif]>Danfoss84N390.10

EXD 316

Stepper motor output

After installation the following checks can be made to the connection between the EXD 316 controller and the stepper motor of the valve.

With the power off, check that resistance between terminals 5 and 6 and terminals 7 and 8 is approximately:

ETS 6 / CCMT 0 : 46 Ohm CCMT 1 : 31 Ohm

ETS / KVS / CCMT 2 - CCMT 8 / CCM / CTR : 53 Ohm CCMT 16 - CCMT 42: 29 Ohm

Make slight allowances for cable resistance.

If resistance values differ from above, ensure that the cable is properly connected to the actuator of the stepper motor valve.

1.With the power on and parameter o18 set to 1, measure the phase current from terminal 5 (or 6) and terminal 7 (or 8 ) with a true RMS multimeter when the valve is operating. The valve can be driven from 0% to 100% and vice versa by changing the valve opening percentage in parameter o45. The phase current should be 100 mA rms (for ETS) when operating.

2.If this not the case and the cable connections are correct, then the stepper motor driver in the EXD 316 might be damaged. Remember to set o18 back to 0 after checks. If checks 1) and 2) are not correct, ensure that motor cable corrections are correct and the cable length is less than 30 meters.

Output relay contact

The contact of the alarm relay will be made when there is an alarm.

Battery back-up

A battery back-up can be connected to terminals 3 (+) and 4 (-). It is recommended to use 24 V DC 100 mAh UPS. The voltage should be at least 18 V and this can be achieved by using two 9 V 100 mAh batteries in series, if temporary solution is to be used.

EXD 316

EXD 316

<![if ! IE]>

<![endif]>Danfoss 84N389.10

Data communication

EXD316 can be operated in connection with MCX controllers. An MCX application software library and several complete application software packages are available for managing the valve controller.

In standalone applications EXD316 can be configured by running an application software on MMIMYK that transfers the setup data. For EXD configuration manual, please see the reference list on last page.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© Danfoss | DCS (sw) | 2017.01

 

 

 

 

 

DKRCC.PD.RT0.A1.02 | 7

Loading...
+ 16 hidden pages