Cisco Nexus 5672UP User Manual

Page 1
© 2017 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 1 of 24
Data Sheet
Cisco Nexus 5600 Platform 10-Gbps Switches
Product Overview
with the availability of 10 Gigabit Ethernet servers at attractive prices. The combination of increased adoption of these servers and applications with higher bandwidth requirements is increasing the need for dense 10 and 40 Gigabit Ethernet switching. Moreover, data center architectures are changing as application environments create new demands for IT infrastructure. Application workloads are deployed across a mix of virtualized and nonvirtualized server and storage infrastructure, requiring a network infrastructure that provides consistent connectivity, security, and visibility across a range of bare-metal, virtualized, and cloud computing environments.
The Cisco Nexus® 5600 platform is the third generation of the Cisco Nexus 5000 Series Switches: the industry’s leading data center server access switches. The Cisco Nexus 5600 platform switches can be categorized into 10-Gbps and 40-Gbps switches. This data sheet focuses on the 10-Gbps switches only. Cisco Nexus 5600 platform 10-Gbps switches are the successors to the industry’s widely adopted Cisco Nexus 5500 platform switches. The switches maintain all the existing Cisco Nexus 5500 platform features, including LAN and SAN convergence (unified ports and Fibre Channel over Ethernet [FCoE]), fabric extenders, and Cisco® FabricPath. In addition, the Cisco Nexus 5600 platform 10-Gbps switches bring integrated line-rate Layer 2 and 3 capabilities with true 40 Gigabit Ethernet support (on uplink and network-facing ports), Cisco programmable fabric innovations, Network Virtualization Using Generic Routing Encapsulation (NVGRE), Virtual Extensible LAN (VXLAN) bridging and routing, network programmability and visibility, large buffer capacity, and significantly greater scalability and performance for highly virtualized, automated, and cloud environments.
The Cisco Nexus 5600 platform 10-Gbps switches include both 1-rack-unit (1RU) and 2RU switches built to meet the challenges of today’s data centers with a flexible, agile, and energy-efficient design. These 10-Gbps switches are an important component of the Cisco Unified Data Center architecture, complementing existing Cisco Nexus switches. These energy-efficient switches offer 10 and 40 Gigabit Ethernet and FCoE, providing integrated Layer 2 and 3 features at wire speed and low latency of approximately 1 microsecond for any packet size. With a choice of port-side intake and fan-side intake airflow options to align with cold-aisle and hot-aisle placement in the data center, the 10-Gbps switches are designed for a broad range of traditional data center and large-scale virtualized cloud deployments.
The 10-Gbps switches together with the Cisco NX-OS Software operating system provides customers with features and capabilities that are widely deployed in data centers around the world. NX-OS is a purpose-built data center operating system designed for performance, resiliency, scalability, manageability, and programmability. It meets Ethernet and storage networking requirements, providing a robust and comprehensive feature set that can meet the demanding requirements of virtualization and automation in present and future data centers.
The Cisco Nexus 5600 platform 10-Gbps switches are designed for top-of-rack (ToR) and middle-of-row (MoR) deployment in data centers that support enterprise applications, service provider hosting, and cloud computing environments.
Page 2
© 2017 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 2 of 24
Models and Configurations
The Cisco 5600 platform 10-Gbps switches come in these configurations.
Cisco Nexus 5672UP Switch
The Cisco Nexus 5672UP Switch (Figure 1) is a 10 and 40 Gigabit Ethernet (40-Gbps on uplink and network-facing ports) switch offering wire-speed performance for up to seventy-two 10 Gigabit Ethernet ports (using Quad Small Form-Factor Pluggable [QSFP] breakout cables). The Cisco Nexus 5672UP Switches are Layer 2 and 3 nonblocking 10 and 40 Gigabit Ethernet and FCoE-capable switches with up to
1.44 terabits per second (Tbps) of internal bandwidth. The Cisco Nexus 5672UP offers 48 fixed 1 and 10 Gigabit Ethernet ports, of which the last 16 ports (highlighted in orange on the chassis for easy identification) are unified ports. All 48 fixed ports support classical Ethernet and FCoE. In addition, the 16 unified ports provide 8-, 4-, and 2-Gbps Fibre Channel, as well as 10 Gigabit Ethernet and FCoE connectivity options. The Cisco Nexus 5672UP also offers 6 ports of 40 Gbps using QSFP transceivers for Ethernet and FCoE support. The Cisco Nexus 5672UP has three fan modules and two power supplies. The Cisco Nexus 5672UP supports VXLAN in bridging and routing modes on all ports at line rate, enabling the migration of virtual machines between servers across Layer 3 networks. The switch also offers up to 15 buffer-to-buffer credits per port, helping provide SAN extension of up to 3.7 kilometers at 8-Gbps Fibre Channel speed assuming full Fibre Channel frame size of 2112 bytes.
Figure 1. Cisco Nexus 5672UP Switch (Port-Side View)
The Cisco Nexus 5672UP is constructed with the components shown in Figure 2. The Cisco Nexus 5672UP has two 1+1 redundant, hot-swappable power supplies and three hot-swappable independent fans with support for 2+1 redundancy.
Figure 2. Cisco Nexus 5672UP Switch (Fan-Side View)
The Cisco Nexus 5672UP supports both port-side intake (red handle) and fan-side intake (blue handle) airflow options for flexible mounting.
Cisco Nexus 5672UP-16G Switch
The Cisco Nexus 5672UP-16G Switch (Figure 3) is a 10 and 40 Gigabit Ethernet (40-Gbps on uplink and network-facing ports) switch offering wire-speed performance for up to seventy-two 10 Gigabit Ethernet ports (using QSFP breakout cables). The Cisco Nexus 5672UP-16G Switches are Layer 2 and 3 nonblocking 10 and 40 Gigabit Ethernet and FCoE-capable switches with up to 1.44 Tbps of internal bandwidth.
Page 3
© 2017 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 3 of 24
The Cisco Nexus 5672UP-16G offers 48 10 Gigabit Ethernet ports, of which the first 24 ports are capable of doing 1/10G Ethernet and the last 24 ports (highlighted in orange on the chassis for easy identification) are unified ports that support 16-, 8-, 4-, and 2-Gbps Fibre Channel. All 48 fixed ports support classical Ethernet and FCoE.
The 24 unified ports provide 16-, 8-. 4-, and 2-Gbps Fibre Channel as well as 10 Gigabit Ethernet and FCoE connectivity options. The Cisco Nexus 5672UP-16G also offers 6 ports of 40 Gbps using QSFP transceivers for Ethernet and FCoE support. The Cisco Nexus 5672UP-16G has three fan modules and two power supplies and supports VXLAN in bridging and routing modes on all ports at line rate, enabling the migration of virtual machines between servers across Layer 3 networks. The switch also offers up to 128 buffer-to­buffer credits per port, helping provide SAN extension of up to 16 kilometers at 16-Gbps Fibre Channel speed assuming full Fibre Channel frame size of 2122 bytes.
Figure 3. Cisco Nexus 5672UP-16G Switch (Port-Side View)
The Cisco Nexus 5672UP-16G platform is constructed with the components shown in Figure 4. The Cisco Nexus 5672UP-16G has two 1+1 redundant, hot-swappable power supplies and three hot-swappable independent fans with support for 2+1 redundancy.
Figure 4. Cisco Nexus 5672UP-16G Switch (Fan-Side View)
The Cisco Nexus 5672UP-16G supports both port-side intake (red handle) and fan-side intake (blue handle) airflow options for flexible mounting.
Cisco Nexus 56128P Switch
The Cisco Nexus 56128P Switch (Figure 5) is a 2RU switch that supports 2.56 Tbps of bandwidth across 48 fixed 1 and 10 Gigabit Ethernet SFP+ ports and four 40-Gbps QSFP+ ports. The 48 ports on the base chassis support 10 Gigabit Ethernet and FCoE. The 4 QSFP ports support 40 Gigabit Ethernet and FCoE.
Figure 5. Cisco Nexus 56128P Switch (Port-Side View)
Page 4
© 2017 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 4 of 24
The Cisco Nexus 56128P also offers two slots for a generic expansion module (GEM). The GEM (Figure 6) for the Cisco Nexus 56128P provides 24 SFP+ ports for 10 Gigabit Ethernet and FCoE or 2-, 4-, and 8-Gbps Fibre Channel, and 2 QSFP+ ports for 40 Gigabit Ethernet and FCoE. The expansion module supports native 40 Gigabit Ethernet on the QSFP+ ports. The GEM is supported on the Cisco Nexus 56128P chassis only and can be populated in either of the two expansion slots.
Figure 6. Cisco Nexus 56128P Generic Expansion Module
The Cisco Nexus 56128P is constructed with the components shown in Figure 7. The Cisco Nexus 56128P has four 2+2 redundant, hot-swappable power supplies and four 3+1 redundant, hot-swappable independent fans. The Cisco Nexus 56128P supports both port-side intake (red handle) and fan-side intake (blue handle) airflow options.
Figure 7. Cisco Nexus 56128P Switch (Fan-Side View)
The Cisco Nexus 56128P supports VXLAN bridging and routing modes on all ports at line rate, enabling the migration of virtual machines between servers across Layer 3 networks.
With the Cisco Nexus 5600 10-Gbps platform, organizations can quickly and easily upgrade existing data centers through advanced Cisco bidirectional (BiDi) optics, which enable the use of existing 10 Gigabit Ethernet fiber (a pair of multimode fiber strands) to carry 40 Gigabit Ethernet to the aggregation layer or to the spine (in a leaf-and­spine configuration) without requiring any change to the existing cabling infrastructure. Additionally, the platform can be deployed in MoR or EoR configurations to meet the 10 and 40 Gigabit Ethernet connectivity requirements of multiple racks or pods.
When used with Cisco Nexus 2000 Series Fabric Extenders, the Cisco Nexus 5600 platform 10-Gbps switches can support even more servers in a collapsed access- and aggregation-layer design, supporting 1 and 10 Gigabit Ethernet connectivity across multiple racks.
Features and Benefits
The following are some of the primary features of the Cisco Nexus 5600 10-Gbps platform switches:
Optimization for virtualization and cloud deployments: Today, high-performance servers deployed in the cloud can support many more virtual machines and workloads than ever before. The requirement to be able to deploy new servers on demand puts additional strain on the network fabric. The 10-Gbps switches address this challenge by providing scalability and performance, making it an excellent platform for meeting current and future needs.
Page 5
© 2017 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 5 of 24
Density and resilience: Built for today’s data centers, the switches are designed just like the servers they support. Ports and power connections are at the rear, close to server ports, helping keep cable lengths as short as possible and delivering to rack servers benefits traditionally offered only on blade servers. Hot­swappable power and fan modules can be accessed from the front panel, where status lights offer an at-a­glance view of switch operation. Front-to-back or back-to-front cooling is consistent with server designs, supporting efficient data center hot- and cold-aisle designs. Serviceability is enhanced with all customer­replaceable units accessible from the front panel.
Energy efficiency: The 10-Gbps switches help data centers operate within their space, power, and cooling parameters while reducing their carbon footprints. The switch power supplies are also capable of maintaining 90 percent efficiency at load conditions of as low as 25 percent utilization. This capability allows the switch to make efficient use of power while still being appropriately sized to support the conditions of a full system load.
Low latency: Cut-through switching enables these switches to support approximately 1 microsecond of port-to-port latency for any packet size with features enabled.
Intelligent Cisco Switched Port Analyzer (SPAN) and Encapsulated SPAN (ERSPAN): SPAN and ERSPAN can be used for troubleshooting and robust monitoring of traffic. The SPAN and ERSPAN capabilities are nondisruptive, with only extra bandwidth capacity used for SPAN and ERSPAN traffic. Enhancements include more efficient allocation of bandwidth to SPAN and ERSPAN traffic so that any fabric bandwidth not used for data traffic can be allocated to SPAN or ERSPAN traffic. The switch can support up to 31 line-rate SPAN and ERSPAN sessions.
Flexible buffer management: The 10-Gbps switches support a 25-MB packet buffer shared by every 3 ports of 40 Gigabit Ethernet or every 12 ports of 10 Gigabit Ethernet. The flexible buffer management capability allows dynamic tuning of the sizes of the shared and dedicated buffers in the event of congestion.
Multicast enhancements: These switches support line-rate Layer 2 and 3 multicast throughput for all frame sizes. They offer optimized multicast replication through the fabric and at the egress point. Support is provided for 32,000 multicast routes and for Internet Group Management Protocol (IGMP) snooping tables in hardware. Multicast enhancements include flow-based hashing for multicast traffic over a port channel and enhanced Bidirectional Protocol-Independent Multicast (Bidir-PIM) support. The switch also supports IP-based forwarding for IGMP snooping.
Inter-Switch Link (ISL): The Cisco Nexus 5672UP-16G switch supports 16-Gbps Fibre Channel ISLs in a Fibre Channel–only environment or, in the case of FCoE, 40-Gbps ISLs. With six such 40-Gbps links available, the ISLs support bandwidth of 240 Gbps. Improved buffer-to-buffer credits (up to 128) on the new switch now provide support for 16-Gbps Fibre Channel ISLs across distances of up to 16 kilometers.
For a complete list of the latest software features supported on the Cisco Nexus 5600 10-Gbps platform, see the product bulletin at http://www.cisco.com/c/en/us/products/collateral/switches/nexus-5000-series-switches/bulletin-
c25-735319.html.
Page 6
© 2017 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 6 of 24
Applications
The Cisco Nexus 5600 10-Gbps platform supports a number of application scenarios, making it a versatile data center option.
Cisco Fabric Extender Architecture: High-Density Fabric Extender Aggregator
Cisco Fabric Extender Technology (FEX Technology) enables you to build a single, modular fabric that extends from Cisco Nexus switches to Cisco Unified Computing System™ (Cisco UCS®) servers, to adapters (Cisco Adapter FEX), and to virtual machines (Cisco Data Center Virtual Machine FEX [VM-FEX]). FEX Technology is based on the emerging standard IEEE 802.1BR. Designing the network using FEX Technology provides flexibility, reduced cabling infrastructure, and a single point of management, helping customers scale their networks. When the 10-Gbps switches are part of a fabric that includes Cisco Nexus 2200 and 2300 platform fabric extenders, you can use these fabric extenders in single- or dual-connected mode, using enhanced virtual port-channel (vPC+) technology to two upstream 10-Gbps switches. Servers and end hosts can connect to single or dual Cisco Nexus 2200 and 2300 platform fabric extenders using network interface card (NIC) teaming when the parent Cisco Nexus 5600 platform 10-Gbps switch has vPC+ enabled.
Following are some common deployment options using the Cisco Nexus 2000 Series (including the 2200 and 2300 platforms) and 5600 10-Gbps platform:
Rack servers with 100 Megabit Ethernet, 1 Gigabit Ethernet, or 10 Gigabit Ethernet NICs; the fabric extender can be physically located at the top of the rack, and the 10-Gbps switch can reside in the middle or at the end of the row, or the fabric extender and the 10-Gbps switch can both reside in the middle or at the end of the row
Rack servers with 10 Megabit Ethernet NICs in full duplex mode connected using the Cisco Nexus 2248TP­E Fabric Extender in conjunction with the Cisco Nexus 5600 platform
Mixed 1 and 10 Gigabit Ethernet environments in which rack servers are running at either speed in the same rack or in adjacent racks
10 Gigabit Ethernet and FCoE deployments using servers with converged network adapters (CNAs) for unified fabric environments
10GBASE-T server connectivity with ease of migration from 1 to 10GBASE-T and effective reuse of structured cabling
1 and 10 Gigabit Ethernet blade servers with pass-through blades
Low-latency, high-performance computing environments
Virtualized access
In addition to these options, the 10-Gbps switches provide unique value as a high-density fabric extender aggregation platform. For example, the switches can be used in conjunction with the Cisco Nexus 2348UPQ, 2348TQ, 2332TQ, 2248PQ, 2232PP, 2248TP-E, 2232TM-E, 2232TM, 2248TP, and 2224TP Fabric Extenders as a high-density switching system, consolidating 10 Gigabit Ethernet connections in a single management plane. In addition, a variety of blade fabric extender options can be aggregated into the Cisco Nexus 5600 10-Gbps platform switches using 10 Gigabit Ethernet, providing a single point of management for blade server deployments.
Page 7
© 2017 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 7 of 24
Fabric Extender
Description
Cisco Nexus 2332TQ
32 x 1/10GBASE-T port host interfaces (SFP+) and up to 4 QSFP+ 10/40 Gigabit Ethernet fabric interfaces; FCoE support up to 30m with Category 6a or 7 cables
Cisco Nexus 2348TQ
48 x 1/10GBASE-T port host interfaces (SFP+) and up to 6 QSFP+ 10/40 Gigabit Ethernet fabric interfaces; FCoE support up to 30m with Category 6a or 7 cables
Cisco Nexus 2348UPQ
48 x 1 and 10 Gigabit Ethernet and unified port host interfaces (SFP+) and up to 6 QSFP+ 10/40 Gigabit Ethernet fabric interfaces
Cisco Nexus 2224TP
24 x 100/1000BASE-T host interfaces and 2 x 10 Gigabit Ethernet fabric interfaces (SFP+)
Cisco Nexus 2248TP
48 x 100/1000BASE-T host interfaces and 4 x 10 Gigabit Ethernet fabric interfaces (SFP+)
Cisco Nexus 2248TP-E
48 x 100/1000BASE-T host interfaces and 4 x 10 Gigabit Ethernet fabric interfaces (SFP+; 32-MB shared buffer)
Cisco Nexus 2232PP
32 x 1/10 Gigabit Ethernet and FCoE host interfaces (SFP+) and 8 x 10 Gigabit Ethernet and FCoE fabric interfaces (SFP+)
Cisco Nexus 2248PQ
48 x 1/10 Gigabit Ethernet SFP+ host interface and 4 x 40 Gigabit Ethernet (16 x 10 Gigabit Ethernet SFP+) network interfaces
Cisco Nexus 2232TM
32 x 1/10GBASE-T host interfaces and 8 x 10 Gigabit Ethernet (SFP+) uplink modules
Cisco Nexus 2232TM-E
32 x 1/10GBASE-T host interfaces and 8 x 10 Gigabit Ethernet (SFP+) uplink modules (lower power consumption and improved bit error rate [BER])
Cisco Nexus B22HP
16 x 1/10GBASE-KR internal host interfaces and 8 x 10 Gigabit Ethernet fabric interfaces (SFP+; network interfaces)
Cisco Nexus B22F
16 x 10GBASE-KR internal host interfaces and 8 x 10 Gigabit Ethernet fabric interfaces (SFP+; network interfaces)
Cisco Nexus B22DELL
16 x 10GBASE-KR internal host interfaces and 8 x 10 Gigabit Ethernet fabric interfaces (SFP+; network interfaces)
Cisco Nexus B22IBM
14 x 1/10GBASE-KR internal host interfaces and 8 x 10 Gigabit Ethernet fabric (SFP+; network interfaces)
Table 1 lists the fabric extenders that are supported by the Cisco Nexus 5600 10-Gbps platform switches. For more information about the products and the minimum software releases supported, see the Cisco Nexus 2200 and 2300 platform data sheets and release notes.
Table 1. Supported Fabric Extenders
Large-Scale Fabric (Layers 2 and 3): Leaf and Spine Architecture
Data center designs are evolving, with customers seeking to build large-scale nonblocking fabrics to accommodate different applications, creating patterns of heavy east-west and north-south traffic. The Cisco Nexus 5600 platform 10-Gbps switches are well suited for leaf and spine nodes in a Layer 2 or 3 fabric design. Leaf-and-spine designs using high-density and low-latency switches lead to flatter network architecture, allowing connections that scale from hundreds to more than 10,000 servers with high bidirectional bandwidth and helping ensure low-latency fabric with a low hop count. The spine switches create a nonblocking, low-latency fabric, forwarding packets between leaf switches. The leaf switches provide connectivity to servers. Use of a highly meshed architecture helps ensure the highest possible network availability with little impact on customer traffic in the event of a failure. The 10-Gbps switches can be deployed as Layer 2 or 3 spine or leaf switches, providing a high degree of design flexibility.
Multihop FCoE
Cisco Unified Fabric combines data center and storage networks to deliver a single high-performance, highly available, and scalable network. With the Cisco Nexus 5600 10-Gbps platform switches, Cisco can support end-to­end data center convergence, from the server to storage, by delivering multihop FCoE capability in the data center. The FCoE capability complements the existing FCoE function on the Cisco Nexus 5600 10-Gbps platform. With this broad selection of standards-based FCoE switches, Cisco provides unified fabric support to both the access and core network layers, supporting all storage traffic (FCoE, Small Computer System Interface over IP [iSCSI], and network-attached storage [NAS]) over a simplified infrastructure based on lossless 10 and 40 Gigabit Ethernet.
Page 8
© 2017 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 8 of 24
High-Performance Computing
The Cisco Nexus 5600 10-Gbps platform switches can be deployed as high-density small form-factor (SFF) access-layer switches to consolidate a large number of 10 Gigabit Ethernet servers in deployments that call for only a small number of hops from the server to the upstream network to reduce latency. They have a high density of 10 Gigabit Ethernet ports per rack unit, approximately 1 microsecond of latency port to port for any packet size, integrated line-rate Layer 2 and 3 features, scalability, and integrated data analytics with programmability. They address the needs of high-performance computing (HPC) and high-frequency trading (HFT) environments, for which InfiniBand solutions lack management visibility and high performance of bulk data transfers across traditional applications.
The capability to function in all these capacities helps protect investments in the data center with a deployment model in which additional features can be enabled as they are needed.
Cisco NX-OS Software Overview
NX-OS is a purpose-built data center operating system designed for performance, resiliency, scalability, manageability, and programmability. NX-OS meets Ethernet and storage networking requirements, providing a robust and comprehensive feature set that can meet the demanding requirements of virtualization and automation in present and future data centers. The enhanced Cisco fabric solution allows the transparent integration of the virtual and physical devices on a unified network. In addition, users can use the comprehensive NX-OS service set to create unique innovations for customized solutions. With its MIBs, native XML interface, and command-line interface (CLI) like that of Cisco IOS® Software, NX-OS provides drastically simplified management for the devices in which it runs.
For a complete list of all the features and benefits of NX-OS, see
http://www.cisco.com/en/US/prod/collateral/iosswrel/ps9494/ps9372/data_sheet_c78-652063.html.
Cisco Prime Data Center Network Manager
Cisco Prime™ Data Center Network Manager (DCNM) provides LAN and SAN management capabilities for the Cisco Nexus and Cisco MDS 9000 Families. DCNM provides a GUI that reduces operating expenses (OpEx) compared to traditional CLI methods and allows efficient operation control, monitoring, provisioning, and troubleshooting for your NX-OS devices. The main features include the following:
Unified fabric visibility and topology display with VMware vSphere integration shows the connectivity from the virtual machine to the VMware ESX host and to the switch and the storage array.
Event aggregation and filtering helps you quickly find the information you need and identify network problems.
Deployment wizards and user-modifiable templates help you implement best practices.
Role-based access control (RBAC) helps secure devices and provide appropriate delegation.
Integrated domain dashboards, health monitoring, reporting, change tracking, and user auditing provides comprehensive management capabilities.
Trend monitoring of ports and traffic allow you to optimize your existing resources and anticipate new resource requirements.
Page 9
© 2017 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 9 of 24
Performance
Cisco Nexus 5672UP-16G: Layer 2 and 3 hardware forwarding at 1.44 Tbps; 1071 million packets per second (mpps; 64-byte packets)
Cisco Nexus 5672UP: Layer 2 and 3 hardware forwarding at 1.44 Tbps; 1071 mpps (64-byte packets)
Cisco Nexus 56128P: Layer 2 and 3 hardware forwarding at 2.56 Tbps; 1904 mpps (64-byte packets)
Support for up to 256,000 combined entries of MAC addresses and Address Resolution Protocol (ARP) entries
Low latency of approximately 1 microsecond using cut-through forwarding for predictable, consistent traffic latency regardless of packet size, traffic pattern, or features enabled on 10 and 40 Gigabit Ethernet interfaces
25-MB buffer per 12 x 10 Gigabit Ethernet SFP+ interfaces
Line-rate traffic throughput on all ports in Layer 2 and 3 mode
Interfaces
Cisco Nexus 5672UP-16G: 48 fixed 10 Gigabit Ethernet SFP+ ports with 24 of the 48 ports being unified, and 6 fixed 40 Gigabit Ethernet QSFP+ ports with 10 and 40 Gigabit Ethernet FCoE support on all respective ports and 2/4/8/16-Gbps Fibre Channel on all the unified ports. First 24 ports can support 1G Ethernet.
Cisco Nexus 5672UP: 48 fixed 1/10 Gigabit Ethernet SFP+ ports with 16 of the 48 ports being unified, and 6 fixed 40 Gigabit Ethernet QSFP+ ports with 10 and 40 Gigabit Ethernet FCoE support on all respective ports and 2/4/8-Gbps Fibre Channel on all the unified ports
Cisco Nexus 56128P: 48 fixed 1/10 Gigabit Ethernet SFP+ ports with 4 x 40 Gigabit Ethernet QSFP+ fixed ports and 2 expansion slots
Expansion module: 24 SFP+ unified ports plus 2 x 40 Gigabit Ethernet QSFP+ ports
Conversion of 40 Gigabit Ethernet ports to 10 Gigabit Ethernet interfaces through QSFP+ breakout cable
Fabric extension through the Cisco Nexus 2200 and 2300 platforms
Layer 2 Features
Layer 2 switch ports and VLAN trunks
IEEE 802.1Q VLAN encapsulation
Support for up to 4000 VLANs
Support for up to 4000 access control list (ACL) entries
Rapid Per-VLAN Spanning Tree Plus (PVRST+) (IEEE 802.1w compatible)
Multiple Spanning Tree Protocol (MSTP) (IEEE 802.1s): 64 instances
Spanning Tree PortFast
Spanning Tree root guard
Spanning Tree Bridge Assurance
Cisco EtherChannel technology (up to 16 ports per EtherChannel)
Cisco vPC technology
vPC configuration synchronization
vPC shutdown
Link Aggregation Control Protocol (LACP): IEEE 802.3ad
Advanced port-channel hashing based on Layer 2, 3, and 4 information
Jumbo frames on all ports (up to 9216 bytes)
Pause frames (IEEE 802.3x)
Storm control (unicast, multicast, and broadcast)
Private VLANs
Private VLAN over trunks (isolated and promiscuous)
Private VLANs over vPC and EtherChannels
VLAN remapping
FabricPath
EvPC and vPC+ with FabricPath
Adapter FEX
Data Center VM-FEX
Support for up to 24 fabric extenders (Layer 2) with each Cisco Nexus 5672UP, 5672UP-16G, and 56128P Switch
RDMA over Converged Ethernet (RoCE) using Data Center Bridging (DCB) support (DCB Exchange [DCBX] no drop and priority flow control [PFC])
Specifications
Table 2 lists the specifications for the Cisco Nexus 5600 10-Gbps platform switches. For a complete list of features supported, see the software release notes at
http://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus5600/sw/release/notes/7x/Nexus5600_Release_N otes_7x.html.
Table 2. Product Specifications
Page 10
© 2017 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 10 of 24
Layer 3 Features
Layer 3 interfaces: Routed ports, switch virtual interface (SVI), port channels, subinterfaces, and port-channel subinterfaces
Support for up to 32,000 IPv4 and 8000 IPv6 host prefixes
Support for up to 8000 multicast routes (IPv4)
Support for up to 8000 IGMP snooping groups
Support for 4000 Virtual Routing and Forwarding (VRF) entries
Support for up to 4096 VLANs
Equal-Cost Multipathing (ECMP) up to 64 ways
4000 flexible ACL entries
Routing protocols: Static, Routing Information Protocol Version 2 (RIPv2), Enhanced Interior Gateway Routing Protocol (EIGRP), Open Shortest Path First Version 2 (OSPFv2), Border Gateway Protocol (BGP), and Intermediate System-to-Intermediate System (IS-IS)
IPv6 routing protocols: Static, OPFv3, BGPv6, and EIGRPv6
IPv6 VRF-lite
BFD support: OSPFv2, BGPv4, EIGRP, and VRF instances
Policy-Based Routing (IPv4 and IPv6)
Hot-Standby Router Protocol (HSRP) and Virtual Router Redundancy Protocol (VRRP)
IP direct broadcast
vPC+ routing protocol peering
ACL: Routed ACL with Layer 3 and 4 options to match ingress and egress ACL
Multicast: Protocol Independent Multicast Version 2 (PIMv2) sparse mode, Source-Specific Multicast (SSM), Bidir-PIM, Multicast Source Discovery Protocol (MSDP), IGMPv2 and v3, and Multicast VLAN Registration (MVR)
VRF: VRF-lite (IP VPN); VRF-aware unicast; and BGP-, OSPF-, RIP-, and VRF-aware multicast
Unicast Reverse-Path Forwarding (uRFP) with ACL; strict and loose modes
Jumbo frame support (up to 9216 bytes)
Support for up to 24 fabric extenders on each Cisco Nexus 5600 10-Gbps platform switch
Quality of Service (QoS)
Layer 2 IEEE 802.1p (class of service [CoS])
8 unicast queues and 8 multicast queues per port
Per-port QoS configuration
CoS trust
Port-based CoS assignment
Modular QoS CLI (MQC) compliance: IPv4 and IPv6
ACL-based QoS classification (Layers 2, 3, and 4)
Flexible TCAM carving
MAC and ARP hardware carving
MQC CoS marking
Per-port virtual output queuing
CoS-based egress queuing
Egress strict-priority queuing
Egress port-based scheduling: Deficit Weighted Round-Robin (DWRR)
Control-Plane Policing (CoPP): IPv4 and IPv6
Security
Ingress ACLs (standard and extended) on Ethernet and virtual Ethernet ports
Standard and extended Layer 2 ACLs: MAC addresses, protocol type, etc.
Standard and extended Layer 3 and 4 ACLs: IPv4 and IPv6, Internet Control Message Protocol (ICMP and ICMPv6), TCP, User Datagram Protocol (UDP), etc.
Ingress policing
VLAN-based ACLs (VACLs)
Port-based ACLs (PACLs)
Named ACLs
Optimized ACL distribution
ACLs on virtual terminals (vtys)
ACL logging (IPv4 only)
Dynamic Host Configuration Protocol (DHCP) snooping with Option 82
Dynamic ARP Inspection
IP source guard
Page 11
© 2017 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 11 of 24
DHCP relay (up to 32 destinations)
Ethernet port security
IPv6 RACL, PACL, and VACL
iSCSI type-length-value (TLV)
High-Availability Features
Cisco In-Service Software Upgrade (ISSU) for Layer 2
Hot-swappable field-replaceable power supplies and fan modules
N+1 and N+N power redundancy
N+1 fan module redundancy
Management
Switch management using 10/100/1000-Mbps management or console ports
CLI-based console to provide detailed out-of-band management
In-band switch management
Port-based locator and beacon LEDs
Configuration synchronization
Configuration rollback
Secure Shell Version 2 (SSHv2)
Telnet
Authentication, authorization, and accounting (AAA)
AAA with RBAC
RADIUS
TACACS+
Syslog (8 servers)
Embedded packet analyzer
SNMPv1, v2, and v3 (IPv4 and IPv6)
Enhanced SNMP MIB support
XML (NETCONF) support
Remote monitoring (RMON)
Advanced Encryption Standard (AES) for management traffic
Unified username and passwords across CLI and SNMP
Microsoft Challenge Handshake Authentication Protocol (MS-CHAP)
Digital certificates for management between switch and RADIUS server
Cisco Discovery Protocol Versions 1 and 2
RBAC
SPAN on physical, PortChannel and VLAN
ERSPAN
Ingress and egress packet counters per interface
Network Time Protocol (NTP)
Cisco Generic Online Diagnostics (GOLD)
Comprehensive bootup diagnostic tests
Cisco Embedded Event Manager (EEM)
Cisco Call Home
Cisco Smart Call Home
Default Interface
Cisco Fabric Manager
Cisco Prime DCNM
CiscoWorks LAN Management Solution (LMS)
Data Center Bridging
CEE- and IEEE-compliant PFC (per-priority Pause frame support: IEEE 802.1Qbb)
PFC link distance support: 20 km
CEE-compliant DCBX Protocol
CEE- and IEEE-compliant enhanced transmission selection
Page 12
© 2017 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 12 of 24
FCoE Features (Require Storage Services License)
T11 standards-compliant FCoE (Fibre Channel-BB-5)
T11 FCoE Initialization Protocol (FIP) (Fibre Channel-BB-5)
Any 10 or 40 Gigabit Ethernet port configurable as FCoE
SAN administration separate from LAN administration
Fibre Channel forwarding (FCF)
Fibre Channel enhanced port types: VE, VF and VNP
Direct attachment of FCoE targets
Fabric Device Management Interface (FDMI)
Fibre Channel ID (FCID) persistence
Distributed device alias services
In-order delivery
Port tracking
Cisco FCoE NPV technology
N-port identifier virtualization (NPIV)
Fabric services: Name server, registered state change notification (RSCN), login services, and name-server zoning
Per-VSAN fabric services
Cisco Fabric Services
Distributed device alias services
Host-to-switch and switch-to-switch Fibre Channel-SP authentication
Fabric Shortest Path First (FSPF)
Standard zoning
Enhanced zoning
Cisco Fabric Analyzer
Cisco DCNM-SAN
Storage Management Initiative Specification (SMI-S)
Boot from SAN over vPC and Enhanced vPC (EvPC)
FCP
VSAN trunking
Fabric Device Management Interface (FDMI)
Fibre Channel ID (FCID) persistence
Distributed device alias services
In-order delivery
Port tracking
Cisco NPV technology
Fabric binding for Fibre Channel
Port security
Fibre Channel traceroute
Fibre Channel ping
Fibre Channel debugging
SNMP MIBs
Generic MIBs
SNMPv2-SMI
CISCO-SMI
SNMPv2-TM
SNMPv2-TC
IANA-ADDRESS-FAMILY-NUMBERS-MIB
IANAifType-MIB
IANAiprouteprotocol-MIB
HCNUM-TC
CISCO-TC
SNMPv2-MIB
SNMP-COMMUNITY-MIB
SNMP-FRAMEWORK-MIB
SNMP-NOTIFICATION-MIB
SNMP-TARGET-MIB
Page 13
© 2017 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 13 of 24
SNMP-USER-BASED-SM-MIB
SNMP-VIEW-BASED-ACM-MIB
CISCO-SNMP-VACM-EXT-MIB
Layer 3 MIBs
UDP-MIB
TCP-MIB
OSPF-MIB
BGP4-MIB
CISCO-HSRP-MIB
Ethernet MIBs
CISCO-VLAN-MEMBERSHIP-MIB
CISCO-Virtual-Interface-MIB
CISCO-VTP-MIB
Configuration MIBs
ENTITY-MIB
IF-MIB
CISCO-ENTITY-EXT-MIB
CISCO-ENTITY-FRU-CONTROL-MIB
CISCO-ENTITY-SENSOR-MIB
CISCO-FLASH-MIB
CISCO-SYSTEM-MIB
CISCO-SYSTEM-EXT-MIB
CISCO-IP-IF-MIB
CISCO-IF-EXTENSION-MIB
CISCO-SERVER-INTERFACE-MIB
CISCO-NTP-MIB
CISCO-IMAGE-MIB
CISCO-IMAGE-CHECK-MIB
CISCO-IMAGE-UPGRADE-MIB
CISCO-CONFIG-COPY-MIB
CISCO-ENTITY-VENDORTYPE-OID-MIB
CISCO-BRIDGE-MIB
Monitoring MIBs
DIFFSERV-DSCP-TC
NOTIFICATION-LOG-MIB
DIFFSERV-MIB
CISCO-CALLHOME-MIB
CISCO-SYSLOG-EXT-MIB
CISCO-PROCESS-MIB
RMON-MIB
CISCO-RMON-CONFIG-MIB
CISCO-HC-ALARM-MIB
LLDP-MIB
Security MIBs
CISCO-AAA-SERVER-MIB
CISCO-AAA-SERVER-EXT-MIB
CISCO-COMMON-ROLES-MIB
CISCO-COMMON-MGMT-MIB
CISCO-RADIUS-MIB
CISCO-SECURE-SHELL-MIB
TCP/IP MIBs
INET-ADDRESS-MIB
TCP-MIB
CISCO-TCP-MIB
Page 14
© 2017 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 14 of 24
UDP-MIB
IP-MIB
CISCO-IP-PROTOCOL-FILTER-MIB
CISCO-DNS-CLIENT-MIB
CISCO-PORTSECURITY-MIB
Miscellaneous MIBs
START-MIB
CISCO-LICENSE-MGR-MIB
CISCO-FEATURE-CONTROL-MIB
CISCO-CDP-MIB
CISCO-RF-MIB
CISCO-ETHERNET-FABRIC-EXTENDER-MIB
CISCO-BRIDGE-MIB
CISCO-FCOE-MIB
CISCO-PORTCHANNEL-MIB
CISCO-ZS-MIB
Standards
Industry Standards
IEEE 802.1D: Spanning Tree Protocol
IEEE 802.1p: CoS prioritization
IEEE 802.1Q: VLAN tagging
IEEE 802.1Qaz: Enhanced transmission selection
IEEE 802.1Qbb: Per-priority Pause
IEEE 802.1s: Multiple VLAN instances of Spanning Tree Protocol
IEEE 802.1w: Rapid reconfiguration of Spanning Tree Protocol
IEEE 802.3: Ethernet
IEEE 802.3ad: LACP with fast timers
IEEE 802.3ae: 10 Gigabit Ethernet
IEEE 802.3ba: 40 Gigabit Ethernet (Applies to 40G SR4, SR4-S, LR4, LR4-S, and CSR4 optics only)
SFF 8431 SFP+ CX1 support
RMON
Power Supply Properties
N55-PAC-1100W
N55-PDC-1100W
NXA-PAC-1100W
NXA-PHV-1100W
Typical operating power
650 watts (W)
650W
650W
650W
Maximum power
1100W
1100W
1100W
1100W
Input voltage
94 to 264 VAC
–40 to –72 VDC
94 to 264 VAC
90 to 305 HVAC, 192 to 400 HVDC
Frequency
47 to 63 Hz
47 to 63 Hz
47 to 63 Hz
Efficiency
92%/88% (50%/100% load) @230VAC
88%/85% (50%/100% load)
94%/91% (50%/100% load) @230VAC
94%/91% (50%/100% load) @230VAC
RoHS compliance
Yes
Yes
Yes
Yes
Hot-swappable
Yes
Yes
Yes
Yes
Heat dissipation
45 BTU/hr
260 BTU/hr
45 BTU/hr
170 to 130 BTU/hr
Front-to-back (fan-side intake) airflow power supply
Yes
Yes
Yes
Yes
Back-to-front (port-side intake) airflow power supply
Yes
No
Yes
Yes
Power Supply
Table 3 lists the power supply properties of the Cisco Nexus 5600 10-Gbps platform.
Table 3. Power Supply Properties
Page 15
© 2017 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 15 of 24
Property
Cisco Nexus 5600 Platform
Physical (height x width x depth)
Cisco Nexus 5672UP and 5672UP-16G: 1.75 x 17.3 x 30 in. (4.4 x 43.9 x 76.2 cm)
Cisco Nexus 56128P: 3.5 x 17.3 x 30 (8.8 x 43.9 x 76.2 cm)
Operating temperature
32 to 104°F (0 to 40°C)
Nonoperating (storage) temperature
40 to 158°F (40 to 70°C)
Humidity
5 to 95% (noncondensing)
Altitude
0 to 10,000 ft (0 to 3000m)
Weight ● Cisco Nexus 5672UP/5672UP-16G: 32 lb (2 power supplies)
Cisco Nexus 56128P: 60 lb (2 expansion modules and 4 power supplies)
Specification
Description
Regulatory compliance
Products should comply with CE Markings according to directives 2004/108/EC and 2006/95/EC.
Safety ● UL 60950-1 Second Edition
CAN/CSA-C22.2 No. 60950-1 Second Edition
EN 60950-1 Second Edition
IEC 60950-1 Second Edition
AS/NZS 60950-1
GB4943
EMC: Emissions
47CFR Part 15 (CFR 47) Class A
AS/NZS CISPR22 Class A
CISPR22 Class A
EN55022 Class A
ICES003 Class A
VCCI Class A
EN61000-3-2
EN61000-3-3
KN22 Class A
CNS13438 Class A
EMC: Immunity
EN55024
CISPR24
EN300386
KN 61000-4 series
RoHS
The product is RoHS 6 compliant with exceptions for leaded ball grid array (BGA) balls and lead press-fit connectors.
Environment
Table 4 lists the environment properties of the Cisco Nexus 10-Gbps 5600 platform.
Table 4. Environment Properties
Regulatory Standards Compliance
Table 5 summarizes regulatory standards compliance for the Cisco Nexus 5600 10-Gbps platform.
Table 5. Regulatory Standards Compliance: Safety and EMC
Cisco Nexus 5600 10-Gbps Platform Transceiver and Cabling Options
The Cisco Nexus 5600 platform 10-Gbps switches support a wide variety of 1, 10, and 40 Gigabit Ethernet connectivity options. Table 6 lists the transceivers supported for 1 and 10 Gigabit Ethernet connectivity, and Table 7 lists the 40 Gigabit Ethernet QSFP+ transceivers supported.
Page 16
© 2017 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 16 of 24
Cisco SFP
Description
FET-10G
10-Gbps SFP+ module for Cisco Nexus 2000 Series to Cisco Nexus 5000 Series connectivity
SFP-10G-SR
10GBASE-SR SFP+ module (multimode fiber [MMF])
SFP-10G-SR-S
10GBASE-SR SFP Module, Enterprise-Class
SFP-10G-LR
10GBASE-LR SFP+ module (single-mode fiber [SMF])
SFP-10G-LR-S
10GBASE-LR SFP Module, Enterprise-Class
SFP-10G-ER
10GBASE-ER-SFP+ module (SMF)
SFP-10G-ER-S
10GBASE-ER SFP Module, Enterprise-Class
SFP-H10GB-CU1M
10GBASE-CU SFP+ cable, 1m (Twinax cable)
SFP-H10GB-CU1.5M
10GBASE CU SFP+ cable, 1.5m (passive Twinax cable)
SFP-H10GB-CU2M
10GBASE CU SFP+ cable, 2m (passive Twinax cable)
SFP-H10GB-CU2.5M
10GBASE CU SFP+ cable, 2.5m (passive Twinax cable)
SFP-H10GB-CU3M
10GBASE-CU SFP+ cable, 3m (Twinax cable)
SFP-H10GB-CU5M
10GBASE-CU SFP+ cable, 5m (Twinax cable)
SFP-H10GB-ACU7M
10GBASE-CU SFP+ cable, 7m (active Twinax cable)
SFP-H10GB-ACU10M
10GBASE-CU SFP+ cable, 10m (active Twinax cable)
SFP-10G-AOC1M
10GBASE-AOC SFP+ cable, 1m
SFP-10G-AOC2M
10GBASE-AOC SFP+ cable, 2m
SFP-10G-AOC3M
10GBASE-AOC SFP+ cable, 3m
SFP-10G-AOC5M
10GBASE-AOC SFP+ cable, 5m
SFP-10G-AOC7M
10GBASE-AOC SFP+ cable, 7m
SFP-10G-AOC10M
10GBASE-AOC SFP+ cable, 10m
GLC-T
1000BASE-T SFP
GLC-ZX-SMD
1000BASE-ZX SFP transceiver module, SMF, 1550-nm wavelength, dual LC/PC connector, digital optical monitoring (DOM); not supported on Cisco Nexus 5672UP-16G
GLC-SX-MMD
Gigabit Ethernet SFP, LC connector SX transceiver (MMF), extended temperature range and DOM
GLC-EX-SMD
1000BASE-EX SFP transceiver module, SMF, 1310-nm wavelength, dual LC/PC connector, digital optical monitoring (DOM); not supported on Cisco Nexus 5672UP-16G
GLC-LH-SMD
Gigabit Ethernet SFP, LC connector LX/LH transceiver (SMF), extended temperature range and DOM
SFP-GE-T
1000BASE-T SFP, extended temperature range; not supported on Cisco Nexus 5672UP-16G
DS-SFP-FC16G-SW
16-Gbps Fibre Channel shortwave SFP+, LC connector (16-Gbps Fibre Channel support only on last 24 ports of Cisco Nexus 5672UP-16G)
DS-SFP-FC16G-LW
16-Gbps Fibre Channel longwave SFP+, LC connector (16-Gbps Fibre Channel support only on last 24 ports of Cisco Nexus 5672UP-16G)
DS-SFP-FC8G-SW
8-Gbps Fibre Channel shortwave SFP+, LC connector (Fibre Channel support only on last 24 ports of Cisco Nexus 5672UP-16G, on last 16 ports of Cisco Nexus 5672UP, and on GEM on Cisco Nexus 56128P)
DS-SFP-FC8G-LW
8-Gbps Fibre Channel longwave SFP+, LC connector (Fibre Channel support only on last 24 ports of Cisco Nexus 5672UP-16G, on last 16 ports of Cisco Nexus 5672UP, and on GEM on Cisco Nexus 56128P)
DS-SFP-FC4G-SW
4-Gbps Fibre Channel shortwave SFP, LC connector (Fibre Channel support only on last 24 ports of Cisco Nexus 5672UP-16G, on last 16 ports of Cisco Nexus 5672UP, and on GEM on Cisco Nexus 56128P)
DS-SFP-FC4G-LW
4-Gbps Fibre Channel long-wave SFP, LC connector (Fibre Channel support only on last 24 ports of Cisco Nexus 5672UP-16G, on last 16 ports of Cisco Nexus 5672UP, and on GEM on Cisco Nexus 56128P)
Table 6. Cisco Nexus 5600 Platform 1 and 10 Gigabit Ethernet and 4-, 8-, and 16-Gbps Fibre Channel SFP+ Transceiver
Support Matrix
Page 17
© 2017 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 17 of 24
Cisco QSFP
Description
QSFP-40G-SR4
40GBASE-SR4 QSFP module, MMF, MPO connector. 100m
QSFP-40G-SR4-S
40GBASE-SR4 QSFP module, MPO connector, enterprise class
QSFP-40G-CSR4
40GBASE extended CSR4 QSFP module, MMF, 300m
QSFP-4X10G-LR-S
QSFP 4x10G Transceiver Module, SM MPO, 10KM, Enterprise-Class (N5672UP only)
QSFP-40G-LR4
40GBASE extended LR4 QSFP module, LC connector, 10 km
QSFP-40G-LR4-S
QSFP 40GBASE-LR4 module, LC connector, 10 km, enterprise class
WSP-Q40G-LR4L
QSFP 40 Gigabit Ethernet, LR4 Lite, LC connector, 2 km
QSFP-40G-SR-BD
QSFP40G BiDi short-reach transceiver
QSFP-40G-ER4
QSFP 40GBASE-ER4 Module, LC connector, 40 km
QSFP-4SFP10G-CU1M
40GBASE-CR4 QSFP+ to 4 10GBASE-CU SFP+ passive direct-attach copper transceiver assembly, 1m
QSFP-4SFP10G-CU3M
40GBASE-CR4 QSFP+ to 4 10GBASE-CU SFP+ passive direct-attach copper transceiver assembly, 3m
QSFP-4SFP10G-CU5M
40GBASE-CR4 QSFP+ to 4 10GBASE-CU SFP+ passive direct-attach copper transceiver assembly, 5m
QSFP-4x10G-AC7M
40GBASE-CR4 QSFP+ to 4 10GBASE-CU SFP+ direct-attach breakout cable, 7m, active
QSFP-4x10G-AC10M
40GBASE-CR4 QSFP+ to 4 10GBASE-CU SFP+ direct-attach breakout cable, 10m, active
QSFP-H40G-CU1M
40GBASE-CR4 QSFP+ direct-attach copper cable, 1m, passive
QSFP-H40G-CU3M
40GBASE-CR4 QSFP+ direct-attach copper cable, 3m, passive
QSFP-H40G-CU5M
40GBASE-CR4 QSFP+ direct-attach copper cable, 5m, passive
QSFP-H40G-ACU7M
40GBASE-CR4 QSFP+ direct-attach copper cable, 7m, active
QSFP-H40G-ACU10M
40GBASE-CR4 QSFP+ direct-attach copper cable, 10m, active
QSFP-4X10G-AOC1M
40GBASE-AOC QSFP to 4 SFP+ active optical breakout cable, 1m
QSFP-4X10G-AOC2M
40GBASE-AOC QSFP to 4 SFP+ active optical breakout cable, 2m
QSFP-4X10G-AOC3M
40GBASE-AOC QSFP to 4 SFP+ active optical breakout cable, 3m
QSFP-4X10G-AOC5M
40GBASE-AOC QSFP to 4 SFP+ active optical breakout cable, 5m
QSFP-4X10G-AOC7M
40GBASE-AOC QSFP to 4 SFP+ active optical breakout cable, 7m
QSFP-4X10G-AOC10M
40GBASE-AOC QSFP to 4 SFP+ active optical breakout cable, 10m
QSFP-H40G-AOC1M
40GBASE-AOC QSFP direct-attach active optical cable, 1m
QSFP-H40G-AOC2M
40GBASE-AOC QSFP direct-attach active optical cable, 2m
QSFP-H40G-AOC3M
40GBASE-AOC QSFP direct-attach active optical cable, 3m
QSFP-H40G-AOC5M
40GBASE-AOC QSFP direct-attach active optical cable, 5m
QSFP-H40G-AOC7M
40GBASE-AOC QSFP direct-attach active optical cable, 7m
QSFP-H40G-AOC10M
40GBASE-AOC QSFP direct-attach active optical cable, 10m
QSFP-H40G-AOC15M
40GBASE-AOC QSFP direct-attach active optical cable, 15m
CVR-QSFP-SFP10G
QSFP to SFP 10-Gbps adapter. All 1-Gbps and 10-Gbps Ethernet optics listed in Table 6 are supported.
Table 7. Cisco Nexus 5600 Platform 40 Gigabit Ethernet QSFP+ Transceiver Support Matrix (on 6 Uplink Ports)
The platform supports an innovative Twinax copper cabling solution that connects to standard QSFP connectors for in-rack use and optical cabling for longer cable runs (Table 8).
For in-rack or adjacent-rack cabling, the Cisco Nexus 5600 10-Gbps platform switch supports QSFP+ direct-attach 40 Gigabit Ethernet copper cables, an innovative solution that integrates transceivers with Twinax cables into an energy-efficient, low-cost, and low-latency solution. QSFP+ direct-attach 40 gigabit Twinax copper cables use only
1.5 watts of power per transceiver and introduce approximately 0.1 microsecond of latency per link.
Page 18
© 2017 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 18 of 24
Connector (Media)
Cable
Distance
Maximum Power Consumption
Transceiver Latency
SFP+ CU copper
Twinax
1, 1.5, 2, 2.5, 3, and 5m
Approximately 0.1W
Approximately 0.1 microsecond
SFP+ ACU copper
Active Twinax
7 and 10m
Approximately 0.1W
Approximately 0.1 microsecond
SFP+ fiber
Active Optical
1, 2, 3, 5, 7, and 10m
FET-10G MMF SFP+ SR MMF SFP+ SR-S MMF
MMF (OM2) MMF (OM3)
82m 100m
1W
Approximately 0.1 microsecond
SFP+ LR SMF SFP+ LR-S SMF
SMF
10 km
1W
Approximately 0.1 microsecond
SFP+ ER SMF SFP+ ER-S SMF
SMF
40 km
1.5W
Approximately 0.1 microsecond
QSFP CU copper
Twinax
1, 3, and 5m
Approximately 1.5W
Approximately 0.25 microsecond
QSFP ACU copper
Active Twinax
7 and 10m
Approximately 1.5W
Approximately 0.1 microsecond
QSFP fiber
Active Optical
1, 2, 3, 5, 7, and 10m
QSFP SR4 MMF QSFP SR4-S MMF
MMF (OM3) MMF (OM4)
100m 150m
Approximately 1.5W
Approximately 0.1 microsecond
QSFP CSR4 MMF
MMF (OM3) MMF (OM4)
300m 400m
Approximately 1.5W
Approximately 0.1 microsecond
QSFP LR4 SMF QSFP LR4-S SMF
SMF
10 km
Approximately 3.5W
Approximately 0.1 microsecond
QSFP LR4L
MMF
2 km
Approximately 3.5W
Approximately 0.1 microsecond
QSFP ER4 SMF QSFP ER4-S SMF
SMF
40 km
Approximately 3.5W
Approximately 0.1 microsecond
QSFP BIDI
MMF (OM3)1 MMF (OM4)2 MMF (OM4+)3
100m 125m 150m
Approximately 3.5W
Approximately 0.1 microsecond
An alternative to copper cables is fiber through active optical cables that integrate the transceivers with multimode fiber.
For longer cable runs, the Cisco Nexus 5600 10-Gbps platform supports multimode, short-reach optical QSFP+ transceivers. These optical transceivers use approximately 1.5 watts per transceiver and have a latency of approximately 0.1 microsecond.
Table 8. Cisco Nexus 5600 10-Gbps Platform Cabling Support Matrix
1
Connector loss budget for OM3 fiber is 1.5 dB.
2
125m over OM4 fiber is with an engineered link with 1 dB budget for connector loss.
3
150m over OM4+ fiber is an engineered link with 1 dB budget for connector loss. One of the recommended fibers for OM4+ is
Panduit's Signature Core Fiber. Refer to the following link for additional information: http://www.panduit.com/en/signature-core.
Cisco NX-OS Software Packaging for Cisco Nexus 5600 Platform 10-Gbps Switches
The software packaging for the Cisco Nexus 5600 10-Gbps platform offers flexibility and a comprehensive feature set. The default system software has a comprehensive Layer 2 feature set with a number of security and management features. To enable advanced Layer 2 and 3 functions, additional licenses need to be installed.
Page 19
© 2017 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 19 of 24
License Package
Part Number
Features Supported
FabricPath Services Package: ENHANCED_LAYER2_PKG
N5672-EL2-SSK9 N56128-EL2-SSK9
FabricPath
FCoE NPV Package: FCOE_NPV_PKG
N56-FNPV-SSK9
FCoE NPV
Layer 3 Base Services Package: LAN_BASE_SERVICES_PKG1
N56-BAS1K9
Unlimited static routes and maximum of 256 dynamic routes:
Static routes
RIPv2
OSPFv2 and OSPFv3
EIGRP stub
HSRP2
VRRP3
IGMP v2 and v3
PIMv2 (sparse mode)
VRF-lite
RACL
Network Address Translation (NAT)
Layer 3 Enterprise Services Package: LAN_ENTERPRISE_SERVICES_PKG
4, 5
N56-LAN1K9
N56-LAN1K9 license includes the following features in addition to the ones with the N56-BAS1K9 license:
BGP
PBR
Full EIGRP
PIMv2 (all modes)
Layer 3 IS-IS6
uRPF
MSDP
Sampled NetFlow
VXLAN flood and learn
Network Services Package: NETWORK_SERVICES_PKG
N56-SERVICES1K97
Cisco Remote Integrated Services Engine
Cisco Intelligent Traffic Director (ITD)
Storage Protocols Services Package: Fibre Channel_FEATURES_PKG
ENTERPRISE_PKG
N56-12P-SSK9 N56-16P-SSK9 N5672-72P-SSK9 N56128-128P-SSK9
Native Fibre Channel
FCoE
NPV
Fibre Channel port security
Fabric binding
Fibre Channel security protocol (Fibre Channel-SP) authentication
VM-FEX Package
N56-VMFEX9
Data Center VM-FEX
Table 9 lists the license details and features supported with each license on the Cisco Nexus 5600 platform 10­Gbps switches.
Table 9. Software Packaging and Licensing
1
LAN_BASE_SERVICES_PKG provides unlimited static routes and a maximum of 256 dynamic routes across all the protocols.
2
Although this feature can be enabled and configured in the CLI without this license, it does not function until the license is installed.
3
Although this feature can be enabled and configured in the CLI without this license, it does not function until the license is installed.
4
The LAN_BASE_SERVICES_PKG license needs to be installed to use the LAN_ENTERPRISE_SERVICES_PKG license.
5
Routes above 256 for all protocols are included in the LAN_ENTERPRISE_SERVICES_PKG license.
6
Layer 3 IS-IS is available starting with Cisco NX-OS 7.0(1) N1 (1).
7
N56-SERVICES1K9 is available starting with Cisco NX-OS 7.2(0)N1(1). If you need to use Remote Integrated Services Engine and ITD features with the Cisco NX-OS 7.1(1)N1(1), use the ENHANCED_LAYER2_PKG license.
Page 20
© 2017 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 20 of 24
Part Number
Description
Chassis
N5K-C5672UP-16G
Cisco Nexus 5672UP-16G 1RU, 24p 10-Gbps SFP+, 24 Unified Ports, 6p 40G QSFP+
N5K-C5672UP-16G=
Cisco Nexus 5672UP-16G 1RU, 24p 10-Gbps SFP+, 24 Unified Ports, 6p 40G QSFP+, Spare
N5K-C5672UP
Cisco Nexus 5672UP 1RU, 32 p 10-Gbps SFP+, 16 Unified Ports, 6p 40G QSFP+
N5K-C5672UP=
Cisco Nexus 5672UP 1RU, 32 p 10-Gbps SFP+, 16 Unified Ports, 6p 40G QSFP+, Spare
N5K-C56128P
Cisco Nexus 56128P 2RU, 48x 10-Gbps SFP+, 4 x 40G QSFP+ Fixed Ports (Base)
N5K-C56128P=
Cisco Nexus 56128P 2RU, 48x 10-Gbps SFP+, 4 x 40G QSFP+ Fixed Ports, Spare (Base)
Fan Modules
N6K-C6001-FAN-F
Cisco Nexus 5672UP/5672UP-16G Fan Module, Front-to-Back (Fan Side Intake) Airflow
N6K-C6001-FAN-F=
Cisco Nexus 5672UP/5672UP-16G Fan Module, Front-to-Back (Fan Side Intake) Airflow, spare
N6K-C6001-FAN-B
Cisco Nexus 5672UP/5672UP-16G Fan Module, Back-to-Front (Port Side Intake) Airflow
N6K-C6001-FAN-B=
Cisco Nexus 5672UP/5672UP-16G Fan Module, Back-to-Front (Port Side Intake) Airflow, spare
N56128-FAN-B=
Cisco Nexus 56128P Fan Module, Back-to-Front (Port Side Intake) Airflow, spare
N56128-FAN-B
Cisco Nexus 56128P Fan Module, Back-to-Front (Port Side Intake) Airflow
N56128-FAN-F=
Cisco Nexus 56128P Fan Module, Front-to-Back (Fan Side Intake) Airflow, spare
N56128-FAN-F
Cisco Nexus 56128P Fan Module, Front-to-Back (Fan Side Intake) Airflow
Expansion Modules
N56-M24UP2Q
Cisco Nexus 56128P Expansion Module, 24x 10-Gbps SFP+ UP, 2 x QSFP+ fixed ports
N56-M24UP2Q=
Cisco Nexus 56128P Expansion Module, 24x 10-Gbps SFP+ UP, 2 x QSFP+ fixed ports, Spare
Cisco ONE Software
Licenses can be purchased individually for each feature as shown in Table 9 or through Cisco ONE™ Software for
Data Center Networking which is available for the Cisco Nexus 5600 platform 10-Gbps switches.
Cisco ONE Software provides a new way for customers to purchase and use our infrastructure software. It offers a simplified consumption model focused on common customer scenarios for the data center, WAN, and LAN.
Cisco ONE Software and services provide customers with four main benefits:
Software suites that address typical customer use scenarios at an attractive price
Investment protection of the customer’s software purchase through software services-enabled license portability
Access to ongoing innovation and new technology with Cisco Software Support Service (SWSS)
Flexible licensing models to smoothly distribute the customer's software spending over time
For ordering information for Cisco ONE Software for the Cisco Nexus 5600 platform 10-Gbps switches, click here.
Ordering Information
Table 10 provides ordering information for the Cisco Nexus 5600 10-Gbps platform switches. Notice that you can order the Cisco Nexus 2200 platform fabric extenders either separately or along with the Cisco Nexus 5600 platform 10-Gbps switches.
Table 10. Ordering Information
Page 21
© 2017 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 21 of 24
Part Number
Description
Power Supplies
N55-PDC-1100W(=)
Cisco Nexus 5500/6000/5600 PSU Front-to-Back Airflow module spare, DC, - 40 to -72VDC, 1100W
N55-PAC-1100W(=)
Cisco Nexus 5500/6000/5600 PSU Front-to-Back Airflow module spare, AC, 94 to 240 VAC, 1100W
NXA-PAC-1100W(=)
Cisco Nexus 5500/6000/5600 Platinum PSU Front-to-Back Airflow module spare, A/C, 100-240V, 1100W
NXA-PAC-1100W-B(=)
Cisco Nexus 5500/6000/5600 Platinum PSU Back-to-Front Airflow module spare, A/C, 100-240V, 1100W
NXA-PHV-1100W(=)
Cisco Nexus 5500/6000/5600 Platinum HV-AC-DC PS, Front-to-Back Airflow module spare, 1100W
NXA-PHV-1100W-B(=)
Cisco Nexus 5500/6000/5600 Platinum HV-AC-DC PS, Back-to-Front Airflow module spare, 1100W
Software
N6KUK9-730N1.1A
Cisco Nexus 5600/6000 Base OS Software Rel 7.3(0)N1(1)
N6KUK9-730N1.1A=
Cisco Nexus 5600/6000 Base OS Software Rel 7.3(0)N1(1), spare
N6KUK9-707N1.1
Cisco Nexus 5600/6000 Base OS Software Rel 7.0(7)N1(1)
N6KUK9-707N1.1=
Cisco Nexus 5600/6000 Base OS Software Rel 7.0(7)N1(1), spare
Cables and Optics
FET-10G
10-Gbps SFP+ module for Cisco Nexus 2000 Series to Cisco Nexus 5000 Series connectivity
SFP-10G-SR
10GBASE-SR SFP+ module (multimode fiber [MMF])
SFP-10G-SR-S
10GBASE-SR SFP Module, Enterprise-Class
SFP-10G-LR
10GBASE-LR SFP+ module (single-mode fiber [SMF])
SFP-10G-LR-S
10GBASE-LR SFP Module, Enterprise-Class
SFP-10G-ER
10GBASE-ER-SFP+ module (SMF)
SFP-10G-ER-S
10GBASE-ER SFP Module, Enterprise-Class
SFP-H10GB-CU1M
10GBASE-CU SFP+ cable 1m (Twinax cable)
SFP-H10GB-CU1.5M
10GBASE CU SFP+ cable, 1.5m (passive Twinax cable)
SFP-H10GB-CU2M
10GBASE CU SFP+ cable, 2m (passive Twinax cable)
SFP-H10GB-CU2.5M
10GBASE CU SFP+ cable, 2.5m (passive Twinax cable)
SFP-H10GB-CU3M
10GBASE-CU SFP+ cable 3m (Twinax cable)
SFP-H10GB-CU5M
10GBASE-CU SFP+ cable 5m (Twinax cable)
SFP-H10GB-ACU7M
10GBASE-CU SFP+ cable 7m (active Twinax cable)
SFP-H10GB-ACU10M
10GBASE-CU SFP+ cable 10m (active Twinax cable)
SFP-10G-AOC1M
Cisco 10GBASE-AOC SFP+ Cable 1 Meter
SFP-10G-AOC2M
Cisco 10GBASE-AOC SFP+ Cable 2 Meter
SFP-10G-AOC3M
Cisco 10GBASE-AOC SFP+ Cable 3 Meter
SFP-10G-AOC5M
Cisco 10GBASE-AOC SFP+ Cable 5 Meter
SFP-10G-AOC7M
Cisco 10GBASE-AOC SFP+ Cable 7 Meter
SFP-10G-AOC10M
Cisco 10GBASE-AOC SFP+ Cable 10 Meter
GLC-T
1000BASE-T SFP
GLC-ZX-SMD
1000BASE-ZX SFP transceiver module, SMF, 1550-nm wavelength, dual LC/PC connector, Digital Optical Monitoring (DOM)
GLC-EX-SMD
1000BASE-EX SFP transceiver module, SMF, 1310-nm wavelength, dual LC/PC connector, DOM
GLC-SX-MMD
Gigabit Ethernet SFP, LC connector SX transceiver (MMF), extended temperature range and DOM
Cisco GLC-LH-SMD
Gigabit Ethernet SFP, LC connector LX/LH transceiver (SMF), extended temperature range and DOM
SFP-GE-T
1000BASE-T SFP, extended temperature range
DS-SFP-FC16G-SW
16-Gbps Fibre Channel shortwave SFP+, LC connector (16G Fibre Channel support only on last 24 ports (highlighted in Orange on the chassis for easy identification) of the Cisco Nexus 5672UP-16G
DS-SFP-FC16G-LW
16-Gbps Fibre Channel longwave SFP+, LC connector (16G Fibre Channel support only on last 24 ports (highlighted in Orange on the chassis for easy identification) of the Cisco Nexus 5672UP-16G)
Page 22
© 2017 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 22 of 24
Part Number
Description
DS-SFP-FC8G-SW
8 Gbps Fibre Channel SW SFP+, LC connector (Fibre Channel support only on last 24 ports (highlighted) of the Cisco Nexus 5672UP-16G, on last 16 ports (highlighted) of Cisco Nexus 5672UP and UP GEM module on 56128P)
DS-SFP-FC8G-LW
8 Gbps Fibre Channel LW SFP+, LC connector, (Fibre Channel support only on last 24 ports (highlighted in Orange on the chassis for easy identification) of the Cisco Nexus 5672UP-16G, on last 16 ports (highlighted) of Cisco Nexus 5672UP and UP GEM module on 56128P)
DS-SFP-FC4G-SW
4 Gbps Fibre Channel-SW SFP, LC connector, (Fibre Channel support only on last 16 ports (highlighted) of Cisco Nexus 5672UP and UP GEM module on 56128P)
DS-SFP-FC4G-LW
4 Gbps Fibre Channel-LW (up to 10 km) SFP, LC connector, (Fibre Channel support only on last 16 ports (highlighted) of Cisco Nexus 5672UP and UP GEM module on 56128P)
QSFP-40G-SR4
40GBASE-SR4 QSFP module, (multi-mode fiber, MMF at 100m)
QSFP-40G-SR4-S
40GBASE-SR4 QSFP Module, MPO Connector, Enterprise-Class
QSFP-40G-CSR4
40GBASE Extended CSR4 QSFP module, (multimode fiber, MMF at 300m)
QSFP-40G-SR-BD
Cisco QSFP40G BiDi Short-reach Transceiver
QSFP-40G-ER4
Cisco 40GBASE-ER4 QSFP+ transceiver module for SMF, duplex LC connector
QSFP-40G-LR4
Cisco 40GBASE-LR4 QSFP+ transceiver module for SMF, duplex LC connector
QSFP-40G-LR4-S
QSFP 40GBASE-LR4 Module, LC connector, 10km, Enterprise-Class
WSP-Q40GLR4L
QSFP 40G Ethernet - LR4 Lite, LC connector, 2 km
QSFP-4SFP10G-CU1M
Cisco 40GBASE-CR4 QSFP+ to 4 10GBASE-CU SFP+ passive direct-attach copper transceiver assembly, 1m
QSFP-4SFP10G-CU3M
Cisco 40GBASE-CR4 QSFP+ to 4 10GBASE-CU SFP+ passive direct-attach copper transceiver assembly, 3m
QSFP-4SFP10G-CU5M
Cisco 40GBASE-CR4 QSFP+ to 4 10GBASE-CU SFP+ passive direct-attach copper transceiver assembly, 5m
QSFP-4x10G-AC7M
Cisco 40GBASE-CR4 QSFP+ to 4 10GBASE-CU SFP+ direct-attach breakout cable, 7-meter, active
QSFP-4x10G-AC10M
Cisco 40GBASE-CR4 QSFP+ to 4 10GBASE-CU SFP+ direct-attach breakout cable, 10-meter, active
QSFP-H40G-CU1M
Cisco 40GBASE-CR4 QSFP+ direct-attach copper cable, 1-meter, passive
QSFP-H40G-CU3M
Cisco 40GBASE-CR4 QSFP+ direct-attach copper cable, 3-meter, passive
QSFP-H40G-CU5M
Cisco 40GBASE-CR4 QSFP+ direct-attach copper cable, 5-meter, passive
QSFP-H40G-ACU7M
Cisco 40GBASE-CR4 QSFP+ direct-attach copper cable, 7-meter, active
QSFP-H40G-ACU10M
Cisco 40GBASE-CR4 QSFP+ direct-attach copper cable, 10-meter, active
QSFP-4X10G-AOC1M
Cisco 40GBase-AOC QSFP to 4 SFP+ Active Optical breakout Cable, 1m
QSFP-4X10G-AOC2M
Cisco 40GBase-AOC QSFP to 4 SFP+ Active Optical breakout Cable, 2m
QSFP-4X10G-AOC3M
Cisco 40GBase-AOC QSFP to 4 SFP+ Active Optical breakout Cable, 3m
QSFP-4X10G-AOC5M
Cisco 40GBase-AOC QSFP to 4 SFP+ Active Optical breakout Cable, 5m
QSFP-4X10G-AOC7M
Cisco 40GBase-AOC QSFP to 4 SFP+ Active Optical breakout Cable, 7m
QSFP-4X10G-AOC10M
Cisco 40GBase-AOC QSFP to 4 SFP+ Active Optical breakout Cable, 10m
QSFP-H40G-AOC1M
Cisco 40GBase-AOC QSFP direct-attach Active Optical Cable, 1m
QSFP-H40G-AOC2M
Cisco 40GBase-AOC QSFP direct-attach Active Optical Cable, 2m
QSFP-H40G-AOC3M
Cisco 40GBase-AOC QSFP direct-attach Active Optical Cable, 3m
QSFP-H40G-AOC5M
Cisco 40GBase-AOC QSFP direct-attach Active Optical Cable, 5m
QSFP-H40G-AOC7M
Cisco 40GBase-AOC QSFP direct-attach Active Optical Cable, 7m
QSFP-H40G-AOC10M
Cisco 40GBase-AOC QSFP direct-attach Active Optical Cable, 10m
QSFP-H40G-AOC15M
40GBASE-AOC QSFP direct-attach active optical cable, 15m
CVR-QSFP-SFP10G=
Cisco 40GBASE QSFP to SFP+/SFP Adapter (QSA) for all 1-Gbps and 10-Gbps Ethernet optics listed in table 6.
Power Cords
CAB-250V-10A-AR
AC Power Cord - 250V, 10A - Argentina (2.5m)
CAB-9K10A-AU
Power Cord, 250VAC 10A 3112 Plug, Australia (2.5m)
CAB-250V-10A-BR
AC Power Cord - 250V, 10A - Brazil(2.1m)
CAB-250V-10A-CN
AC Power Cord - 250V, 10A - PRC (2.5m)
Page 23
© 2017 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 23 of 24
Part Number
Description
CAB-9K10A-EU
Power Cord, 250VAC 10A CEE 7/7 Plug, EU (2.5m)
CAB-IND-10A
10A Power cable for India (2.5m)
CAB-250V-10A-IS
AC Power Cord - 250V, 10A - Israel (2.5m)
CAB-9K10A-IT
Power Cord, 250VAC 10A CEI 23-16/VII Plug, Italy (2.5m)
CAB-250V-10A-ID
AC Power Cord - 250V, 10A, South Africa(2.5m)
CAB-9K10A-SW
Power Cord, 250VAC 10A MP232 Plug, SWITZ (2.5m)
CAB-9K10A-UK
Power Cord, 250VAC 10A BS1363 Plug (13 A fuse), UK (2.5m)
CAB-9K12A-NA
Power Cord, 125VAC 13A NEMA 5-15 Plug, North America (2.5m)
CAB-AC-250V/13A
North America, NEMA L6-20 250V/20A plug-IEC320/C13 receptacle (2.0m)
CAB-N5K6A-NA
Power Cord, 200/240V 6A North America (2.5m)
CAB-C13-CBN
Cabinet Jumper Power Cord, 250 VAC 10A, C14-C13 Connectors (0.7m)
CAB-C13-C14-2M
Power Cord Jumper, C13-C14 Connectors, 2 Meter Length (2m)
CAB-C13-C14-AC
Power cord, C13 to C14 (recessed receptacle), 10A (3m)
Accessory Kit
N5596-ACC-KIT=
Cisco Nexus 56128P Chassis Accessory Kit, spare
N5672-ACC-KIT=
Cisco Nexus 5672UP/5672UP-16G Chassis Accessory Kit, spare
Warranty
The Cisco Nexus 5600 10-Gbps platform switches have a 1-year limited hardware warranty. The warranty includes hardware replacement with a 10-day turnaround from receipt of a return materials authorization (RMA).
Service and Support
Cisco offers a wide range of services to help accelerate your success in deploying and optimizing the Cisco Nexus 5600 10-Gbps platform in your data center. The innovative Cisco Services are delivered through a unique combination of people, processes, tools, and partners and are focused on helping you increase operation efficiency and improve your data center network. Cisco Advanced Services uses an architecture-led approach to help you align your data center infrastructure with your business goals and achieve long-term value. Cisco SMARTnet™ Service helps you resolve mission-critical problems with direct access at any time to Cisco network experts and award-winning resources. With this service, you can take advantage of the Cisco Smart Call Home service capability, which offers proactive diagnostics and real-time alerts on your Cisco Nexus 5600 platform 10-Gbps switch. Spanning the entire network lifecycle, Cisco Services offerings help increase investment protection, optimize network operations, support migration operations, and strengthen your IT expertise.
Cisco Capital Financing to Help You Achieve Your Objectives
Cisco Capital® financing can help you acquire the technology you need to achieve your objectives and stay competitive. We can help you reduce capital expenditures (CapEx), accelerate your growth, and optimize your investment dollars and ROI. Cisco Capital financing gives you flexibility in acquiring hardware, software, services, and complementary third-party equipment. And there’s just one predictable payment. Cisco Capital financing is available in more than 100 countries. Learn more.
Page 24
© 2017 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 24 of 24
Printed in USA C78-730760-11 03/17
For More Information
Cisco Nexus 5600 platform switches: http://www.cisco.com/go/nexus5000.
Cisco Nexus 2000 Series Fabric Extenders: http://www.cisco.com/go/nexus2000.
Cisco NX-OS Software: http://www.cisco.com/go/nxos.
Loading...