Conexant as a service to its customers and may be used for informational purposes only. Conexant assumes no responsibili ty for errors or
omissions in these materials. Conexant may make changes to specifications and product descriptions at any time, without notice. Conexant
makes no commitment to update the information contained herein. Conexant shall have no responsibility whatsoev er for confl icts or
incompatibilities arising from future changes to its specificati ons and product descriptions.
No license, express or implied, by estoppel or otherwise, to any intellect ual property ri ghts is grant ed by this document. Except as provided in
Conexant’s Terms and Conditions of Sale for such products, Conexant assumes no liability whatsoever.
THESE MATERIALS AR E PR OVIDED "AS IS" WITHOUT W AR R AN TY OF ANY KIND, EITHER EX PR ESS OR IMPLIED, RELA TIN G TO
SALE AND/OR USE OF CONEXANT PRODUCTS INCLUDING LIABI LITY OR WARRANTIE S RE LAT ING TO FITNESS FOR A
PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL
PROPERTY RIGHT. Conexant further does not warrant the accuracy or completeness of the information, text, graphics or other items
contained within these materials. Conexant shall not be liable for any special, indirect, i ncidental, or consequential damages, including without
limitation, lost revenues or lost profits, which may result from the use of these materials .
Conexant products are not intended for use in medical, life saving or life sustaining applicati ons. Conexant cust om ers usi ng or selling
Conexant products for use in such applications do so at their own risk and agree to fully indemnify Conexant for any damages resulting from
such improper use or sale.
The following are trademarks of Conexant Systems, Inc.: Conexant, the Conexant C symbol, “What’s Next in Communic ations Technologies”,
and SmartDAA. Product names or services listed in this publication are for identification purpos es only, and may be trademarks of third
parties. Third-party brands and names are the property of their respective owners.
Reader Response:
Conexant strives to produce quality documentation and welcomes your feedback. Please send comments
and suggestions to conexant.tech.pubs@conexant.com. For technical questions, contact your local Conexant sales office or
field applications engineer.
3.2 MAXIMUM RATINGS.................................................................................................................................3-7
10.1INTERFACE BETWEEN THE MFC2000 AND EXTERNAL PRINT ASIC..........................................10-1
11. BIT ROTATION LOGIC.................................................................................................................................. 11-1
16. USB INTERFACE .......................................................................................................................................... 16-1
Figure 1-1. MFP System Diagram Using MFC2000 .............................................................................................................. 1-1
Figure 1-2: MFC2000 Function Diagram............................................................................................................................... 1-4
Figure 4-4. 2-Way Interleave ROM Connection................................................................................................................... 4-26
Figure 4-5. Zero Wait State, Single Access, Normal Read, Normal Write........................................................................... 4-36
Figure 4-6. One Wait State, Single Access, One Read, One Write..................................................................................... 4-37
Figure 4-7. Two Wait States, Single Access, Read On Delayed (CS1n), Write Early Off (CS2n)........................................ 4-38
Figure 4-8. Zero Wait State, Burst Access, Normal Read, Normal Write............................................................................. 4-39
Figure 4-9. Fast Page Mode ROM Access1,0,0 Read Access Followed by 1,1,1,1, Write Access.................................. 4-40
Figure 4-10. System Bus TimingRead/Write with Wait States ......................................................................................... 4-41
Figure 4-11. System Bus TimingZero-Wait-State Read/Write.......................................................................................... 4-42
Figure 4-12. System Bus Timing2-Way Interleave Read Timing (S = 1).......................................................................... 4-43
Figure 4-13. System Bus Timing2-Way Interleave Write Timing (S = 0 or 1)................................................................... 4-44
Figure 4-25. DRAM TimingRead, Write and Wait States for Non-interleave Mode.......................................................... 4-68
Figure 4-26. DRAM Timing for 2-way Interleave Write........................................................................................................ 4-69
Figure 4-27. DRAM TimingRead for 2-way interleave mode............................................................................................ 4-69
Figure 4-28. DRAM Refresh Timing.................................................................................................................................... 4-70
Figure 4-29. DRAM Battery Refresh Timing........................................................................................................................ 4-70
Figure 4-30. Flash Control Block Diagram........................................................................................................................... 4-73
Figure 4-31. NAND-Type Flash Memory Access with Two Wait States .............................................................................. 4-75
Figure 5-3. Power Reset Timing Diagram.............................................................................................................................. 5-5
Figure 5-4. +5v Prime Power Signal and VGG...................................................................................................................... 5-6
Figure 5-5. Internal Power Detection................................................................................................................................... 5-10
Figure 7-21. External circuit required for SONY–ILX516K interface.................................................................................... 7-40
Figure 7-22. LED timing for SONY–ILX516K....................................................................................................................... 7-40
Figure 7-23. Serial Programming Interface, Physical Connection.......................................................................................7-41
Figure 7-24. Bus Protocol.................................................................................................................................................... 7-42
Figure 7-25. Serial Programming Interface, Timing Diagram...............................................................................................7-42
Figure 7-26. Stretching the Low Period of the Clock ........................................................................................................... 7-44
Figure 7-29. Connection to External Video Capture Device................................................................................................ 7-51
Figure 11-1. Nozzle Diagram of a Typical Programmable Inkjet Head................................................................................11-1
Figure 11-2. Examples of Nozzle Head Configurations....................................................................................................... 11-2
Figure 11-3. Nozzle Configuration by Bit Rotation Block (Regardless of Physical Nozzle Configuration)........................... 11-2
Figure 11-4. MFC2000 Bit Rotation Block Diagram............................................................................................................. 11-3
Figure 11-6. CPU Background Print Data Preparation...................................................................................................... 11-12
Figure 11-7. MFC2000 Little-Endian Format ..................................................................................................................... 11-13
Figure 12-1. Vertical Printer Motor Control Block Diagram.................................................................................................. 12-1
Figure 12-3. Scan Motor Control Diagram........................................................................................................................... 12-5
Figure 12-5: Current Control Diagram................................................................................................................................. 12-9
Figure 14-1. Data Flow for Compression/Decompression................................................................................................... 14-1
Figure 17-3. Nibble Mode Data Transfer Cycle ................................................................................................................. 17-17
Figure 17-4. BYTE Mode Data Transfer Cycle.................................................................................................................. 17-18
Figure 20-4. Tone Generator Frequency Change................................................................................................................ 20-6
Figure 23-1. System Configuration One .............................................................................................................................. 23-1
Figure 23-2. System Configuration Two .............................................................................................................................. 23-2
Figure 23-3. System Configuration Three............................................................................................................................ 23-2
Figure 24-1. The ARM Bus System Block Diagram............................................................................................................. 24-2
Figure 24-2. SDRAM Setup and Hold Timing.................................................................................................................... 24-29
Figure 24-3. SDRAM Read or Write Timing.......................................................................................................................24-30
Table 2-1. MFC2000 Device Family ...................................................................................................................................... 2-1
Table 3-1. Pin Description (1 of 6)......................................................................................................................................... 3-1
Table 3-2. Maximum Ratings................................................................................................................................................. 3-7
Table 3-3. Digital Input Characteristics.................................................................................................................................. 3-8
Table 3-5. Power Supply Requirements................................................................................................................................3-9
Table 3-6. Battery Power Supply Current Requirements........................................................................... ............................ 3-9
Table 4-1. Fixed-Location and Size Chip Selects.................................................................................................................. 4-4
Table 4-2. Operation Register Map (1 of 9)...........................................................................................................................4-8
Table 4-3. Setup Registers (1 of 2)...................................................................................................................................... 4-17
Table 4-4. Cache Tag Data Format (for Test Mode Read/Write Operation)........................................................................ 4-20
Table 4-5. Access Modes for Reading ROM ....................................................................................................................... 4-27
Table 4-6. Read Operation (Internal Peripheral Gets Data From Memory) ......................................................................... 4-29
Table 4-7. Write Operation (Internal Peripheral Puts Data Into Memory)............................................................................ 4-29
Table 4-8. Read/Write with Wait States Timing Parameters................................................................................................ 4-45
Table 4-9. MFC2000 Interrupt and Reset Signals ............................................................................................................... 4-46
Table 4-10. Programmable Resolution of Timer1 and Timer2............................................................................................. 4-53
Table 4-11. DRAM Wait State Configurations ..................................................................................................................... 4-55
Table 4-14. DRAM Row/Column Configuration................................................................................................................... 4-58
Table 4-15. DRAM Timing Parameters................................................................................................................................4-71
Table 4-17. DMA Channel Functions and Characteristics................................................................................................... 4-78
Table 4-18 DMA Channel 3 Control Bit Sssignment............................................................................................................ 4-79
Table 7-1. Register setup for Rohm–IA3008–ZE22............................................................................................................. 7-27
Table 7-2. Register setup for Dyna–DL507–07UAH............................................................................................................ 7-29
Table 7-3. Register setup for Mitsubishi-GT3R216..............................................................................................................7-31
Table 7-4. Register Setup for Toshiba–CIPS218MC300..................................................................................................... 7-33
Table 7-5. Register Setup for NEC – µPD3724...................................................................................................................7-35
Table 7-6. Register setup for NEC – µPD3794.................................................................................................................... 7-37
Table 7-7. Register Setup for SONY – ILX516K.................................................................................................................. 7-39
Table 9-2: Procedure to determine Pixels to remove........................................................................................................... 9-17
Table 24-1. Needs a title....................................................................................................................................................24-11
Table 24-2. DMA Channels: Functionality and Priorities ................................................................................................... 24-12
Table 24-3. DMA Parameters Scratch Pad Addresses...................................................................................................... 24-13
Table 24-9. SDRAM Setup and Hold Timing..................................................................................................................... 24-29
Table 24-10. Timing Parameters for 16-bit SDRAM Read and Write................................................................................ 24-31
Table 24-11. Timing Parameters for 8-bit SDRAM Read and Write.................................................................................. 24-31
This document defines and describes all hardware functions of the MFC2000 chip. The MFC2000 design is based
on the MFC1000 design with many minor modifications/enhancements. It has several new key functions to
accomplish the following:
•
Support a full color MFP
•
Enhance connectivity to the PC
•
Provide an internal Fax Modem
•
Connect to external Conexant video chips
1.2 System Overview
The Conexant Multi-Functional Peripheral Controller 2000 (MFC2000) device set hardware, core code,
application code, and evaluation system comprise a full color Multi-Functional Peripheral (MFP) system−needing
only a power supply, scanner, printer mechanism, and paper path components to complete the machine. The
standard device set hardware includes Conexant’s MFC2000 chip, Conexant’s SmartDAA or IA chip, and a
Printer Interface chip. Optionally, a Conexant video chip with VIP interface can be used to support the video
capture function. If V.17 or V.34 faxing without voice is required, the internal V.17/V.34 Fax Modem in the
MFC2000 chip is used and the MFC2000 is connected to the external Conexant SmartDAA or IA chip. If the
voice/speech function is required, the external Voice Fax Modem device from Conexant will be needed. Any other
external interface device can be supported by using the external ARM for CPU and DMA accesses or by using
the internal serial interface. An MFP system-level block diagram using the MFC 2000 is illustrated in Figure 1-1.
Serial Interface (sync.)
USB Interface
or
PC
Color
Scanner
module
Data
DRAM/SRAM/Flash Memory
P1284 Interface
Scanner Interface
Program
ROM/Flash Memory
Operator
Panel
module
MFC2000
(Conexant)
External
ARM Bus
Prime power/
Battery power
hybrid and power
down circuit
1.2.1 Integrated Full Color MFP Controller (MFC2000)
The MFC2000 provides the majority of the electronics necessary to build a color scan and color inkjet printer
based MFP whose electronics are integrated into a one-chip solution including one CPU (ARM7TDMI) and two
DSPs (Countach Imaging DSP subsystem and P80 core).
Full printer and copier functionality is provided by the following:
•
1284 parallel port interface
•
USB serial port interface
•
Color scanner interface/controller
•
Countach Imaging DSP subsystem for video/scan/compression process
•
Flash memory controller
•
SDRAM/DRAM controllers
•
Resolution conversion logic
•
Inkjet data formatter
•
External inkjet printing
In addition, the MFC2000 performs facsimile control/monitoring, compression/decompression, and 33.6 Kbps Fax
Modem functions (P80 core). The MFC2000 interfaces with major MFP machine components like external
modems, SmartDAA, external Fax IA, motors, sensors, external video chip, and operator control panel. The
ARM7TDMI-embedded processor provides an external 48-MB direct memory access capability. An integrated
12-bit Pipeline ADC (PADC) and countach subsystem (DSP subsystem, combined with an advanced Conexant
proprietary color image processing algorithm, provides state of the art image processing performance on any type
of images, including text/half-tone and color images.
The full color MFP Engine provides the hardware and software necessary to develop a full-color Multifunctional
Peripheral including an architecture for color printing, color faxing, color scanning, video capturing, and color
copying. It also supports many of these operations concurrently.
1.2.1.1 Printing
The MFC2000 Controller supports color inkjet printing. Print speed throughput capabilities are inversely
proportional to resolution and also depend on the external printer interface. For host printing, the host sends the
image data with the print resolution; the MFC2000 performs no resolution conversion. If host printing and faxing
need to be performed for the same image, the printing image data must be sent to the MFP. The MFC2000
converts the printing image data to the faxing image data locally and then faxes it out. An external printer interface
chip is designed to support inkjet print mechanism/head subsystems. Different external printer interface chips can
be designed and used to support other inkjet mechanisms and heads according to customer requirements.
1.2.1.2 Faxing
Both host-based color faxing and standalone color faxing are supported in addition to monochrome faxing. Host-
based faxing can take place by using a Class One connection via the USB serial port or the P1284 parallel port.
For host faxing, the host sends the image data with the fax resolution; the MFC2000 performs no resolution
conversion. For standalone faxing, the resolution conversion is supported by the MFC2000. The standalone color
scan-to-fax function is supported using the advanced Conexant proprietary color image processing technology:
1.2.1.3 Scanning
For the color scan-to-PC function, up to 8 bits of scan data per pixel can be sent to the host. JPEG compression
can be used to reduce the PC upload speed.
1.2.1.4 Copying
The MFC2000 and associated firmware supports several modes of copying including standard, fine, superfine,
and photo. Multiple copies of a single image can be made with a single pass. The standalone color/monochrome
copy function is supported by using MFC2000’s Inkjet print formatter, the external printer interface, and the
advanced Conexant proprietary color image processing system.
1.2.2 MFC2000 Evaluation System
The Conexant MFC2000 Evaluation System provides demonstration, prototype development, and evaluation
capabilities to full color MFP developers using the MFC2000 Engine device set. The MFC2000 Evaluation system
provides flexibility for visibility and access, i.e., plug-on board for the modem, sockets for programmable parts,
and connectors for an emulator (refer to Figure 1-2). Jumper options and test points are provided throughout the
MFC2000 evaluation Main Board. The MFC2000 Evaluation System is the most convenient environment for the
developer needing to experiment with the several interfaces encountered in the full color MFP, for example, color
printer functions.
1.2.3 New Function Highlights
•
PLL Clock Generation for several different clocks needed for ARM CPU, Countach Imaging DSP, Fax Modem
core, and USB Interface
•
4 KB 2-way Set Associative Inst ruction Cache
•
USB Interface (including USB Transceiver) to PC
•
Video/ Color Scan Controller (up to 600 dpi) (including programmable ADC sampling rate)
•
Countach Imaging DSP Subsystem for pixel-based dark level correction, shading correction, gamma
correction, video/color scan image processing, color science and JPEG
•
Countach Bus System which includes Countach Subsystem Interface, ARM Bus Interface, Video/Scan
Interface, Countach Bus Unit, Countach DMA Controller, and SDRAM Controller.
The MFC2000 contains an internal 32-bit RISC Processor with 64-MB address space, the Countach Imaging DSP
(Conexant’s DSP) subsystem including embedded data and program memory, and dedicated circuitry optimized
for color scanning, color faxing, color copying, color printing, and multifunctional control and monitoring. The
device family with relevant features is described in Table 2-1.
The MFC2000 contains the ARM7TDMI RISC Processor (described separately in ARM7TDMI Manuals),
Countach Imaging DSP, Modem DSP, and specialized hardware needed for the Multifunctional machine control
and scanner and fax signal processing. The Countach Imaging DSP subsystem is on a separate data bus.
Therefore, the ARM system data bus can operate in parallel with the Countach Imaging DSP subsystem data bus
for most operations except the interaction time between two buses. The two-bus architecture is very important to
provide enough bandwidth for full color MFP products. Figure 2-1 shows the MFP2000’s two-bus architecture.
The ARM Bus System (ABS) has two mastersARM CPU and DMA Controller. They provide accesses to all
specialized hardware functions including the Countach Imaging DSP subsystem as a peripheral on the ARM Bus
System. ABS has several sections. The System Interface Unit (SIU) is the control center. The ARM CPU and
Cache Controller are on the Internal System Bus (ISB). The Cache Memory is on the Internal Cache Bus (ICB).
The DMA Controller is on the DMA Bus (DAB). All internal peripherals are on the Internal Peripheral Bus (IPB).
The SmartDAA/IA Interface and P80 core are on the IPB of the ARM Bus System. The ARM7TDMI runs at a
clock rate 40 MHz, 37.5 MHz, or 30 MHz. All external peripherals are on the ARM External Bus (AEB). There is a
separate bus system for the Countach Imaging DSP subsystem called Countach Bus System (CBS). There are
three sections, the Video/Scan Interface, the ARM Bus Interface, and the countach subsystem interface. The
external SDRAM/DRAM is on the Countac h Exter n al Bus (C EB).
SC_START[0]V8O-1XT3VScanner shift gate control 0
SC_CLK1/SC_CLK2AU9O-1XT3VScanner clock.
SC_LEDCTRL[0]U7O-1XT3VScanner LED control 0
SC_LEDCTRL[1]/
SC_START[1]
SC_LEDCTRL[2]/
SC_START[2]
SSTXD1J19O-2XT3VTX data for SSIF1
SSRXD1H17IHU5VT-(Hysteresis, Pull up) RX data for SSIF1
SSCLK1J20I/OH5VT2XT5VT(Hysteresis) Clock input or output f or SSIF 1
GPIO[0]/FWRn/CLAMPJ4I/OH5VT2XT5VT(Hysteresis) GPIO[0] or flash write enable signal
GPIO[1]/FRDnM3I/OH5VT2XT5VT(Hysteresis) GPIO[1] or flash read enabl e signal for
GPIO[2]/DMAREQ1/ SSCLK2V1I/OH5VT2XT5VT(Hysteresis) GPIO[2] or DMA channel 1 request
GPIO[3]/DMAAC K1/ SSRXD2U4I/OH5VT2XT5VT(Hysteresis) GPIO[3] or DMA channel 1
GPIO[4]/CS[2]nU3I/OH5VT2XT5VT
GPIO[5]/CS[3]n/PWM[3]U2I/OH5VT2XT5VT(Hysteresis) G PIO[5]or I/O chip se le c t [3 ] (active
Y8O-1XT3V
W8O-1XT3VScanner LED control 2 or Scanner shift gate
Input
Type
Output
Type
interleave mode and interleave mode. (VDRAM
powered)
2).
output
output signal.
powered)
powered)
(Hysteresis) Indicate the loss of prime power
(result in SYSIRQ). (VRTC powered)
Write Protect during loss of VDD power.
functional logic is powered by RTC battery power,
but the output drive is powered by DRAM battery
power. (VRTC powered)
(Hysteresis) Battery power reset input. (VRTC
powered)
input (active low)(VRTC powered)
Scanner LED control 1 or Scanner shift gate
control 1
control 2
for NAND-type flash memory or scanner clamp
control output
NAND-type flash memory.
input or clock input/output for SSIF2.
acknowledge or RX data for SSIF2
(Hysteresis) GPIO[4] or I/O chip select [2] (active
GPIO[6]/CS[4]n/ EADC_D[3]U1I/OH5VT2XT5VT(Hysteresis) GPIO[6] or I/O chip select [4] (active
GPIO[7]/CS[5]n/T4I/OH5VT2XT5VT(Hysteresis) GPIO[7] or I/O chip select [5] (active
GPIO[8]/IRQ[11]/
SSSTAT1/SC_CLK1/2B
GPIO[9]/IRQ[13]/ EADC_D[2]T2I/OH5VT2XT5VT(Hysteresis) GPIO[9] or external interrupt [13] or
GPIO[10]/RING_DETECT/PW
M[4]
GPIO[11]/CPCIN/PWM[0]/ALT
TONE
GPIO[12]/SASCLK/
SMPWRCTRL
GPIO[13]/SASTXD/
PMPWRCTRL
GPIO[14]/SASRXD/ RINGERR1I/OH5VT2XT5VT
GPIO[15]/IRQ[16]/
SC_CLK1/2C
GPIO[16]/M_TXSINP3I/OH5VT2XT5VT(Hysteresis) GPIO[16] or internal modem
GPIO[17]/M_CLKINP2I/OH5VT2XT5VT(Hyst eresis) GPI O[17] or internal modem
GPIO[18]/M_RXOUTP1I/OH5VT2XT5VT(Hysteresis) GPIO[18] or internal modem
GPIO[19]/M_SCK/MIRQnN4I/OH5VT2XT5VT(Hys t eresis) GPI O[19] or internal modem or
GPIO[20]/M_STROBE/ MCSnN3I/OH5VT2XT5VT
GPIO[21]/M_CNTRL_SINN2I/OH5VT2XT5VT(Hysteresis) GPIO[21] or internal modem
GPIO[22]/EADC_SampleN1I/OH5VT2XT5VT(Hysteresis) GPIO[22] or external ADC sample
SM[3:0]/
GPO[7:4]
PM[0]/SPI_SID/
EADC_D[0]/GPO[0]
PM[1]/SPI_SIC/
EADC_D[1]/GPO[1]
PM[2]/SMI0/GPO[2]Y9O-1XT3VPrint motor control [2] output or GPO[2] output or
PM[3]/SMI1/GPO[3]Y12O-2XT3VPrint motor control [3] output or GPO[3] output or
TONEV9I/OH5VT1XT5VT(Hysteresis) Tone output signal.
PIODIRC1O-2XT3VPIOD[7:0] is output when PIODIR is high and
STROBEnA2IH5VT-(Hyst eresis ) I nput from PC (act iv e l ow)
AUTOFDnG3IH5VT-(Hy steresis) Input from PC (active low)
SLCTINnG2IH5VT-(Hysteresis) I nput from PC (activ e l ow)
INITnG1IH5VT-(Hysteresis) I nput from PC (activ e l ow)
BUSYA1O-2XT3VPIO Returned status to PC
ACKnD3O-2XT3VPIO Returned status to PC (active low)
T3I/OH5VT2XT5VT
T1I/OH5VT2XT5VT(Hysteresis) GPIO[10] or ring detection input or
R4I/OH5VT2XT5VT
R3I/OH5VT2XT5VT(Hysteresis) GPIO[12] or clock input/output for
R2I/OH5VT2XT5VT(Hysteresis) GPIO[13] or TX data output for SASIF
P4I/OH5VT2XT5VT(Hysteresis) GPIO[15] or external interrupt [ 16] or
V7,W7,Y7,U6O-1XT3VScan motor control [3:0] pins or GPO[7:4] pins.
U8I/O5VT1XT5VTPrint motor control [0] output or GPO[0] output or
W9I/O5VT1XT5VT
Input
Type
Output
Type
low) or external ADC data [3] input
low).
(Hysteresis) GPIO[8] or external interrupt [11] or
status input for SSIF1 or scan clock output
external ADC data [2] input
PWM channel 4 output
(Hysteresis) GPIO[11] or calling party control input
or ALTTONE output
SASIF or Scan Motor Power Control output
or Print Motor Power Control output
(Hysteresis) GPIO[14] or RX data input for SASIF
or ringer output
scan clock output
external modem interrupt input
(Hysteresis) GPIO[20] or internal modem or
external modem chip select
signal output
data output for SPI or external ADC data [0] input
Print motor control [1] output or GPO[1] output or
clock output for SPI or external ADC data [1] input
SLCTOUTC3O-2XT3VPIO Returned status to PC
PEB2O-2XT3VPIO Returned status to PC
FAULTnB1O-2XT3VPIO Returned status to PC (active low)
PIOD[7:0]D2,D1,C2,H4,H
3,H2,H1,G4
TESTER_MODEJ2IHD5VT-(Hysteresis) For test only, It must be ‘low’ for the
ADCREFpY3IPositive reference voltage for the scan PADC
ADCREFnY2INegative reference voltage for the scan PADC
POWER1Y1IVoltage input for power-down detection circuit 1
POWER2W4IVoltage input for power-down detection circuit 2
ADGAY5-Scan PADC analog ground
ADVAV5-Scan PADC analog Power
ADGDU5-Scan PADC digital ground
SDAA_SPKRV12OAnalog telephone line monitoring output from SSD
ADCVY4-Scan PADC internal ground
SCINW5IAnalog scan input signal
SENIN[2:0]V6,W6,Y6IAnalog sensor inputs for TADC
TCKW3IHD5VT-(Hysteresis, Pull down) Test clock input for JTAG.
TMSW2IHU5VT-
TRSTnW1IHD5VT-(Hysteresis, Pull down) Suggestion by Lauterbach
TDIV4IHU5VT-(Hysteresis, Pull up) Test data input for JTAG.
TDOV3O-1XT5VT
TESTV2IHD5VT-(Hysteresis, Pull down) For test only, It must be
SCANMODJ1IHD5VT-(Hysteresis, Pull down) For the scan test only, It
P80_SELJ3IH3V-
PLLREF_XINY15IOSC-Crystal input pin for PLL
PLLREF_XOUTW15O-OSCCrystal output pin for PLL
PLLVDDU15-+3.3V digital power for PLL
PLLVSSU16-+3.3V digital ground for PLL
SDDATA[15:0]N20,P17,P18,P
SDWRnV18O-2XT3VCountach (S)DRAM write strobe (active low)
SDCSnV17O-2XT3VCountach (S)DRAM chip select
SDCLK100MHzM19O5VT2XT5VTCountach (S )DRAM cl ock
USB_DpB8I/OPositive data input/output pin for USB
USB_DnC8I/ONegative data input/output pin for USB
SDAA_PWRCLKE1I/OPositive power/c l ock output from SSD
SDAA_PWRCLKnE2I/ONegative power/clock output f rom SSD
SDAA_DIBpE4I/OPositive data input/output pin for SDAA
SDAA_DIBnE3I/ONegative data input/output pin for SDAA
EV_VD[0]/EADC _ D [4 ]/ MREQnW12I/O3V2XT3VExternal video data [0] input for VIP or external
EV_VD[1]/EADC_D[5]U12I/O3V2XT3VExternal video data [1] input for VIP or external
EV_VD[2]/EADC_D[6]/ OPCnY13I/O3V2XT3V
EV_VD[3]/EADC_D[7]W13I/O3V2XT3V
EV_VD[4]/EADC _ D [8 ]/ MAS[0]U13I/O3V2XT3VExternal video data [4] input for VIP or external
EV_VD[5]/EADC _ D [9 ]/ MAS[1]Y14I/O3V2XT3VExternal video data [5] input for VIP or external
EV_VD[6]/EADC_D[10]W14I/O3V2XT3VExternal video data [6] input for VIP or external
EV_VD[7]/EADC_D11]/
ABORT
EV_CLKV13IH3V-(Hy steresis) External video clock input
W_RnN19OD5VT2XT5VT(Pull down) The bus access is a read operation
XAKnN18OU5VT2XT5VT(Pull up) SIU Transaction Acknowledge. The
W19,Y19,W18,
Y18,W17,Y17,V
16,W16,Y16,V1
5
V14I/O3V2XT3V
Input
Type
O-2XT3VCountach (S)DRAM address bus (13 pins)
Output
Type
low)
low)
ADC data [4] input or Memory Request (active
low)-indicates that the following cycle is a memory
access.
ADC data [5] input
External video data [2] input for VIP or external
ADC data [6] input or Op Code fetch (active low)LOW indicates that the processor is fetching an
instruction from memory.
External video data [3] input for VIP or external
ADC data [7] input
ADC data [8] input or Memory access size
MAS[1:0]: 00 - byte, 01 - halfword, 10 - word, 11 Reserved during the normal operation
ADC data [9] input or Memory access size
MAS[1:0]: 00 - byte, 01 - halfword, 10 - word, 11 Reserved during the normal operation
ADC data [10] input
External video data [7] input for VIP or external
ADC data [11] input or aborted bus cycle-the
address selected is outside of CS’s address
ranges.
when W_Rn is LOW and write when W_Rn is
HIGH.
D[15:0] data will be transferred during this MCLK
cycle.
DMACYC/ CLK_CONFIG[2]M18I/OU5VT2XT5VT(Pull up) DMA Cycle-the DMA logic has control of
WAITnJ17OU5VT2XT5VT(Pull up) Wait (active low)-reflects the wait states
CACHEHIT/
JTAG_MODE_SEL
SEQN17OD5VT2XT5VT
SSD_DIBRXF3OInternal test pin. Leave it open.
TX_DATAF2OInternal test pin. Leave it open.
SDAA_GPIO_INTF1OInternal test pin. Leave it open.
VSSL1,L2,L3,L4,U1
VDDA10,B10,C10,K
P80VSSM1-Digital ground for P80 DSP
P80VDDM2-+3.3V digital power for P80 DSP
VGG1M17-+5V Power for the +5V tolerant pads
VGG2D14-+5V Power for the +5V tolerant pads
VGG3D5-+5V Power for the +5V tolerant pads
VGG4M4-+5V Power for the +5V tolerant pads
VDRAME18-Battery Power for DRAM refresh.
VRTCF17-Battery Power for RTC
(NC)A3,B3,A4,B4,C4
J18I/OU5VT2XT5VT(Pull up) Cache hit-the ARM is retrieving data from
0,V10,W10,Y10,
L17,L18,L19,L2
0,A11,B11,C11,
D11
1,K2,K3,K4,U11
,V11,W11,Y11,
K17,M20
,D4,A5,B5,C5,A
6,B6,C6,D6,A7,
B7,C7,D7,D8
Input
Type
-Digital ground (16 pi ns)
-+3.3V digital power (13 pins)
-18 RESERVED pins
Output
Type
the external bus. (CLK_CONFIG[2] input during the
reset period)
being used by the ARM processor.
the cache memory (JTAG_MODE_SEL during the
reset period, “1” – ARM JTAG selected
(Pull down) Sequential Address Access. (Used
with nMREQ to indicate memory access type. Only
required if using co-processor cycles)
VDD Digital PowerVDD-0.5 to +4.6V
Battery PowerVRTC-0.5 to +4.6V
VDRAM-0.5 to +4.6V
VGG Digital PowerVGG-0.5 to +6.0V
Digital GNDGND-0.5 to +0.5V
Digital Input (3V)VI-0.5 to +4.6 V
Digital Input (5VT)VI-0.5 to +6.0V
Operating Temperature Range T 0 to 70
(Commercial)
Storage Temperature RangeTstg-40 to 80
Voltage Applied to Outputs
in High Z State (3V)VHz-0.5 to 4.6V
Voltage Applied to Outputs
in High Z State (5VT)VHz-0.5 to 6.0V
Static Discharge Voltage
( 25oC)ESD+2500V
Latch-up Current ( 25oC)Itrig+400mA
VGGDigi tal Power for 5VT4.755.25
VDDDigital Power3.03.6
GNDDigital GND00
IDDTotal Digital Current(TBD)(TBD)
VBATBattery Power2.73.6
VDRAMBa tte ry Power2.73.6
Note: * Maximum power supply current is measured at 3.6V.
Max.
(V)
Typ. @ 25
C(mA)
°°°°
Max.@ 0
(mA)
C
°°°°
Table 3-6. Battery Power Supply Current Requirements
Operating Voltage
(V)
2.74tbd100tbd
3.0tbdtbdtbdtbd
3.36tbdtbdtbd
3.6tbdtbdtbdtbd
Note: Battery power supply current is measured when a 32KHz crystal is used. The DRAM battery currents that are listed are
somewhat dependent on the type of DRAM used. This particular configuration had 1 interleaved DRAM bank in backup mode.