Cirrus Logic CS5378 User Manual

CS5378
Serial Interface
Decimation and Filtering Engine
Mod u lator Data Inte r fa c e
Test Bit Stream
Con tr o lle r
Reset, Synchronization
TBSD ATA
Time Break Controller
GPIO
General Purpose I/O
SCK
MOSI
VDDPAD
VDDPLL
VDDCORE
SYNC MSYNC
TIME B
GPIO5:PLL1 GPIO4:PLL0 GPIO3 GPIO2 GPIO1
GNDPAD
GNDCORE
GNDPLL
MDATA
MFLAG
GPIO0
GPIO6:PLL2
GPIO7:BOOT
DRDY
MISO
SS:EECS
RESET
CLK MCLK
PLL, Clock Generation
Low-power Single-channel Decimation Filter
Features
Single-channel Digital Decimation Filter
Multiple On-chip FIR and IIR Coefficient SetsProgrammable Coefficients for Custom FiltersSynchronous Operation
Integrated PLL for Clock Generation
1.024 MHz, 2.048 MHz, or 4.096 MHz InputStandard Clock or Manchester Input
Selectable Output Word Rate
4000, 2000, 1000, 500, 333, 250 SPS200, 125, 100, 50, 40, 25, 20, 10, 5, 1 SPS
Digital Gain and Offset CorrectionsTest DAC Bit-stream Generator
Digital Sine Wave Output
Time Break Controller, General-purpose I/OMicrocontroller or EEPROM ConfigurationSmall-footprint, 28-pin SSOP PackageLow Power Consumption
16 mW at 500 SPS OWR
Flexible Power Supplies
I/O Interface and PLL: 3.3 V or 5.0 VDigital Logic Core: 2.5 V, 3.3 V or 5.0 V
I
Description
The CS5378 is a multi-function digital filter utilizing a low­power signal processing architecture to achieve efficient filtering for a delta-sigma-type modulator. By combining the CS537 8 with a CS33 01A/02A di fferential a mplifier and a CS5373A modulator + test DAC, a synchronous high-resolution, self- testing, sin gle-channel m easure­ment system can be designed quickly and easily.
Digital filter coefficients for the CS5378 FIR and IIR filters are included on-chip for a simple setup, or they can be programmed for custom ap plications. Selectable digital filter decimation ratios produce output wor d rates from 4000 SPS to 1 SPS, resulting in measurement band­widths ra nging fro m 16 00 Hz down to 400 mHz whe n using the on-chip coefficient sets.
The CS5378 includes integrated peripherals to simplify system d esign: a low- jitter PL L for standard clo ck or Manchester inpu ts, offset and gain co rrections, a test DAC bit stream generator, a tim e break controller, and eight general-purpose I/O pins.
ORDERING INFORMATION
See page 86.
http://www.cirrus.com
Copyright Cirrus Logic, Inc. 2010
(All Rights Reserved)
2&7 ‘10
DS639F3
TABLE OF CONTENTS
1. General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6
1.1. Digital Filter Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6
1.2. Integrated Peripheral Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
1.3. System Level Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
1.4. Configuration Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8
2. Characteristics and Specifications . . . . . . . . . . . . . . . . . . . . . . . . . 12
Specified Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
Digital Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
Power Consumption. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
Switching Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
3. System Design with CS5378. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.1. Power Supplies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18
3.2. Reset Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18
3.3. PLL and Clock Generation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18
3.4. Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19
3.5. System Configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19
3.6. Digital Filter Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19
3.7. Data Collection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19
3.8. Integrated peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19
4. Power Supplies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20
4.1. Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20
4.2. Bypass Capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20
4.3. Power Consumption. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20
5. Reset Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
5.1. Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
5.2. Reset Self-Tests. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
5.3. Boot Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
6. PLL and Clock Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
6.1. Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22
6.2. PLL Mode Select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22
6.3. Synchronous Clocking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22
6.4. Master Clock Jitter and Skew. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23
7. Synchronization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
7.1. Pin Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24
7.2. MSYNC Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24
7.3. Digital Filter Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24
7.4. Modulator Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24
7.5. Test Bit Stream Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24
8. Configuration By EEPROM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
8.1. Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25
8.2. EEPROM Hardware Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25
8.3. EEPROM Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25
8.4. EEPROM Configuration Commands . . . . . . . . . . . . . . . . . . . . . . . . . . .27
8.5. Example EEPROM Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29
9. Configuration By Microcontroller . . . . . . . . . . . . . . . . . . . . . . . . . . 30
CS5378
DS639F3 2
9.1. Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30
9.2. Microcontroller Hardware Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . .30
9.3. Microcontroller Serial Transactions . . . . . . . . . . . . . . . . . . . . . . . . . . . .30
9.4. Microcontroller Configuration Commands . . . . . . . . . . . . . . . . . . . . . . .33
9.5. Example Microcontroller Configuration . . . . . . . . . . . . . . . . . . . . . . . . .35
10. Modulator Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
10.1. Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36
10.2. Modulator Clock Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36
10.3. Modulator Synchronization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36
10.4. Modulator Data Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37
10.5. Modulator Flag Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37
11. Digital Filter Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
11.1. Filter Coefficient Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38
11.2. Filter Configuration Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38
12. SINC Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
12.1. SINC1 Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40
12.2. SINC2 Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40
12.3. SINC3 Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40
12.4. SINC Filter Synchronization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40
13. FIR Filter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44
13.1. FIR1 Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44
13.2. FIR2 Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44
13.3. On-Chip FIR Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44
13.4. Programmable FIR Coefficients. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45
13.5. FIR Filter Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45
14. IIR Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
14.1. IIR Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52
14.2. IIR1 Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52
14.3. IIR2 Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52
14.4. IIR3 Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53
14.5. On-Chip IIR Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53
14.6. Programmable IIR Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53
14.7. IIR Filter Synchronization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53
15. Gain and Offset Correction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
15.1. Gain Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56
15.2. Offset Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56
15.3. Offset Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57
16. Serial Data Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58
16.1. Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58
16.2. Serial Data Format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58
16.3. Serial Data Transactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59
17. Test Bit Stream Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60
17.1. Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60
17.2. TBS Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60
17.3. TBS Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60
17.4. TBS Data Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61
17.5. TBS Sine Wave Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61
17.6. TBS Loopback Testing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62
CS5378
DS639F3 3
17.7. TBS Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62
18. Time Break Controller. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63
18.1. Pin Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63
18.2. Time Break Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63
18.3. Time Break Delay. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63
19. General Purpose I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
19.1. Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64
19.2. GPIO Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64
19.3. GPIO Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64
19.4. GPIO Input Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64
19.5. GPIO Output Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64
20. Register Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
20.1. SPI Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66
20.2. Digital Filter Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71
21. Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
22. Package Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
23. Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .86
24. Environmental, Manufacturing, & Handling Information. . . . . . . 86
25. Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
CS5378
LIST OF FIGURES
Figure 1. CS5378 Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Figure 2. Digital Filtering Stages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Figure 3. FIR and IIR Coefficient Set Selection Word . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Figure 4. MOSI Write Timing in SPI Slave Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 5. MISO Read Timing in SPI Slave Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 6. Serial Data Read Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 7. SYNC, MCLK, MSYNC, MDATA Interface Timing. . . . . . . . . . . . . . . . . . . . . 16
Figure 8. TBS Output Data Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 9. Single-Channel System Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 10. Power Supply Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Figure 11. Reset Control Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 12. Clock Generation Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 13. Synchronization Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Figure 14. EEPROM Configuration Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Figure 15. EEPROM Serial Read Transactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Figure 16. 8 Kbyte EEPROM Memory Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Figure 17. Serial Interface Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Figure 18. Microcontroller Serial Transactions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Figure 19. SPI Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Figure 20. Modulator Data Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Figure 21. Digital Filter Stages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Figure 22. FIR and IIR Coefficient Set Selection Word . . . . . . . . . . . . . . . . . . . . . . . . . 39
Figure 23. SINC Filter Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Figure 24. SINC Filter Stages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Figure 25. FIR Filter Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Figure 26. FIR Filter Stages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Figure 27. FIR1 Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Figure 28. FIR2 Linear Phase Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
DS639F3 4
Figure 29. FIR2 Minimum Phase Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Figure 30. IIR Filter Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Figure 31. IIR Filter Stages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Figure 32. Gain and Offset Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Figure 33. Serial Data Interface Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Figure 34. 32-bit Serial Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Figure 35. SD Port Transaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Figure 36. Test Bit Stream Generator Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Figure 37. Time Break Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Figure 38. GPIO Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Figure 39. SPI Control Register SPICTRL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Figure 40. SPI Command Register SPICMD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Figure 41. SPI Data Register SPIDAT1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Figure 42. SPI Data Register SPIDAT2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Figure 43. Hardware Configuration Register CONFIG. . . . . . . . . . . . . . . . . . . . . . . . . . 72
Figure 44. GPIO Configuration Register GPCFG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Figure 45. Filter Configuration Register FILTCFG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Figure 46. Gain Correction Register GAIN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Figure 47. Offset Correction Register OFFSET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Figure 48. Time Break Counter Register TIMEBRK . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Figure 49. Test Bit Stream Configuration Register TBSCFG. . . . . . . . . . . . . . . . . . . . . 78
Figure 50. Test Bit Stream Gain Register TBSGAIN . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Figure 51. User Defined System Register SYSTEM1 . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Figure 52. Hardware Version ID Register VERSION . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Figure 53. Self Test Result Register SELFTEST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Figure 54. CS5378 Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
CS5378
LIST OF TABLES
Table 1. Microcontroller and EEPROM Configuration Commands . . . . . . . . . . . . . . . . . 9
Table 2. TBS Configurations Using On-Chip Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Table 3. SPI and Digital Filter Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Table 4. PLL and BOOT Mode Reset Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Table 5. PLL Mode Selections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Table 6. Maximum EEPROM Configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Table 7. EEPROM Boot Configuration Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Table 8. Example EEPROM File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Table 9. Microcontroller Boot Configuration Commands . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 10. Example Microcontroller Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Table 11. SINC Filter Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Table 12. SINC1 and SINC2 Filter Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Table 13. SINC3 Filter Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Table 14. FIR Filter Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Table 15. SINC + FIR Group Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Table 16. Minimum Phase Group Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Table 16. IIR Filter Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Table 17. IIR Filter Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Table 18. TBS Configurations Using On-chip Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
DS639F3 5
CS5378
Serial Interface
Decimation and Filtering Engine
Modulator D ata Interface
Test Bit Stream
Controller
Reset, Synchronization
TBSDATA
Time Break Controller
GPIO
General Purpose I/O
SCK
MOSI
VDDPAD
VDDPLL
VDDCORE
SYNC MSYNC
TIMEB
GPIO5:PLL1 GPIO4:PLL0 GPIO3 GPIO2 GPIO1
GNDPAD
GNDCORE
GNDPLL
MDATA
MFLAG
GPIO0
GPIO6:PLL2
GPIO7:BOOT
DRDY
MISO
SS:EECS
RESET
CLK MCLK
PLL, Clock Generation
Figure 1. CS5378 Block Diagram

1. GENERAL DESCRIPTION

The CS5378 is a single channel digital filter with integrated system peripherals. Figure 1 illustrates a simplified block diagram of the CS5378.

1.1 Digital Filter Features

Single channel decimation filter for CS5373A ΔΣ modulator.
Synchronous operation for simultaneous sam­pling in multi-sensor systems.
- Internal synchronization of digital filter
Output word rates, including low bandwidth rates.
- Standard output rates: 4000, 2000, 1000,
- Low bandwidth rates: 200, 125, 100, 50,
phase to an external SYNC signal.
500, 333, 250 SPS.
40, 25, 20, 10, 5, 1 SPS.
Flexible digital filter configuration. (See Figure
2)
- Cascaded SINC, FIR, and IIR filters with selectable output stage.
- Linear and minimum phase FIR low-pass filter coefficients included.
- 3 Hz Butterworth IIR high-pass filter coef­ficients included.
- FIR and IIR coefficients programmable to create a custom filter response.
Digital gain correction to normalize sensor gain.
Digital offset correction and calibration.
- Offset correction to remove measurement
DS639F3 6
CS5378
Figure 2. Digital Filtering Stages
Sinc Filter
2 - 64000
FIR1
4
FIR2
2
IIR1 IIR2
1
st
Order
2nd Order
Output to High Speed Serial Interface
DC Offset
Corrections
Output Word Rate from 4000 SPS ~ 1 SPS
Gain &
Modulator
512 kHz
Input
DC offset.
- Calibration engine for automatic calcula­tion of offset correction factor.
Time break controller to record system timing information.
- Dedicated TB status bit in the output data
stream.

1.2 Integrated Peripheral Features

Low jitter PLL to generate local clocks.
- 1.024 MHz, 2.048 MHz, 4.096 MHz stan­dard clock or Manchester encoded input.
- Programmable output delay to match sys­tem group delay.
8 General Purpose I/O (GPIO) pins for local hardware control.
Synchronous operation for simultaneous sam­pling in multi-sensor systems.
- MCLK / MSYNC output signals to syn-
chronize external components.
High speed serial data output.
- Asynchronous operation to 4 MHz for di-
rect connection to system telemetry.
- Internal 8-deep data FIFO for flexible out-
put timing.
- Selectable 24-bit data only or 32-bit sta-
tus+data output.
Digital test bit stream signal generator suitable for CS5373A ΔΣ test DAC.
- Sine wave output mode for testing total har-
monic distortion.
DS639F3 7

1.3 System Level Features

Flexible configuration options.
- Configuration 'on-the-fly' via microcon­troller or system telemetry.
- Fixed configuration via stand-alone boot EEPROM.
Low power consumption.
- 16 mW at 500 SPS OWR.
- 100 μW standby mode.
Flexible power supply configurations.
- Separate digital logic core, telemetry I/O, and PLL power supplies.
- Telemetry I/O and PLL interfaces operate
CS5378
from 3.3 V or 5 V.
- Digital logic core operates from 2.5 V,
3.3 V or 5 V.
Small 28-pin SSOP package.
- Total footprint 8 mm x 10 mm plus three bypass capacitors.

1.4 Configuration Interface

Configuration from microcontroller or stand­alone boot EEPROM.
- Microcontroller boot permits reconfigura-
tion during operation.
- EEPROM boot sets a fixed operational con­figuration.
Configuration commands written through the serial interface. (See Table 1)
- Standardized microcontroller interface us-
ing SPIregisters. (See Table 3)
- Commands write digital filter registers and
FIR / IIR filter coefficients.
- Digital filter registers set hardware config-
uration options.
DS639F3 8
Microcontroller Boot Configuration Commands
EEPROM Boot Configuration Commands
[DATA] indicates data word returned from digital filter. (DATA) indicates multiple words of this type are to be written.
Name CMD
24-bit
DAT1
24-bit
DAT2 24-bit
Description
NOP 000000 - - No Operation
WRITE DF REGISTER 000001 REG DATA Write Digital Filter Register
READ DF REGISTER 000002 REG
[DATA]
-
-
Read Digital Filter Register
WRITE FIR COEFFICIENTS 000003 NUM FIR1
(FIR COEF)
NUM FIR2
(FIR COEF)
Write Custom FIR Coefficients
WRITE IIR COEFFICIENTS 000004 a11
b11 a22 b21
b10 a21 b20 b22
Write Custom IIR Coefficients
WRITE ROM COEFFICIENTS 000005 COEF SEL - Use On-Chip Coefficients
NOP 000006 - - No Operation
NOP 000007 - - No Operation
FILTER START 000008 - - Start Digital Filter Operation
FILTER STOP 000009 - - Stop Digital Filter Operation
Name CMD
8-bit
DATA
24-bit
Description
NOP 00 - No Operation
WRITE DF REGISTER 01 REG
DATA
Write Digital Filter Register
WRITE FIR COEFFICIENTS 02 NUM FIR1
NUM FIR2
(FIR COEF)
Write Custom FIR Coefficients
WRITE IIR COEFFICIENTS 03 a11
b10 b11 a21 a22 b20 b21 b22
Write Custom IIR Coefficients
WRITE ROM COEFFICIENTS 04 COEF SEL Use On-Chip Coefficients
NOP 05 - No Operation
NOP 06 - No Operation
FILTER START 07 - Start Digital Filter Operation
Table 1. Microcontroller and EEPROM Configuration Commands
CS5378
DS639F3 9
CS5378
Bits 23:20 19:16 15:12 11:8 7:4 3:0
Selection 0000 0000 IIR2 IIR1 FIR2 FIR1
Figure 3. FIR and IIR Coefficient Set Selection Word
Bits 15:12 IIR2 Coefficients
0000 3 Hz @ 2000 SPS
0001 3 Hz @ 1000 SPS
0010 3 Hz @ 500 SPS
0011 3 Hz @ 333 SPS
0100 3 Hz @ 250 SPS
Bits 11:8 IIR1 Coefficients
0000 3 Hz @ 2000 SPS
0001 3 Hz @ 1000 SPS
0010 3 Hz @ 500 SPS
0011 3 Hz @ 333 SPS
0100 3 Hz @ 250 SPS
Bits 7:4 FIR2 Coefficients
0000 Linear Phase
0001 Minimum Phase
Bits 3:0 FIR1 Coefficients
0000 Linear Phase
0001 Minimum Phase
Test Bit Stream Characteristic Equation:
(Signal Freq) * (# TBS Data) * (Interpolation + 1) = Output Rate Example: (31.25 Hz) * (1024) * (0x07 + 1) = 256 kHz
Signal
Frequency
(TBSDATA)
Output
Rate
(TBSCLK)
Output Rate
Selection
(RATE)
Interpolation
Selection
(INTP)
10.00 Hz 256 kHz 0x4 0x18
10.00 Hz 512 kHz 0x5 0x31
25.00 Hz 256 kHz 0x4 0x09
25.00 Hz 512 kHz 0x5 0x13
31.25 Hz 256 kHz 0x4 0x07
31.25 Hz 512 kHz 0x5 0x0F
50.00 Hz 256 kHz 0x4 0x04
50.00 Hz 512 kHz 0x5 0x09
125.00 Hz 256 kHz 0x4 0x01
125.00 Hz 512 kHz 0x5 0x03
Table 2. TBS Configurations Using On-Chip Data
DS639F3 10
CS5378
SPI Registers
Digital Filter Registers
Name Addr. Type # Bits Description
SPICTRL 00 - 02 R/W 8, 8, 8 SPI Control
SPICMD 03 - 05 R/W 8, 8, 8 SPI Command
SPIDAT1 06 - 08 R/W 8, 8, 8 SPI Data 1
SPIDAT2 09 - 0B R/W 8, 8, 8 SPI Data 2
Name Addr. Type # Bits Description
CONFIG 00 R/W 24 Hardware Configuration
RESERVED 01-0D R/W 24 Reserved
GPCFG 0E R/W 24 GPIO[7:0] Direction, Pull-up Enable, and Data
RESERVED 0F-1F R/W 24 Reserved
FILTCFG 20 R/W 24 Digital Filter Configuration
GAIN 21 R/W 24 Gain Correction
RESERVED 22-24 R/W 24 Reserved
OFFSET 25 R/W 24 Offset Correction
RESERVED 26-28 R/W 24 Reserved
TIMEBRK 29 R/W 24 Time Break Delay
TBSCFG 2A R/W 24 Test Bit Stream Configuration
TBSGAIN 2B R/W 24 Test Bit Stream Gain
SYSTEM1 2C R/W 24 User Defined System Register 1
SYSTEM2 2D R/W 24 User Defined System Register 2
VERSION 2E R/W 24 Hardware Version ID
SELFTEST 2F R/W 24 Self-Test Result Code
Table 3. SPI and Digital Filter Registers
Table 4. PLL and BOOT Mode Reset Configurations
PLL[2:0] Mode Selection on Reset
111 32.768 MHz clock input (PLL bypass).
110 1.024 MHz clock input.
101 2.048 MHz clock input.
100 4.096 MHz clock input.
011 32.768 MHz clock input (PLL bypass).
010 1.024 MHz Manchester input.
001 2.048 MHz Manchester input.
000 4.096 MHz Manchester input.
Configuration Note:
States of the PLL[2:0] and BOOT pins are latched immediately after reset to select modes.
These pins have a weak (~100 kΩ) pull-up re­sistor enabled by default. An external 10 kΩ pull-down is required to set a low condition.
BOOT Mode Selection on Reset
1 EEPROM boot
0 Microcontroller boot
DS639F3 11
CS5378

2. CHARACTERISTICS AND SPECIFICATIONS

Min / Max characteristics and specifications are guaranteed over the Specified Operating Conditions.
Typical performance characteristics and specifications are derived from measurements taken at nomi­nal supply voltages and TA = 25°C.
GND, GND1, GND2 = 0 V, all voltages with respect to 0 V.

SPECIFIED OPERATING CONDITIONS

Parameter Symbol Min Nom Max Unit
Logic Core Power Supply VDDCORE 2.375 2.5 5.25 V
PLL Power Supply VDDPLL 3.135 3.3 5.25 V
I/O Power Supply VDDPAD 3.135 3.3 5.25 V
Ambient Operating Temperature Industrial (-IQ) T
A
-40 - 85 °C

ABSOLUTE MAXIMUM RATINGS

Parameter Symbol Min Max Units
DC Power Supplies Logic Core
Input Current, Any Pin Except Supplies (Note 1) I
Input Current, Power Supplies (Note 1) I
Output Current (Note 1) I
Power Dissipation P
Digital Input Voltages V
Ambient Operating Temperature (Power Applied) T
Storage Temperature Range T
1. Transient currents up to 100 mA will not cause SCR latch-up.
PLL
I/O
VDDCORE
VDDPLL VDDPAD
IN
IN
OUT
DN
IND
A
STG
-0.3
-0.3
-0.3
10mA
50mA
25mA
-500mW
-0.3 VDD+0.3 V
-40 85 °C
-65 150 °C
6.0
6.0
6.0
V V V
DS639F3 12

THERMAL CHARACTERISTICS

2.6 V
0.7 V
t
fallin
t
risein
4.6 V
0.4 V
t
riseout
t
fallout
0.90 * VDD
0.10 * VDD
0.90 * VDD
0.10 * VDD
Parameter Symbol Min Typ Max Unit
Allowable Junction Temperature T
Junction to Ambient Thermal Impedance (4-Layer PCB) Θ
Ambient Operating Temperature (Power Applied) T

DIGITAL CHARACTERISTICS

Parameter Symbol Min Typ Max Unit
High-Level Input Drive Voltage V
Low-Level Input Drive Voltage V
High-Level Output Drive Voltage I
Low-Level Output Drive Voltage I
Rise Times, Digital Inputs t
Fall Times, Digital Inputs t
Rise Times, Digital Outputs t
Fall Times, Digital Outputs t
Input Leakage Current (Note 2) I
3-State Leakage Current I
Digital Input Capacitance C
Digital Output Pin Capacitance C
= -40 µA V
out
= +40 µA V
out
RISE
FALL
RISE
FALL
OUT
IH
OH
OL
IN
OZ
IL
IN
JA
A
J
--13C
-50 °C / W
-40 - +85 °C
0.6 * VDD - VDD V
0.0 - 0.8 V
VDD - 0.3 - VDD V
0.0 - 0.3 V
--100ns
--100ns
--100ns
--100ns
1± 10µA
--± 10µA
-9-pF
-9-pF
CS5378
Notes: 2. Maximum leakage for pins with pull-up resistors (RESET, SS:EECS, GPIO, MOSI, SCK) is ±250 μA.

POWER CONSUMPTION

Parameter Symbol Min Typ Max Unit
Operational Power Consumption
1.024 MHz Digital Filter Clock PWR
2.048 MHz Digital Filter Clock PWR
4.096 MHz Digital Filter Clock PWR
8.192 MHz Digital Filter Clock PWR
Standby Power Consumption
32 kHz Digital Filter Clock, Filter Stopped PWR
1
2
4
8
S
-12-mW
-14-mW
-16-mW
-24-mW
- 100 - µW
DS639F3 13

SWITCHING CHARACTERISTICS

Figure 4. MOSI Write Timing in SPI Slave Mode
SSI
MOSI
SCLK
MSB MSB - 1
LSB
t
6
t
5
t
4
t
3
t
2
t
1
SCK
SS:EECS
Figure 5. MISO Read Timing in SPI Slave Mode
MISO
SCLK
MSB MSB - 1 LSB
t
10
t
9
t
8
t
7
SSI
SS:EECS
SCK
Serial Configuration Interface Timing (External Master)
CS5378
Parameter Symbol Min Typ Max Unit
MOSI Write Timing
SS:EECS
Data Set-up Time Prior to SCK Rising t
Data Hold Time After SCK Rising t
SCK High Time t
SCK Low Time t
SCK Falling Prior to SS:EECS
Enable to Valid Latch Clock t
Disable t
1
2
3
4
5
6
60 - - ns
60 - - ns
120 - - ns
120 - - ns
120 - - ns
60 - - ns
MISO Read Timing
SCK Falling to New Data Bit t
SCK High Time t
SCK Low Time t
SS:EECS
DS639F3 14
Rising to MISO Hi-Z t
7
8
9
10
- - 60 ns
120 - - ns
120 - - ns
--150ns
SWITCHING CHARACTERISTICS
Figure 6. Serial Data Read Timing
MISO
SCK
t
3
DRDY
t
4
t
2
t
1
t
5
Serial Data Interface Timing
CS5378
Parameter Symbol Min Typ Max Unit
DRDY
Falling Edge to SCK Rising t
SCK Falling to New Data Bit t
SCK High Time t
SCK Low Time t
Final SCK Falling to DRDY
Rising t
1
2
3
4
5
60 - - ns
--120ns
120 - - ns
120 - - ns
60 - - ns
DS639F3 15
SWITCHING CHARACTERISTICS
MSYNC
MCLK
MDATA
Figure 7. SYNC, MCLK, MSYNC, MDATA Interface Timing
t
msd
t
msd
t
msh
Data1 Data2
SYNC
f
MCLK
2.048 MHz 1.024 MHz
t
msd
= T
MCLK
/ 4 t
msd
= 122 ns t
msd
= 244 ns
t
msh
= T
MCLK
t
msh
= 488 ns t
msh
= 976 ns
Note: SYNC input latched on MCLK rising edge. MSYNC output triggered by MCLK falling edge.
CLK, SYNC, MCLK, MSYNC, and MDATA
CS5378
Master Clock Frequency (Note 3) CLK 32 32.768 33 MHz
Master Clock Duty Cycle DTY 40 - 60 %
Master Clock Rise Time t
Master Clock Fall Time t
Master Clock Jitter JTR - - 300 ps
Synchronization after SYNC rising (Note 4) SYNC -2 - 2 μs
MSYNC Setup Time to MCLK rising t
MCLK rising to Valid MDATA t
MSYNC falling to MCLK rising t
Notes: 3. PLL bypass mode. The PLL generates a 32.768 MHz master clock when enabled.
4. Sampling synchronization between multiple CS5378 devices receiving identical SYNC signals.
DS639F3 16
Parameter Symbol Min Typ Max Unit
- - 20 ns
- - 20 ns
20 - - ns
- - 75 ns
20 - - ns
RISE
FALL
mss
mdv
msf
SWITCHING CHARACTERISTICS
Figure 8. TBS Output Data Timing
TBSDATA
MCLK
t
2
t
1
Note: Example timing shown for a 256 kHz output rate and no programmable delays.
Test Bit Stream (TBS)
CS5378
Parameter Symbol Min Typ Max Unit
TBS Data Output Timing
TBS Data Bit Rate - 256 - kbps
TBS Data Rising to MCLK Rising Setup Time t
MCLK Rising to TBS Data Falling Hold Time (Note 5) t
5. TBSDATA can be delayed from 0 to 63 full bit periods. The timing diagram shows no TBSDATA delay.
1
2
60 - - ns
60 - - ns
DS639F3 17
CS5378
ΔΣ
Modulator
Test DAC
Digital Filter
AMP
Differential
Sensor
M U X
μController
or
Configuration
EEPROM
System
Telemetry
CS3301A CS3302A
CS5378
CS5373A
Figure 9. Single-Channel System Block Diagram

3. SYSTEM DESIGN WITH CS5378

Figure 9 illustrates a simplified block diagram of the CS5378 in a single channel measurement sys­tem.
A differential sensor is connected through the CS3301A/02A differential amplifiers to the CS5373A ΔΣ modulator, where analog to digital conversion occurs. The modulator’s 1-bit output connects to the CS5378 MDATA input, where the oversampled ΔΣ data is decimated and filtered to 24-bit output samples at a programmed output rate. These output samples are buffered into an 8-deep data FIFO and then passed to the system telemetry.
System self tests are performed by connecting the CS5378 test bit stream (TBS) generator to the CS5373A test DAC. Analog tests drive differential signals from the CS5373A test DAC into the mul­tiplexed inputs of the CS3301A/02A amplifiers or directly to the differential sensor. Digital loopback tests internally connect the TBS digital output di­rectly to the CS5378 modulator input.

3.1 Power Supplies

The system shown in Figure 9 typically operates from a ±2.5 V analog power supply and a 3.3 V digital power supply. The CS5378 logic core can be powered from 2.5 V to minimize power con­sumption, if required.

3.2 Reset Control

System reset is required only for the CS5378 de­vice, and is a standard active low signal that can be generated by a power supply monitor or microcon­troller. Other system devices default to a power­down state when the CS5378 is reset.

3.3 PLL and Clock Generation

A PLL is included on the CS5378 to generate an in­ternal 32.768 MHz master clock from a
1.024 MHz, 2.048 MHz, or 4.096 MHz standard clock or Manchester encoded input. Clock inputs for other system devices are driven by clock out­puts from the CS5378.
DS639F3 18
CS5378

3.4 Synchronization

Digital filter phase and analog sample timing of the ΔΣ modulator connected to the CS5378 are syn­chronized by a rising edge on the SYNC pin. If a synchronization signal is received identically by all CS5378 devices in a measurement network, syn­chronous sampling across the network is guaran­teed.

3.5 System Configuration

Through the serial configuration interface, filter coefficients and digital filter register settings can either be programmed by a microcontroller or auto­matically loaded from an external EEPROM after reset. System configuration is only required for the CS5378 device, as other devices are configured via the CS5378 General Purpose I/O pins.
Two registers in the digital filter, SYSTEM1 and SYSTEM2 (0x2C, 0x2D), are provided for user de­fined system information. These are general pur­pose registers that will hold any 24-bit data values written to them.

3.6 Digital Filter Operation

3.7 Data Collection

Data is collected from the CS5378 through the se­rial data interface. When data is available, serial transactions are automatically initiated to transfer 24-bit data or 32-bit status+data from the output FIFO to the system telemetry. The output FIFO has eight data locations to permit latency in data collec­tion.

3.8 Integrated peripherals

Test Bit Stream (TBS)
A digital signal generator built into the CS5378 produces a 1-bit ΔΣ sine wave. This digital test bit stream is connected to the CS5373A test DAC to create high quality analog test signals or internally looped back to the CS5378 MDATA input to test the digital filter and data collection circuitry.
Time Break
Timing information is recorded during data collec­tion by strobing the TIMEB pin. A dedicated flag in the sample status bits, TB, is set high to indicate during which measurement the timing event oc­curred.
After analog to digital conversion occurs in the modulator, the oversampled 1-bit ΔΣ data is read into the CS5378 through the MDATA pin. The dig­ital filter then processes data through the enabled filter stages, decimating it to 24-bit words at a pro­grammed output word rate. The final 24-bit sam­ples are concatenated with 8-bit status words and placed into an output FIFO.
DS639F3 19
General Purpose I/O (GPIO)
Eight general purpose pins are available on the CS5378 for system control. Each pin can be set as input or output, high or low, with an internal pull­up enabled or disabled. The CS3301A/02A and CS5373A devices in Figure 9 are configured by simple pin settings controlled through the CS5378 GPIO pins.

4. POWER SUPPLIES

1
2
3
4
5
6
7
821
22
23
24
25
26
27
28
9
10
11
12 17
18
19
20
13
14 15
16
VDDPAD
GNDPAD
GNDCORE
VDDCORE
Figure 10. Power Supply Block Diagram
GNDPLL
VDDPLL
CS5378
The CS5378 has three sets of power supply inputs. One set supplies power to the I/O pins of the device (VDDPAD), another supplies power to the logic core (VDDCORE) and the third supplies power to the PLL (VDDPLL). The I/O pin power supplies determine the maximum input and output voltages when interfacing to peripherals, the logic core pow­er supply largely determines the power consump­tion of the CS5378 and the PLL power supply powers the internal PLL circuitry.

4.1 Pin Descriptions

VDDPAD, GNDPAD - Pins 9, 10
Sets the interface voltage to a microcontroller, sys­tem telemetry, modulator, and test DAC. VDD­PAD can be driven with voltages from 3.3 V to 5V.
VDDPLL, GNDPLL - Pins 15, 16
Sets the operational voltage of the internal CS5378 PLL circuitry. Can be driven with voltages from
3.3 V to 5 V.
DS639F3 20
VDDCORE, GNDCORE - Pins 21, 22
Sets the operational voltage of the CS5378 logic core. VDDCORE can be driven with voltages from
2.5 V to 5 V. A 2.5 V supply will minimize total power consumption.

4.2 Bypass Capacitors

Each power supply pin should be bypassed with parallel 1 μF and 0.01 μF caps, or by a single
0.1 μF cap, placed as close as possible to the CS5378. Bypass capacitors should be ceramic (X7R, C0G), tantalum, or other good quality di­electric type.

4.3 Power Consumption

Power consumption of the CS5378 depends pri­marily on the power supply voltage of the logic core (VDDCORE) and the programmed digital fil­ter clock rate. Digital filter clock rates are selected based on the required output word rate as explained in “Digital Filter Initialization” on page 38.

5. RESET CONTROL

RESET
Self-Tests
SELFTEST
Register
BOOT
Pin
EEPROM
Boot
μController
Boot
1
0
Figure 11. Reset Control Block Diagram
BOOT Reset Mode
1 EEPROM boot
0 Microcontroller boot
Self-Test
Type
Pass
Code
Fail
Code
Program ROM 0x00000A 0x00000F
Data ROM 0x0000A0 0x0000F0
Program RAM 0x000A00 0x000F00
Data RAM 0x00A000 0x00F000
Execution Unit 0x0A0000 0x0F0000
CS5378
The CS5378 reset signal is active low. When re­leased, a series of self-tests are performed and the device either actively boots from an external EE­PROM or enters an idle state waiting for microcon­troller configuration.

5.1 Pin Descriptions

RESET
Reset input, active low.
- Pin 18
GPIO7:BOOT - Pin 28
Boot mode select, latched immediately following reset. Weak (~100 kΩ) internal pull-up defaults high, external 10 kΩ pull-down required to set low.
combined into the SELFTEST register (0x2F), with 0x0AAAAA indicating all passed. Self-tests require 60 ms to complete.

5.3 Boot Configurations

The logic state of the BOOT pin after reset deter­mines if the CS5378 actively reads configuration information from EEPROM or enters an idle state waiting for a microcontroller to write configuration commands.
EEPROM Boot
When the BOOT pin is high after reset, the CS5378 actively reads data from an external serial EE­PROM and then begins operation in the specified configuration. Configuration commands and data are encoded in the EEPROM as specified in the ‘Configuration By EEPROM’ section of this data sheet, starting on page 25.

5.2 Reset Self-Tests

After RESET is released but before booting, a se­ries of digital filter self-tests are run. Results are
DS639F3 21
Microcontroller Boot
When the BOOT pin is low after reset, the CS5378 enters an idle state waiting for a microcontroller to write configuration commands and initialize filter operation. Configuration commands and data are written as specified in the ‘Configuration By Mi­crocontroller’ section of this data sheet, starting on page 30.

6. PLL AND CLOCK GENERATION

PLL
CLK
DSPCFG Register
MCLK
Internal Clocks
Figure 12. Clock Generation Block Diagram
Clock Divider
Generator
and MCLK
Output
PLL[2:0]
32.768 MHz
PLL[2:0] PLL Mode
111 32.768 MHz clock input (PLL bypass).
110 1.024 MHz clock input.
101 2.048 MHz clock input.
100 4.096 MHz clock input.
011 32.768 MHz clock input (PLL bypass).
010 1.024 MHz Manchester input.
001 2.048 MHz Manchester input.
000 4.096 MHz Manchester input.
Table 5. PLL Mode Selections
CS5378
The CS5378 requires a 32.768 MHz master clock, which can be supplied directly or from an internal phase locked loop. This master clock is used to generate an internal digital filter clock and an exter­nal modulator clock.
The internal PLL will lock to standard clock or Manchester encoded input signals. The input type and input frequency are selected by the reset state of the PLL mode select pins.

6.1 Pin Descriptions

CLK - Pin 17
Clock or PLL input, standard clock or Manchester.
GPIO[4:6]:PLL[0:2] - Pins 5, 6, 7
PLL mode select, latched immediately after reset. Weak (~100 kΩ) internal pull-ups default high, ex­ternal 10 kΩ pull-downs required to set low.
A weak internal pull-up resistor (~100 kΩ) will hold the PLL mode select pins high by default. To force the pin low on reset, an external 10 kΩ pull­down resistor should be connected. Once the pin state is latched following reset, the GPIO[4:6] pins function without affecting PLL operation.

6.3 Synchronous Clocking

To guarantee synchronous measurements through­out a sensor network, a system clock should be dis­tributed to arrive at all nodes in phase. The distributed system clock can either be the full
32.768 MHz master clock, or the CS5378 PLL can create a synchronous 32.768 MHz clock from a slower clock. To ensure the generated clock re­mains synchronous with the network, the CS5378 PLL uses a phase/frequency detector architecture.

6.2 PLL Mode Select

The CS5378 PLL operational mode and frequency are selected immediately after reset based on the state of the PLL[0:2] pins. On the rising edge of the reset signal, the digital high or low state of the PLL[0:2] pins is latched and used to program the clock input type and frequency.
DS639F3 22
CS5378

6.4 Master Clock Jitter and Skew

Care must be taken to minimize jitter and skew on the distributed system clock as both parameters af­fect measurement performance.
Jitter on the input clock causes jitter in the generat­ed modulator clock, resulting in sample timing er­rors and increased noise.
Skew between input clocks from node to node cre­ates a sample timing offset, resulting in systematic measurement errors in a reconstructed signal.
DS639F3 23

7. SYNCHRONIZATION

Figure 13. Synchronization Block Diagram
SYNC
MSYNC
Digital
Filter
Generator
MSYNC
0 1
MSEN
0
1
TSYNC
Test Bit
Stream
Output
CS5378
The CS5378 has a dedicated SYNC input that aligns the internal digital filter phase and generates an external signal for synchronizing modulator an­alog sampling. By providing simultaneous rising edges to the SYNC pins of multiple CS5378 devic­es, synchronous sampling across a network can be guaranteed.

7.1 Pin Description

SYNC - Pin 19
Synchronization input, rising edge triggered.

7.2 MSYNC Generation

The SYNC signal rising edge is used to generate a retimed synchronization signal, MSYNC. The MSYNC signal reinitializes internal digital filter phase and is driven onto the MSYNC output pin to phase align modulator analog sampling.
The MSEN bit in the digital filter CONFIG register (0x00) enables MSYNC generation. See “Modula­tor Interface” on page 36 for more information about MSYNC.

7.3 Digital Filter Synchronization

The internal MSYNC signal resets the digital filter state machine to establish a known digital filter
phase. Filter convolutions restart, and the next out­put word is available one full sample period later.
Repetitive synchronization is supported when SYNC events occur at exactly the selected output rate. In this case, re-synchronization will occur at the start of a convolution cycle when the digital fil­ter state machine is already reset.

7.4 Modulator Synchronization

The external MSYNC signal phase aligns modula­tor analog sampling when connected to the CS5373A MSYNC input. This ensures synchro­nous analog sampling relative to MCLK.
Repetitive synchronization of the modulators is supported when SYNC events occur at exactly the selected output rate. In this case, re-synchroniza­tion always occurs at the start of analog sampling.

7.5 Test Bit Stream Synchronization

When the test bit stream generator is enabled, an MSYNC signal can reset the internal data pointer. This restarts the test bit stream from the first data point to establish a known output signal phase.
The TSYNC bit in the digital filter TBSCFG regis­ter (0x2A) enables synchronization of the test bit stream by MSYNC. When TSYNC is disabled, the test bit stream phase is not affected by MSYNC.
DS639F3 24

8. CONFIGURATION BY EEPROM

SS:EECS
SCK
MISO
MOSI
CS5378 AT25640
CS
SCK
SI
SO
27
24
25
26
1
6
2
5
VD
GND
WP VCC HOLD
387
4
Figure 14. EEPROM Configuration Block Diagram
CS5378
After reset, the CS5378 reads the state of the GPIO7:BOOT pin to determine a source for con­figuration commands. If BOOT is high, the CS5378 initiates serial transactions to read config­uration information from an external EEPROM.

8.1 Pin Descriptions

Pins required for EEPROM boot are listed here, other serial pins are inactive.
SCK - Pin 24
Serial clock output, nominally 1.024 MHz.
MISO - Pin 25
Serial data input pin. Valid on rising edge of SCK, transition on falling edge.
MOSI - Pin 26
Serial data output pin. Valid on rising edge of SCK, transition on falling edge.
SS:EECS - Pin 27
EEPROM chip select output, active low.

8.2 EEPROM Hardware Interface

When booting from EEPROM the CS5378 actively performs serial transactions, as shown in Figure 15,
DS639F3 25
to read configuration commands and data. 8-bit SPI opcodes and 16-bit addresses are combined to read back 8-bit configuration commands and 24-bit configuration data.
System design should include a connection to the configuration EEPROM for in-circuit reprogram­ming. The CS5378 serial pins tri-state when inac­tive to support external connections to the serial bus.

8.3 EEPROM Organization

The boot EEPROM holds the 8-bit commands and 24-bit data required to initialize the CS5378 into an operational state. Configuration information starts at memory location 0x10, with addresses 0x00 to 0x0F free for use as manufacturing header informa­tion.
The first serial transaction reads a 1-byte command from memory location 0x10 and then, depending on the command type, reads multiple 3-byte data words to complete the command. Command and data reads continue until the ‘Filter Start’ command is recognized.
SCK
MOSI
SS:EECS
MSB LSB
MISO
X
612345
MSB LSB612345
18276543
Cycle
MOSI
MISO
0x03 ADDR
DATA1 DATA3DATA2
SS:EECS
READ
1 BYTE / 3 BYTE
ADDR
CMD
ADDR
DATA
2 BYTE
Figure 15. EEPROM Serial Read Transactions
Serial Read from EEPROM
Instruction Opcode Address Definition
Read 0x03 ADDR[15:0] Read data beginning at the address given in ADDR.
CS5378
DS639F3 26
CS5378
Figure 16. 8 Kbyte EEPROM Memory Organization
0000h
1FFFh
EEPROM Manufacturing Information
EEPROM Command and Data Values
Mfg Header
8-bit Command
0010h
N x 24-bit Data
8-bit Command N x 24-bit Data
. . .
Table 6. Maximum EEPROM Configuration
Memory Requirement Bytes
Digital Filter Registers (12) 84 FIR Coefficients (255+255) 1537 IIR Coefficients (3+5) 25 ‘Filter Start’ Command 1
Total Bytes 1647
Write DF Register - 0x01
This EEPROM command writes a data value to the specified digital filter register. Digital filter regis­ters control hardware peripherals and filtering functions. See “Digital Filter Registers” on page 71 for the bit definitions of the digital filter registers.
Sample Command:
Write digital filter register 0x00 with data value 0x060431. Then write 0x20 with data 0x000240.
01 00 00 00 06 04 31 01 00 00 20 00 02 40
Write FIR Coefficients - 0x02
The maximum number of bytes that will be written for a single configuration is less than 2 KByte (16 Kbit), including command overhead:
Supported serial configuration EEPROMs are SPI mode 0 (0,0) compatible, 16-bit addresses, 8­bit data, larger than 2 KByte (16 KBit). ATMEL AT25640, AT25128, or similar serial EEPROMs are recommended.

8.4 EEPROM Configuration Commands

A summary of available EEPROM commands is shown in Table 7.
This EEPROM command writes custom coeffi­cients for the FIR1 and FIR2 filters. The first two data words set the number of FIR1 and FIR2 coef­ficients to be written. The remaining data words are the concatenated FIR1 and FIR2 coefficients.
A maximum of 255 coefficients can be written for each FIR filter, though the available digital filter computation cycles will limit their practical size. See “FIR Filter” on page 44 for more information about FIR filter coefficients.
Sample Command:
Write FIR1 coefficients 0x00022E, 0x000771 then FIR2 coefficients 0xFFFFB9, 0xFFFE8D.
02 00 00 02 00 00 02 00 02 2E 00 07 71 FF FF B9 FF FE 8D
Write IIR Coefficients - 0x03
This EEPROM command writes custom coeffi­cients for the two stage IIR filter. The IIR architec­ture and number of coefficients is fixed, so eight data words containing coefficient values always immediately follow the command byte. The IIR co­efficient write order is: a11, b10, b11, a21, a22, b20, b21, and b22. See “IIR Filter” on page 52 for more information about IIR filter coefficients.
DS639F3 27
CS5378
Table 7. EEPROM Boot Configuration Commands
(DATA) indicates multiple words of this type are to be written.
Name CMD
8-bit
DATA 24-bit
Description
NOP 00 - No Operation
WRITE DF REGISTER 01 REG
DATA
Write Digital Filter Register
WRITE FIR COEFFICIENTS 02 NUM FIR1
NUM FIR2
(FIR COEF)
Write Custom FIR Coefficients
WRITE IIR COEFFICIENTS 03 a11
b10 b11 a21 a22 b20 b21 b22
Write Custom IIR Coefficients
WRITE ROM COEFFICIENTS 04 COEF SEL Use On-Chip Coefficients
NOP 05 - No Operation
NOP 06 - No Operation
FILTER START 07 - Start Digital Filter Operation
Sample Command:
Write IIR1 coefficients 0x84BC9D, 0x7DA1B1, 0x825E4F, and IIR2 coefficients 0x83694F, 0x3CAD5F, 0x3E5104, 0x835DF8, 0x3E5104.
03 84 BC 9D 7D A1 B1 82 5E 4F 83 69 4F 3C AD 5F 3E 51 04 83 5D F8 3E 51 04
Write ROM Coefficients - 0x04
This EEPROM command selects the on-chip coef­ficients for the FIR1, FIR2, IIR 1st order, and IIR 2nd order filters for use by the digital filter. One data word is required to select which internal coef­ficient sets to use. See “Filter Coefficient Selec­tion” on page 38 for information about selecting on-chip FIR and IIR coefficient sets.
Sample Command:
Select IIR1 and IIR2 3 Hz @ 500 SPS low-cut co­efficients, with FIR1 and FIR2 linear phase high­cut coefficients. Data word 0x002200.
04 00 22 00
Filter Start - 0x07
This EEPROM command initializes and starts the digital filter. Measurement data becomes available one full sample period after this command is is­sued. No data words are required for this EE­PROM command.
Sample Command:
07
DS639F3 28

8.5 Example EEPROM Configuration

Table 8. Example EEPROM File
Addr Data Description
00 00 Mfg header
01 00
02 00
03 00
04 00
05 00
06 00
07 00
08 00
09 00
0A 00
0B 00
0C 00
0D 00
0E 00
0F 00
10 04 Write ROM Coefficients
11 00
12 22
13 00
14 01 Write CONFIG Register
15 00
16 00
17 00
18 06
19 04
1A 31
1B 01 Write FILTCFG Register
1C 00
1D 00
1E 20
1F 00
Addr Data Description
21 02
22 40
23 01 Write TBSCFG Register
24 00
25 00
26 2A
27 07
28 40
29 40
2A 01 Write TBSGAIN Register
2B 00
2C 00
2D 2B
2E 04
2F B0
30 00
31 07 Filter Start
Table 8 shows an example EEPROM file for a min­imal CS5378 configuration.
CS5378
DS639F3 29

9. CONFIGURATION BY MICROCONTROLLER

SCK
MISO
MOSI
Pin Logic
SPI
Figure 17. Serial Interface Block Diagram
Command
SS:EECS
Registers
Digital Filter
Interpreter
Serial
CS5378
After reset, the CS5378 reads the state of the GPIO7:BOOT pin to determine a source for con­figuration commands. If BOOT is low, the CS5378 receives configuration commands from a micro­controller.

9.1 Pin Descriptions

Pins required for microcontroller boot are listed here, other serial pins are inactive.
SS:EECS - Pin 27
Slave select input pin, active low. Serial chip select input from a microcontroller.
MOSI - Pin 26
Serial data input pin. Valid on rising edge of SCK, transition on falling edge.
MISO - Pin 25
Serial data output pin. Valid on rising edge of SCK, transition on falling edge. Open drain output requiring a 10 kΩ pull-up resistor.

9.2 Microcontroller Hardware Interface

When booting from a microcontroller the CS5378 receives configuration commands and configura­tion data through serial transactions, as shown in Figure 18. 8-bit SPI opcodes and 8-bit addresses are combined to read and write 24-bit configuration commands and data.
Microcontroller serial transactions require toggling the SS:EECS pin as the CS5378 chip select and writing a serial clock to the SCK input. Serial data is input to the CS5378 on the MOSI pin, and output on the MISO pin.

9.3 Microcontroller Serial Transactions

Microcontroller configuration commands are writ­ten to the digital filter through SPI registers. A 24­bit command and two 24-bit data words can be written to the SPI registers in any single serial transaction. Some commands require additional data words through additional serial transactions to complete.
SCK - Pin 24
Serial clock input pin. Serial clock input from mi­crocontroller, maximum 4.096 MHz.
9.3.1 SPI opcodes
A microcontroller communicates with the CS5378 serial port using standard 8-bit SPI opcodes and an 8-bit address. The standard SPI ‘Read’ and ‘Write’ opcodes are listed in Figure 18.
DS639F3 30
SCK
MOSI
Figure 18. Microcontroller Serial Transactions
SS:EECS
MSB LSB
MISO
X
612345
MSB LSB612345
18276543
Cycle
MISO 0x02 ADDR Data1
MOSI
MISO
MOSI
Microcontroller Write to SPI Registers
Microcontroller Read from SPI Registers
DataNData2
SS:EECS
SS:EECS
0x03 ADDR
Data1 DataNData2
Instruction Opcode Address Definition
Write 0x02 ADDR[7:0] Write SPI registers beginning at the address in ADDR.
Read 0x03 ADDR[7:0] Read SPI registers beginning at the address in ADDR.
CS5378
DS639F3 31
CS5378
Name Addr. Type # Bits Description
SPICTRL 00 - 02 R/W 8, 8, 8 SPI Control
SPICMD 03 - 05 R/W 8, 8, 8 SPI Command
SPIDAT1 06 - 08 R/W 8, 8, 8 SPI Data 1
SPIDAT2 09 - 0B R/W 8, 8, 8 SPI Data 2
Figure 19. SPI Registers
9.3.2 SPI registers
The SPI registers are shown in Figure 19 and are 24-bit registers mapped into an 8-bit register space as high, mid, and low bytes. See “SPI Registers” on page 66 for the bit definitions of the SPI registers.
9.3.3 Serial transactions
A serial transaction to the SPI registers starts with an SPI opcode, followed by an address, and then some number of data bytes written or read starting at that address.
Typical serial write transactions require sending groups of 5, 8, or 11 total bytes to the SPICMD or SPIDAT1 registers:
5-byte write to SPICMD 02 03 12 34 56 5-byte write to SPIDAT1 02 06 12 34 56
MOSI: 03 01 00 MISO: xx xx 12 5-byte read of SPIDAT1 MOSI: 03 06 00 00 00 MISO: xx xx 12 34 56
9.3.4 Multiple serial transactions
Some configuration commands require multiple se­rial transactions to complete. There must be a small delay between transactions for the CS5378 to process the incoming data. Two methods can be used to ensure the CS5378 is ready to receive the next configuration command.
1) Delay a fixed 1 ms period to guarantee enough time for the command to be completed.
2) Verify the status of the E2DREQ bit by reading the SPICTRL register. When low, the CS5378 is ready for the next command.
8-byte write to SPICMD, SPIDAT1 02 03 12 34 56 AB CD EF 8-byte write to SPIDAT1, SPIDAT2 02 06 12 34 56 AB CD EF 11-byte write to SPICMD, SPIDAT1, SPIDAT2 02 03 12 34 56 AB CD EF 65 43 21 Typical serial read transactions require groups of 3
or 5 bytes, split between writing into MOSI and reading from MISO.
3-byte read of mid-byte of SPICTRL
9.3.5 Polling E2DREQ
One transaction type that can always be performed no matter the delay from the previous configuration command is reading E2DREQ in the mid-byte of the SPICTRL register. A 3-byte read transaction.
MOSI: 03 01 00 MISO: xx xx 01 <- E2DREQ bit high MISO: xx xx 00 <- E2DREQ bit low The E2DREQ bit reads high while a serial transac-
tion is being processed. When low, the digital filter is ready to receive a new serial transaction.
DS639F3 32
CS5378
[DATA] indicates data word returned from digital filter. (DATA) indicates multiple words of this type are to be written.
Name CMD
24-bit
DAT1 24-bit
DAT2 24-bit
Description
NOP 000000 - - No Operation
WRITE DF REGISTER 000001 REG DATA Write Digital Filter Register
READ DF REGISTER 000002 REG
[DATA]
-
-
Read Digital Filter Register
WRITE FIR COEFFICIENTS 000003 NUM FIR1
(FIR COEF)
NUM FIR2
(FIR COEF)
Write Custom FIR Coefficients
WRITE IIR COEFFICIENTS 000004 a11
b11 a22 b21
b10 a21 b20 b22
Write Custom IIR Coefficients
WRITE ROM COEFFICIENTS 000005 COEF SEL - Use On-Chip Coefficients
NOP 000006 - - No Operation
NOP 000007 - - No Operation
FILTER START 000008 - - Start Digital Filter Operation
FILTER STOP 000009 - - Stop Digital Filter Operation
Table 9. Microcontroller Boot Configuration Commands

9.4 Microcontroller Configuration Commands

A summary of available microcontroller configura­tion commands is listed in Table 9.
Write DF Register - 0x01
This configuration command writes a specified digital filter register. Digital filter registers control hardware peripherals and filtering functions. See “Digital Filter Registers” on page 71 for the bit def­initions of the digital filter registers.
Sample Command:
Write digital filter register 0x00 with data value 0x060431. Then write 0x20 with data 0x000240.
02 03 00 00 01 00 00 00 06 04 31 Delay 1 ms or poll E2DREQ 02 03 00 00 01 00 00 20 00 02 40 Delay 1 ms or poll E2DREQ
Read DF Register - 0x02
This command reads a specified digital filter regis­ter. The register value is requested in the first serial transaction, with the register value copied to SPIDAT1 and read in a subsequent serial transac­tion.
Sample Command:
Read digital filter registers 0x00 and 0x20. 02 03 00 00 02 00 00 00 Delay 1 ms or poll E2DREQ MOSI: 03 06 00 00 00 MISO: xx xx 06 04 31 02 03 00 00 02 00 00 20 Delay 1 ms or poll E2DREQ MOSI: 03 06 00 00 00 MISO: xx xx 00 02 40
DS639F3 33
CS5378
Write FIR Coefficients - 0x03
This command writes custom coefficients for the FIR1 and FIR2 filters. The first two data words set the number of FIR1 and FIR2 coefficients to be written. The remaining data words are the concate­nated FIR1 and FIR2 coefficients.
A maximum of 255 coefficients can be written for each FIR filter, though the available digital filter computation cycles will limit their practical size. See “FIR Filter” on page 44 for more information about FIR filter coefficients.
Sample Command:
Write FIR1 coefficients 0x00022E, 0x000771 then FIR2 coefficients 0xFFFFB9, 0xFFFE8D.
02 03 00 00 03 00 00 02 00 00 02 Delay 1 ms or poll E2DREQ 02 06 00 02 2E 00 07 71 Delay 1 ms or poll E2DREQ 02 06 FF FF B9 FF FE 8D Delay 1 ms or poll E2DREQ
Write IIR Coefficients - 0x04
This command writes custom coefficients for the two stage IIR filter. The IIR architecture and num­ber of coefficients is fixed, so eight coefficient val­ues immediately follow this command. The IIR coefficient write order is: a11, b10, b11, a21, a22, b20, b21, and b22. See “IIR Filter” on page 52 for more information about IIR filter coefficients.
Sample Command:
Write IIR1 coefficients 0x84BC9D, 0x7DA1B1, 0x825E4F, and IIR2 coefficients 0x83694F, 0x3CAD5F, 0x3E5104, 0x835DF8, 0x3E5104.
02 06 3C AD 5F 3E 51 04 Delay 1 ms or poll E2DREQ 02 06 83 5D F8 3E 51 04 Delay 1 ms or poll E2DREQ
Write ROM Coefficients - 0x05
This configuration command selects the on-chip coefficients for FIR1, FIR2, IIR 1st order, and IIR 2nd order filters for use by the digital filter. One data word is required to select which internal coef­ficient sets to use. See “Filter Coefficient Selec­tion” on page 38 for information about selecting on-chip FIR and IIR coefficient sets.
Sample Command:
Select IIR1 and IIR2 3 Hz @ 500 SPS low-cut co­efficients, with FIR1 and FIR2 linear phase high­cut coefficients. Data word 0x002200.
02 03 00 00 05 00 22 00 Delay 1 ms or poll E2DREQ
Filter Start - 0x08
This command initializes and starts the digital fil­ter. Measurement data becomes available one full sample period after this command is issued. No data words are required for this command.
Sample Command:
02 03 00 00 08 Delay 1 ms or poll E2DREQ
Filter Stop - 0x09
This command disables the digital filter. Measure­ment data output stops immediately after this com­mand is issued. No data words are required for this command.
02 03 00 00 04 84 BC 9D 7D A1 B1 Delay 1 ms or poll E2DREQ 02 06 82 5E 4F 83 69 4F Delay 1 ms or poll E2DREQ
DS639F3 34
Sample Command:
02 03 00 00 09 Delay 1 ms or poll E2DREQ

9.5 Example Microcontroller Configuration

Table 10. Example Microcontroller Configuration
Transaction SPI Data Description
01 02 03 00 00 05 00 22 00 Write ROM coefficients 02 Delay 1ms or poll E2DREQ 03 02 03 00 00 01 00 00 00 06 04 31 Write CONFIG Register 04 Delay 1ms or poll E2DREQ 05 02 03 00 00 01 00 00 20 00 02 40 Write FILTCFG Register 06 Delay 1ms or poll E2DREQ 07 02 03 00 00 01 00 00 2A 07 40 40 Write TBSCFG Register 08 Delay 1ms or poll E2DREQ 09 02 03 00 00 01 00 00 2B 04 B0 00 Write TBSGAIN Register 10 Delay 1ms or poll E2DREQ
11 02 03 00 00 08 Filter Start
Table 10 shows an example microcontroller trans­actions for a minimal CS5378 configuration.
CS5378
DS639F3 35
CS5378
Figure 20. Modulator Data Interface
FIR
IIR
Filters
Filter
Output to High Speed Serial Interface
DC Offset
Correction
Output Rate 4000 SPS ~ 1 SPS
& Gain
MDATA
MFLAG
MDI Input
512 kHz
MCLK /
Generate
MSYNC
CLK SYNC
MSYNC
SINC Filter
MCLK

10.MODULATOR INTERFACE

The CS5378 performs digital filtering for a ΔΣ type modulator. Signals from the ΔΣ modulators are connected through the modulator data interface (MDI).

10.1 Pin Descriptions

MCLK - Pin 11
Modulator clock output. Nominally 2.048 MHz or
1.024 MHz.
MSYNC - Pin 12
Modulator synchronization signal output. Generat­ed from the SYNC input.
MDATA - Pin 13
Modulator data input, nominally 512 kbit/s.
MFLAG - Pin 14

10.2 Modulator Clock Generation

The MCLK output is a low-jitter, low-skew modu­lator clock generated from the 32.768 MHz master clock.
MCLK typically operates at 2.048 MHz unless an­alog low-power modes require a 1.024 MHz mod­ulator clock.
The MCLK rate is selected and the MCLK output is enabled by bits in the digital filter CONFIG reg­ister (0x00). By default MCLK is disabled and driven low.

10.3 Modulator Synchronization

The MSYNC output signal follows an input to the SYNC pin. MSYNC phase aligns the modulator sampling instant to guarantee synchronous analog sampling across a measurement network.
Modulator flag input. Driven high when the mod­ulator is unstable due to an analog over-range con­dition.
DS639F3 36
MSYNC is enabled by a bit in the CONFIG register (0x00). By default SYNC inputs do not cause an MSYNC output.
CS5378

10.4 Modulator Data Input

The MDATA input expects 1-bit ΔΣ data at a 512 kHz or 256 kHz rate. The input rate is selected by a bit in the CONFIG register (0x00). By default, MDATA is expected at 512 kHz.
The MDATA input one’s density is designed for full scale positive at 86% and full scale negative at 14%, with absolute maximum over-range capabili­ty to 93% and 7%. These raw ΔΣ inputs are deci­mated and filtered by the digital filter to create 24­bit samples at the output rate.

10.5 Modulator Flag Input

A high MFLAG input signal indicates the ΔΣ mod­ulator has become unstable due to an analog over­range input signal. Once the over-range signal is reduced, the modulator recovers stability and the MFLAG signal is cleared.
The MFLAG input is mapped to a status bit in the serial data output stream, and is associated with each sample when written. See “Serial Data Inter­face” on page 58 for more information on the MFLAG error bit in the serial data status byte.
DS639F3 37
CS5378
Figure 21. Digital Filter Stages
SINC Filter
2 - 64000
FIR1
4
FIR2
2
IIR1 IIR2
1st Order
2nd Order
Output to High Speed Serial Data Interface
DC Offset
Correction
Output Rate 4000 SPS ~ 1 SPS
& Gain
Modulator
512 kHz
Input

11.DIGITAL FILTER INITIALIZATION

The CS5378 digital filter consists of three multi­stage sections: a three stage SINC filter, a two stage FIR filter, and a two stage IIR filter.
To initialize the digital filter, FIR and IIR coeffi­cient sets are selected using configuration com­mands and the FILTCFG register (0x20) is written to select the output filter stage, the output word rate, and the number of enabled channels. The dig­ital filter clock rate is then selected by writing the CONFIG register (0x00).

11.1 Filter Coefficient Selection

Selection of SINC filter coefficients is not required as they are selected automatically based on the pro­grammed output word rate.
Digital filter FIR and IIR coefficients are selected using the ‘Write FIR Coefficients’ and ‘Write IIR Coefficients’, or the ‘Write ROM Coefficients’ configuration commands. When writing the FIR and IIR coefficients from ROM, a data word selects an on-chip coefficient set for each filter stage. Fig­ure 22 shows the format of the coefficient selection
word, and the available coefficient sets for each se­lection.
Characteristics of the on-chip digital filter coeffi­cients are discussed in the ‘SINC Filter’, ‘FIR Fil­ter’, and ‘IIR Filter’ sections of this data sheet.

11.2 Filter Configuration Options

Digital filter parameters are selected by bits in the FILTCFG register (0x20), and the digital filter clock rate is selected by bits in the CONFIG regis­ter (0x00).
11.2.1 Output Filter Stage
The digital filter can output data following any stage in the filter chain. The output filter stage is selected by the FSEL bits in the FILTCFG register.
Taking data from the SINC or FIR1 filter stages re­duces the overall decimation of the filter chain and increases the output rate, as discussed in the next section. Taking data from FIR2, IIR1, IIR2, or IIR3 results in data at the selected rate.
DS639F3 38
11.2.2 Output Word Rate
Bits 23:20 19:16 15:12 11:8 7:4 3:0
Selection 0000 0000 IIR2 IIR1 FIR2 FIR1
Figure 22. FIR and IIR Coefficient Set Selection Word
Bits 15:12 IIR2 Coefficients
0000 3 Hz @ 2000 SPS
0001 3 Hz @ 1000 SPS
0010 3Hz @ 500SPS
0011 3Hz @ 333SPS
0100 3Hz @ 250SPS
Bits 11:8 IIR1 Coefficients
0000 3 Hz @ 2000 SPS
0001 3 Hz @ 1000 SPS
0010 3 Hz @ 500 SPS
0011 3 Hz @ 333 SPS
0100 3 Hz @ 250 SPS
Bits 7:4 FIR2 Coefficients
0000 Linear Phase
0001 Minimum Phase
Bits 3:0 FIR1 Coefficients
0000 Linear Phase
0001 Minimum Phase
CS5378
The CS5378 digital filter supports output word rates (OWRs) between 4000 SPS and 1 SPS. The output word rate is selected by the DEC bits in the FILTCFG register.
When taking data directly from the SINC filter, the decimation of the FIR1 and FIR2 stages is bypassed and the actual output word rate is multiplied by a factor of eight compared with the register selection. When taking data directly from FIR1, the decimation of the FIR2 stage is bypassed and the actual output word rate is multiplied by a factor of two. Data taken from the FIR2, IIR1, IIR2, or IIR3 filtering stages is output at the selected rate.
11.2.3 Digital Filter Clock
The digital filter clock rate is programmable between 8.192 MHz and 32 kHz by bits in the CONFIG reg­ister.
Computation Cycles
The minimum digital filter clock rate for a configuration depends on the computation cycles required to complete digital filter convolutions at the selected output word rate. All configurations work for a maxi­mum digital filter clock, but lower clock rates consume less power.
Standby Mode
The CS5378 can be placed in a low-power standby mode by sending the ‘Filter Stop’ configuration com­mand and programming the digital filter clock to 32 kHz. In this mode the digital filter idles, consuming minimal power until re-enabled by later configuration commands.
DS639F3 39
CS5378
sinc1
8
5th order
4th order
Figure 23. SINC Filter Block Diagram
1-bit
24-bit
Δ−Σ
2
stage1
sinc2
4th order
2
stage2
sinc2
5th order
2
stage3
sinc2
6th order
2
stage4
sinc2
4th order
5
stage1
sinc3
4th order
5
stage2
sinc3
4th order
5
stage3
sinc3
5th order
2
stage5
sinc3
6th order
3
stage6
sinc3
6th order
2
stage7
sinc3
Output
Input
5th order
5
stage4
sinc3

12.SINC FILTER

The SINC filter primary purpose is to attenuate out­of-band noise components from the ΔΣ modula­tors. While doing so, they decimate 1-bit ΔΣ data into lower frequency 24-bit data suitable for the FIR and IIR filters.
The SINC filter has three cascaded sections, SINC1, SINC2, and SINC3, which are each made up of the smaller stages shown in Figure 23.
The selected output word rate in the FILTCFG reg­ister automatically determines the coefficients and decimation ratios selected for the SINC filters.

12.1 SINC1 Filter

The first section is SINC1, a single stage 5th order fixed decimate by 8 SINC filter. This SINC filter decimates the incoming 1-bit ΔΣ bit stream from the modulators down to a 64 kHz rate.

12.2 SINC2 Filter

The second section is SINC2, a multi-stage, vari­able order, variable decimation SINC filter. De­pending on the selected output word rate in the FILTCFG register, different cascaded SINC2 stag­es are enabled, as shown in Table 11.

12.3 SINC3 Filter

The last section is SINC3, a flexible multi-stage variable order, variable decimation SINC filter. Depending on the selected output word rate in the FILTCFG register, different SINC3 stages are en­abled, as shown in Table 11.

12.4 SINC Filter Synchronization

The SINC filter is synchronized to the external sys­tem by the MSYNC signal, which is generated from the SYNC input. The MSYNC signal sets a reference time (time 0) for all filter operations, and the SINC filter is restarted to phase align with this reference time.
DS639F3 40
CS5378
Figure 24. SINC Filter Stages
SINC1 – Single stage, fixed decimate by 8
5
th
order decimate by 8, 36 coefficients
SINC2 – Multi-stage, variable decimation
Stage 1: 4
th
order decimate by 2, 5 coefficients
Stage 2: 4
th
order decimate by 2, 5 coefficients
Stage 3: 5
th
order decimate by 2, 6 coefficients
Stage 4: 6
th
order decimate by 2, 7 coefficients
SINC3 – Multi-stage, variable decimation
Stage 1: 4
th
order decimate by 5, 17 coefficients
Stage 2: 4
th
order decimate by 5, 17 coefficients
Stage 3: 4
th
order decimate by 5, 17 coefficients
Stage 4: 5
th
order decimate by 5, 21 coefficients
Stage 5: 5
th
order decimate by 2, 6 coefficients
Stage 6: 6
th
order decimate by 3, 13 coefficients
Stage 7: 6
th
order decimate by 2, 7 coefficients
Table 11. SINC Filter Configurations
FIR2 Output Word Rate
DEC Bit Setting
SINC1 Deci­mation
SINC2 Deci­mation
SINC2 Stages
SINC3 Deci­mation
SINC3 Stages
4000 0111 8 2 4 - ­2000 0110 8 4 3,4 - ­1000 0101 8 8 2,3,4 - -
500 0100 8 16 1,2,3,4 - ­333 0011 8 8 2,3,4 3 6 250 0010 8 16 1,2,3,4 2 7 200 0001 8 4 3,4 10 4,7 125 0000 8 16 1,2,3,4 4 5,7 100 1111 8 4 3,4 20 3,5,7
50 1110 8 8 2,3,4 20 3,5,7 40 1101 8 4 3,4 50 3,4,7 25 1100 8 16 1,2,3,4 20 3,5,7 20 1011 8 4 3,4 100 2,3,5,7 10 1010 8 8 2,3,4 100 2,3,5,7
5 1001 8 16 1,2,3,4 100 2,3,5,7 1 1000 8 16 1,2,3,4 500 1,2,3,5,7
SINC filters
DS639F3 41
CS5378
Filter Type
System Function Filter Coefficients
SINC2 (Stage 1) SINC2 (Stage 2) 4
th
order decimate by 2
5 coefficients
4
1
2
1
1
)(
 
 
=
z
z
zH
h
0
= 1
h
1
= 4
h
2
= 6
h
3
= 4
h
4
= 1
SINC2 (Stage 3) 5
th
order decimate by 2
6 coefficients
5
1
2
1
1
)(
 
 
=
z
z
zH
h
0
= 1
h
1
= 5
h
2
= 10
h
3
= 10
h
4
= 5
h
5
= 1
SINC2 (Stage 4) 6
th
order decimate by 2
7 coefficients
6
1
2
1
1
)(
 
 
=
z
z
zH
h
0
= 1
h
1
= 6
h
2
= 15
h
3
= 20
h
4
= 15
h
5
= 6
h
6
= 1
Filter Type
System Function Filter Coefficients
SINC1 5
th
order decimate by 8
36 coefficients
5
1
8
1
1
)(
 
 
=
z
z
zH
h
0
= 1 h18 = 2460
h
1
= 5 h19 = 2380
h
2
= 15 h20 = 2226
h
3
= 35 h21 = 2010
h
4
= 70 h22 = 1750
h
5
= 126 h23 = 1470
h
6
= 210 h24 = 1190
h
7
= 330 h25 = 926
h
8
= 490 h26 = 690
h
9
= 690 h27 = 490
h
10
= 926 h28 = 330
h
11
= 1190 h29 = 210
h
12
= 1470 h30 = 126
h
13
= 1750 h31 = 70
h
14
= 2010 h32 = 35
h
15
= 2226 h33 = 15
h
16
= 2380 h34 = 5
h
17
= 2460 h35 = 1
Table 12. SINC1 and SINC2 Filter Coefficients
DS639F3 42
CS5378
Table 13. SINC3 Filter Coefficients
Filter Type
System Function Filter Coefficients
SINC3 (Stage 1) SINC3 (Stage 2) SINC3 (Stage 3) 4
th
order decimate by 5
17 coefficients
4
1
5
1
1
)(
 
 
=
z
z
zH
h
0
= 1 h
9
= 80
h
1
= 4 h
10
= 68
h
2
= 10 h
11
= 52
h
3
= 20 h
12
= 35
h
4
= 35 h
13
= 20
h
5
= 52 h
14
= 10
h
6
= 68 h
15
= 4
h
7
= 80 h
16
= 1
h
8
= 85
SINC3 (Stage 4) 5
th
order decimate by 5
21 coefficients
5
1
5
1
1
)(
 
 
=
z
z
zH
h
0
= 1 h
11
= 365
h
1
= 5 h
12
= 320
h
2
= 15 h
13
= 255
h
3
= 35 h
14
= 185
h
4
= 70 h
15
= 121
h
5
= 121 h
16
= 70
h
6
= 185 h
17
= 35
h
7
= 255 h
18
= 15
h
8
= 320 h
19
= 5
h
9
= 365 h
20
= 1
h
10
= 381
SINC3 (Stage 5) 5
th
order decimate by 2
6 coefficients
5
1
2
1
1
)(
 
 
=
z
z
zH
h
0
= 1
h
1
= 5
h
2
= 10
h
3
= 10
h
4
= 5
h
5
= 1
SINC3 (Stage 6) 6
th
order decimate by 3
13 coefficients
6
1
3
1
1
)(
 
 
=
z
z
zH
h
0
= 1 h
7
= 126
h
1
= 6 h
8
= 90
h
2
= 21 h
9
= 50
h
3
= 50 h
10
= 21
h
4
= 90 h
11
= 6
h
5
= 126 h
12
= 1
h
6
= 141
SINC3 (Stage 7) 6
th
order decimate by 2
7 coefficients
6
1
2
1
1
)(
 
 
=
z
z
zH
h
0
= 1
h
1
= 6
h
2
= 15
h
3
= 20
h
4
= 15
h
5
= 6
h
6
= 1
DS639F3 43
CS5378
FIR1 Filter - decimate by 4 FIR2 Filter - decimate by 2
Figure 25. FIR Filter Block Diagram

13.FIR FILTER

The finite impulse response (FIR) filter block consists of two cascaded stages, FIR1 and FIR2. It compen­sates for SINC filter droop and creates a low-pass corner to block aliased components of the input signal.
On-chip linear phase or minimum phase coefficients can be selected using a configuration command, or the coefficients can be programmed for a custom filter response.

13.1 FIR1 Filter

The FIR1 filter stage has a decimate by four architecture. It compensates for SINC filter droop and flattens the magnitude response of the pass band.
The on-chip linear and minimum phase coefficient sets are 48-tap, with a maximum 255 programmable coefficients. All coefficients are normalized to 24-bit two’s complement full scale, 0x7FFFFF.
The characteristic equation for FIR1 is a convolution of the input values, X(n), and the filter coefficients, h(k), to produce an output value, Y.
Y = [h(k)*X(n-k)] + [h(k+1)*X(n-(k+1))] + ...

13.2 FIR2 Filter

The FIR2 filter stage has a decimate by two architecture. It creates a low-pass brick wall filter to block aliased components of the input signal.
The on-chip linear and minimum phase coefficient sets are 126-tap, with a maximum 255 programmable coefficients. All coefficients are normalized to 24-bit two’s complement full scale, 0x7FFFFF.
The characteristic equation for FIR2 is a convolution of the input values, X(n), and the filter coefficients, h(k), to produce an output value, Y.
Y = [h(k)*X(n-k)] + [h(k+1)*X(n-(k+1))] + ...
DS639F3 44
CS5378

13.3 On-Chip FIR Coeffic ients

Two sets of on-chip coefficients, linear phase and minimum phase, are available for FIR1 and FIR2. Performance of the on-chip coefficient sets is very good, with excellent ripple and stop band charac­teristics as described in Figure 26 and Table 14.
Which on-chip coefficient set to use is selected by a data word following the ‘Write ROM Coeffi­cients’ configuration command. See “Filter Coef­ficient Selection” on page 38 for information about selecting on-chip coefficient sets.

13.4 Programmable FIR Coefficients

A maximum of 255 + 255 coefficients can be pro­grammed into FIR1 and FIR2 to create a custom filter response. The total number of coefficients for the FIR filter is fundamentally limited by the avail­able computation cycles in the digital filter, which itself is determined by the digital filter clock rate.
scale, 0x7FFFFF, and scale all other coefficients accordingly. To maintain maximum internal dy­namic range, the CS5378 FIR filter performs dou­ble precision calculations with an automatic gain correction to scale the final output.
Custom FIR coefficients are uploaded using the ‘Write FIR Coefficients’ configuration command. See “EEPROM Configuration Commands” on page 27 or “Microcontroller Configuration Com­mands” on page 33 for information about writing custom FIR coefficients.

13.5 FIR Filter Synchronization

The FIR1 and FIR2 filters are synchronized to the external system by the MSYNC signal, which is generated from the SYNC input. The MSYNC sig­nal sets a reference time (time 0) for all filter oper­ations, and the FIR filters are restarted to phase align with this reference time.
Custom filter sets should normalize the maximum coefficient value to 24-bit two’s complement full
DS639F3 45
CS5378
FIR1 – Single stage, fixed decimate by 4
Coefficient set 0: linear phase decimate by 4, 48 coefficients Coefficient set 1: minimum phase decimate by 4, 48 coefficients
SINC droop compensation filter
FIR2 – Single stage, fixed decimate by 2
Coefficient set 0: linear phase decimate by 2, 126 coefficients Coefficient set 1: minimum phase decimate by 2, 126 coefficients
Brick wall low-pass filter, flat to 40% f
s
Combined SINC + FIR digital filter specifications
Passband ripple less than +/- 0.01 dB below 40% f
s
Transition band -3 dB frequency at 42.89% f
s
Stopband attenuation greater than 130 dB above 50% f
Figure 26. FIR Filter Stages
FIR2 Output Word Rate
SINC Deci­mation
FIR1 Deci­mation
FIR2 Deci­mation
Total Deci­mation
Passband Ripple (± dB)
Stopband Atten­uation (dB)
4000 16 4 2 128 0.0042 130.38 2000 32 4 2 256 0.0045 130.38 1000 64 4 2 512 0.0040 130.42
500 128 4 2 1024 0.0041 130.42 333 192 4 2 1536 0.0080 130.45 250 256 4 2 2048 0.0064 130.43 200 320 4 2 2560 0.0043 130.44 125 512 4 2 4096 0.0046 130.42 100 640 4 2 5120 0.0040 130.43
50 1280 4 2 10240 0.0040 130.43 40 1600 4 2 12800 0.0040 130.44 25 2560 4 2 20480 0.0040 132.98 20 3200 4 2 25600 0.0036 130.43 10 6400 4 2 51200 0.0036 130.43
5 12800 4 2 102400 0.0036 130.43 1 64000 4 2 512000 0.0029 134.31
Table 14. FIR Filter Characteristics
s
SINC + FIR filters
DS639F3 46
Table 15. SINC + FIR Group Delay
Individual filter stage group delay (no IIR)
Decimation
Ratios
Number of Coefficients
Group Delay (Input Rate)
SINC1 8 36 17.5 SINC2
Stage 4 2 7 3.0 Stages 3,4 2,2 6,7 8.5 Stages 2,3,4 2,2,2 5,6,7 19.0 Stages 1,2,3,4 2,2,2,2 5,5,6,7 40.0
SINC3
Stage 7 2 7 3.0 Stage 6 3 13 6.0 Stages 5,7 2,2 6,7 8.5 Stages 4,7 5,2 21,7 25.0 Stages 3,5,7 5,2,2 17,6,7 50.5 Stages 3,4,7 5,5,2 17,21,7 133.0 Stages 2,3,5,7 5,5,2,2 17,17,6,7 260.5 Stages 1,2,3,5,7 5,5,5,2,2 17,17,17,6,7 1310.5
FIR1
Coefficient Set 0 4 48 23.5 Coefficient Set 1 4 48 See Figure
FIR2
Coefficient Set 0 2 126 62.5 Coefficient Set 1 2 126 See Figure
Cumulative linear phase group delay (no IIR)
FIR2
Output
Word Rate
SINC Output Group Delay
(SINC Filter
Input Rate)
FIR1 Output Group Delay
(SINC Filter
Input Rate)
FIR2 Output Group Delay
(SINC Filter
Input Rate)
FIR2 Output Group Delay
(FIR2 Output
Word Rate)
4000 41.5 417.5 4417.5 34.5117 2000 85.5 837.5 8837.5 34.5215 1000 169.5 1673.5 17673.5 34.5186
500 337.5 3345.5 35345.5 34.5171 333 553.5 5065.5 53065.5 34.5479 250 721.5 6737.5 70737.5 34.5398 200 885.5 8405.5 88405.5 34.5334 125 1425.5 13457.5 141457.5 34.5355 100 1701.5 16741.5 176741.5 34.5198
50 3401.5 33481.5 353481.5 34.5197 40 4341.5 41941.5 441941.5 34.5267 25 6801.5 66961.5 706961.5 34.5196 20 8421.5 83621.5 883621.5 34.5165 10 16841.5 167241.5 1767241.5 34.5164
5 33681.5 334481.5 3534481.5 34.5164 1 168081.5 1672081.5 17672081.5 34.5158
DS639F3 47
CS5378
FIR1
Minimum
Phase Group
Delay
(Normalized
frequency)
FIR2
Minimum
Phase Group
Delay
(Normalized
frequency)
Table 16. Minimum Phase Group Delay
CS5378
Minimum phase group delay
DS639F3 48
Filter Type Filter Coefficients
(normalized 24-bit)
FIR1 (Coefficient set 0) Low pass, SINC compensation Linear phase decimate by 4 48 coefficients
h
0
= 558 h24 = 8388607
h
1
= 1905 h25 = 7042723
h
2
= 3834 h26 = 4768946
h
3
= 5118 h27 = 2266428
h
4
= 365 h28 = 189436
h
5
= -14518 h29 = -1053303
h
6
= -39787 h30 = -1392827
h
7
= -67365 h31 = -1084130
h
8
= -69909 h32 = -496361
h
9
= -19450 h33 = 39864
h
10
= 97434 h34 = 332367
h
11
= 258881 h35 = 375562
h
12
= 375562 h36 = 258881
h
13
= 332367 h37 = 97434
h
14
= 39864 h38 = -19450
h
15
= -496361 h39 = -69909
h
16
= -1084130 h40 = -67365
h
17
= -1392827 h41 = -39787
h
18
= -1053303 h42 = -14518
h
19
= 189436 h43 = 365
h
20
= 2266428 h44 = 5118
h
21
= 4768946 h45 = 3834
h
22
= 7042723 h46 = 1905
h
23
= 8388607 h47 = 558
FIR1 (Coefficient set 1) Low pass, SINC compensation Minimum phase decimate by 4 48 coefficients
h
0
= 3337 h24 = 555919
h
1
= 22258 h25 = -165441
h
2
= 88284 h26 = -581479
h
3
= 266742 h27 = -617500
h
4
= 655747 h28 = -388985
h
5
= 1371455 h29 = -99112
h
6
= 2502684 h30 = 114761
h
7
= 4031988 h31 = 186557
h
8
= 5783129 h32 = 141374
h
9
= 7396359 h33 = 58582
h
10
= 8388607 h34 = -12664
h
11
= 8325707 h35 = -42821
h
12
= 6988887 h36 = -35055
h
13
= 4531706 h37 = -16792
h
14
= 1507479 h38 = 367
h
15
= -1319126 h39 = 7929
h
16
= -3207750 h40 = 5926
h
17
= -3736028 h41 = 2892
h
18
= -2980701 h42 = 23
h
19
= -1421498 h43 = -1164
h
20
= 237307 h44 = -538
h
21
= 1373654 h45 = -238
h
22
= 1711919 h46 = 18
h
23
= 1322371 h47 = 113
Figure 27. FIR1 Coefficients
DS639F3 49
CS5378
Filter Type Filter Coefficients
(normalized 24-bit)
FIR2 (Coefficient set 0) Low pass, passband to 40% f
s
Linear phase decimate by 2 126 coefficients
h0 = -71 h63 = 8388607 h
1
= -371 h64 = 3875315
h
2
= -870 h65 = -766230
h
3
= -986 h66 = -1854336
h
4
= 34 h67 = -137179
h
5
= 1786 h68 = 1113788
h
6
= 2291 h69 = 454990
h
7
= 291 h70 = -642475
h
8
= -2036 h71 = -553873
h
9
= -943 h72 = 298975
h
10
= 2985 h73 = 533334
h
11
= 3784 h74 = -49958
h
12
= -1458 h75 = -443272
h
13
= -5808 h76 = -116005
h
14
= -1007 h77 = 318763
h
15
= 7756 h78 = 208018
h
16
= 5935 h79 = -187141
h
17
= -7135 h80 = -238025
h
18
= -11691 h81 = 68863
h
19
= 3531 h82 = 221211
h
20
= 17500 h83 = 22850
h
21
= 4388 h84 = -174452
h
22
= -20661 h85 = -81993
h
23
= -15960 h86 = 114154
h
24
= 18930 h87 = 109009
h
25
= 29808 h88 = -54172
h
26
= -9795 h89 = -109189
h
27
= -42573 h90 = 4436
h
28
= -7745 h91 = 90744
h
29
= 49994 h92 = 29702
h
30
= 33021 h93 = -62651
h
31
= -47092 h94 = -47092
h
32
= -62651 h95 = 33021
h
33
= 29702 h96 = 49994
h
34
= 90744 h97 = -7745
h
35
= 4436 h98 = -42573
h
36
= -109189 h99 = -9795
h
37
= -54172 h
100
= 29808
h
38
= 109009 h
101
= 18930
h
39
= 114154 h
102
= -15960
h
40
= -81993 h
103
= -20661
h
41
= -174452 h
104
= 4388
h
42
= 22850 h
105
= 17500
h
43
= 221211 h
106
= 3531
h
44
= 68863 h
107
= -11691
h
45
= -238025 h
108
= -7135
h
46
= -187141 h
109
= 5935
h
47
= 208018 h
110
= 7756
h
48
= 318763 h
111
= -1007
h
49
= -116005 h
112
= -5808
h
50
= -443272 h
113
= -1458
h
51
= -49958 h
114
= 3784
h
52
= 533334 h
115
= 2985
h
53
= 298975 h
116
= -943
h
54
= -553873 h
117
= -2036
h
55
= -642475 h
118
= 291
h
56
= 454990 h
119
= 2291
h
57
= 1113788 h
120
= 1786
h
58
= -137179 h
121
= 34
h
59
= -1854336 h
122
= -986
h
60
= -766230 h
123
= -870
h
61
= 3875315 h
124
= -371
h
62
= 8388607 h
125
= -71
Figure 28. FIR2 Linear Phase Coefficients
DS639F3 50
CS5378
Filter Type Filter Coefficients
(normalized 24-bit)
FIR2 (Coefficient set 1) Low pass, passband to 40% f
s
Minimum phase decimate by 2 126 coefficients
h0 = 4019 h63 = 67863 h
1
= 43275 h64 = -190800
h
2
= 235427 h65 = -128546
h
3
= 848528 h66 = 114197
h
4
= 2240207 h67 = 147750
h
5
= 4525758 h68 = -46352
h
6
= 7077833 h69 = -143269
h
7
= 8388607 h70 = -13290
h
8
= 6885673 h71 = 114721
h
9
= 2483461 h72 = 51933
h
10
= -2538963 h73 = -75952
h
11
= -4800543 h74 = -68746
h
12
= -2761696 h75 = 38171
h
13
= 1426109 h76 = 68492
h
14
= 3624338 h77 = -7856
h
15
= 1820814 h78 = -57526
h
16
= -1695825 h79 = -12540
h
17
= -2885148 h80 = 41717
h
18
= -605252 h81 = 23334
h
19
= 2135021 h82 = -25516
h
20
= 1974197 h83 = -26409
h
21
= -630111 h84 = 11717
h
22
= -2168177 h85 = 24246
h
23
= -750147 h86 = -1620
h
24
= 1516192 h87 = -19248
h
25
= 1550127 h88 = -4610
h
26
= -508445 h89 = 13356
h
27
= -1686937 h90 = 7526
h
28
= -437822 h91 = -7887
h
29
= 1308705 h92 = -8016
h
30
= 1069556 h93 = 3559
h
31
= -657282 h94 = 7023
h
32
= -1301014 h95 = -598
h
33
= -30654 h96 = -5350
h
34
= 1173754 h97 = -1097
h
35
= 579643 h98 = 3579
h
36
= -803111 h99 = 1806
h
37
= -895851 h
100
= -2058
h
38
= 328399 h
101
= -1859
h
39
= 962522 h
102
= 936
h
40
= 124678 h
103
= 1558
h
41
= -820948 h
104
= -224
h
42
= -466657 h
105
= -1129
h
43
= 545674 h
106
= -152
h
44
= 652827 h
107
= 718
h
45
= -220448 h
108
= 290
h
46
= -680495 h
109
= -395
h
47
= -80886 h
110
= -290
h
48
= 578844 h
111
= 178
h
49
= 306445 h
112
= 227
h
50
= -395302 h
113
= -53
h
51
= -431004 h
114
= -151
h
52
= 181900 h
115
= -5
h
53
= 454403 h
116
= 86
h
54
= 15856 h
117
= 23
h
55
= -395525 h
118
= -42
h
56
= -166123 h
119
= -22
h
57
= 284099 h
120
= 17
h
58
= 253485 h
121
= 14
h
59
= -152407 h
122
= -5
h
60
= -277888 h
123
= -7
h
61
= 28526 h
124
= 1
h
62
= 250843 h
125
= 3
Figure 29. FIR2 Minimum Phase Coefficients
DS639F3 51
CS5378
CS5378
Z
-1
Z
-1
Z
-1
-a
11
b
11
b
10
-a
21
-a
22
b
21
b
22
b
20
Figure 30. IIR Filter Block Diagram
1st Order IIR1
2nd Order IIR2
3rd Order IIR3 implemented by running both IIR1 and IIR2 stages

14.IIR FILTER

The infinite impulse response (IIR) filter block consists of two cascaded stages, IIR1 and IIR2. It creates a high-pass corner to block very low-fre­quency and DC components of the input signal.
On-chip IIR1 and IIR2 coefficients can be selected using a configuration command, or the coefficients can be programmed for a custom filter response.

14.1 IIR Architecture

The architecture of the IIR filter is automatically determined when the output filter stage is selected in the FILTCFG register. Selecting the 1st order IIR1 filter bypasses the 2nd order stage, while se­lecting the 2nd order IIR2 filter bypasses the 1st or­der stage. Selection of the 3rd order IIR3 filter enables both the 1st and 2nd order stages.

14.2 IIR1 Filter

The 1st order IIR filter stage is a direct form filter with three coefficients: a11, b10, and b11. Coeffi­cients of a 1st order IIR are inherently normalized to one, and should be scaled to 24-bit two’s com­plement full scale, 0x7FFFFF.
The characteristic equations for the 1st order IIR include an input value, X, an output value, Y, and two intermediate values, W1 and W2, separated by a delay element (z
-1
). W2 = W1 W1 = X + (-a11 * W2) Y = (W1 * b10) + (W2 * b11)

14.3 IIR2 Filter

The 2nd order IIR filter stage is a direct form filter with five coefficients: a21, a22, b20, b21, and b22. Coefficients of a 2nd order IIR are inherently nor­malized to two, and should be scaled to 24-bit two’s complement full scale, 0x7FFFFF. Normal­ization effectively divides the 2nd order coeffi­cients in half relative to the input, and requires modification of the characteristic equations.
The characteristic equations for the 2nd order IIR include an input value, X, an output value, Y, and three intermediate values, W3, W4, and W5, each separated by a delay element (z-1). The following
DS639F3 52
CS5378
characteristic equations model the operation of the 2nd order IIR filter with unnormalized coefficients.
W5 = W4 W4 = W3 W3 = X + (-a21 * W4) + (-a22 * W5) Y = (W3 * b20) + (W4 * b21) + (W5 * b22) Internally, the CS5378 uses normalized coeffi-
cients to perform the 2nd order IIR filter calcula­tion, which changes the algorithm slightly. The following characteristic equations model the oper­ation of the 2nd order IIR filter when using normal­ized coefficients.
W5 = W4 W4 = W3 W3 = 2 * [(X / 2) + (-a21 * W4) + (-a22 * W5)] Y = 2 * [(W3 * b20) + (W4 * b21) + (W5 * b22)]

14.4 IIR3 Filter

The 3rd order IIR filter is implemented by running both the 1st order and 2nd order IIR filter stages. It can be modeled by cascading the characteristic equations of the 1st order and 2nd order IIR stages.

14.5 On-Chip IIR Coeffic ients

Five sets of on-chip coefficients are available for IIR1 and IIR2, each providing a 3 Hz high-pass Butterworth response at different output word rates. Characteristics of the on-chip coefficient sets are described in Figure 31 and Table 16.
Which on-chip coefficient set to use is selected by a data word following the ‘Write ROM Coeffi­cients’ configuration command. See “Filter Coef­ficient Selection” on page 38 for information about selecting on-chip coefficient sets.

14.6 Programmable IIR Coefficients

A maximum of 3 + 5 coefficients can be pro­grammed into IIR1 and IIR2 to create a custom fil­ter response. Custom filter sets should normalize the coefficients to 24-bit two’s complement full scale, 0x7FFFFF. To maintain maximum internal dynamic range, the CS5378 IIR filter performs double precision calculations with an automatic gain correction to scale the final output.
Custom IIR coefficients are uploaded using the ‘Write IIR Coefficients’ configuration command. See “EEPROM Configuration Commands” on page 27 or “Microcontroller Configuration Com­mands” on page 33 for information about writing custom IIR coefficients.

14.7 IIR Filter Synchronization

The IIR filter is not synchronized to the external system directly, only indirectly through the syn­chronization of the SINC and FIR filters. Because IIR filters have ‘infinite’ memory, a discontinuity in the input data stream from a synchronization event can require significant time to settle out. The exact settling time depends on the size of the dis­continuity and the filter coefficient characteristics.
DS639F3 53
CS5378
IIR1 – Single stage, no decimation
1
st
order no decimation, 3 coefficients
Coefficient set 0: high-pass, corner 0.15% f
s
(3 Hz at 2000 SPS)
Coefficient set 1: high-pass, corner 0.30% f
s
(3 Hz at 1000 SPS)
Coefficient set 2: high-pass, corner 0.60% f
s
(3 Hz at 500 SPS)
Coefficient set 3: high-pass, corner 0.90% f
s
(3 Hz at 333 SPS)
Coefficient set 4: high-pass, corner 1.20% f
s
(3 Hz at 250 SPS)
IIR2 – Single stage, no decimation
2
nd
order no decimation, 5 coefficients
Coefficient set 0: high-pass, corner 0.15% f
s
(3 Hz at 2000 SPS)
Coefficient set 1: high-pass, corner 0.30% f
s
(3 Hz at 1000 SPS)
Coefficient set 2: high-pass, corner 0.60% f
s
(3 Hz at 500 SPS)
Coefficient set 3: high-pass, corner 0.90% f
s
(3 Hz at 333 SPS)
Coefficient set 4: high-pass, corner 1.20% f
s
(3 Hz at 250 SPS)
IIR3 – Two stage, no decimation
3
rd
order no decimation, 8 coefficients
(Combined IIR1 and IIR2 filter responses)
Coefficient set 0,0: high-pass, corner 0.20% f
s
(4 Hz at 2000 SPS)
Coefficient set 1,1: high-pass, corner 0.41% f
s
(4 Hz at 1000 SPS)
Coefficient set 2,2: high-pass, corner 0.82% f
s
(4 Hz at 500 SPS)
Coefficient set 3,3: high-pass, corner 1.22% f
s
(4 Hz at 333 SPS)
Coefficient set 4,4: high-pass, corner 1.63% f
s
(4 Hz at 250 SPS)
Figure 31. IIR Filter Stages
IIR1 Coeff Selection
IIR1 Corner Frequency
IIR2 Coeff Selection
IIR2 Corner Frequency
IIR3 Coeff Selection
IIR3 Corner Frequency
0 0.15% fs 0 0.15% fs 0,0 0.2041% fs 1 0.30% fs 1 0.30% fs 1,1 0.4074% fs 2 0.60% fs 2 0.60% fs 2,2 0.8152% fs 3 0.90% fs 3 0.90% fs 3,3 1.2222% fs 4 1.20% fs 4 1.20% fs 4,4 1.6293% fs
Table 16. IIR Filter Characteristics
IIR filters
DS639F3 54
CS5378
Filter Type System Function Filter Coefficients
(normalized 24-bit)
IIR1 (Coefficient set 0) 1
st
order, high pass
Corner at 0.15% f
s
3 coefficients
 
 
+
+
=
−−1
11
1
1110
1
)(
za
zbb
zH
a
11
= -8309916
b
10
= 8349262
b
11
= -8349262
IIR1 (Coefficient set 1) 1
st
order, high pass
Corner at 0.30% f
s
3 coefficients
 
 
+
+
=
−−1
11
1
1110
1
)(
za
zbb
zH
a
11
= -8231957
b
10
= 8310282
b
11
= -8310282
IIR1 (Coefficient set 2) 1
st
order, high pass
Corner at 0.60% f
s
3 coefficients
 
 
+
+
=
−−1
11
1
1110
1
)(
za
zbb
zH
a
11
= -8078179
b
10
= 8233393
b
11
= -8233393
IIR1 (Coefficient set 3) 1
st
order, high pass
Corner at 0.90% f
s
3 coefficients
 
 
+
+
=
−−1
11
1
1110
1
)(
za
zbb
zH
a
11
= -7927166
b
10
= 8157887
b
11
= -8157887
IIR1 (Coefficient set 4) 1
st
order, high pass
Corner at 1.20% f
s
3 coefficients
 
 
+
+
=
−−1
11
1
1110
1
)(
za
zbb
zH
a
11
= -7778820
b
10
= 8083714
b
11
= -8083714
Filter Type System Function Filter Coefficients
(normalized 24-bit)
IIR2 (Coefficient set 0) 2
nd
order, high pass
Corner at 0.15% f
s
5 coefficients
 
 
++
++
=
1
22
1
21
1
22
1
2120
1
)(
zaza
zbzbb
zH
a
21
= -8332704
a
22
= 4138771
b
20
= 4166445
b
21
= -8332890
b
22
= 4166445
IIR2 (Coefficient set 1) 2
nd
order, high pass
Corner at 0.30% f
s
5 coefficients
 
 
++
++
=
1
22
1
21
1
22
1
2120
1
)(
zaza
zbzbb
zH
a
21
= -8276806
a
22
= 4083972
b
20
= 4138770
b
21
= -8277540
b
22
= 4138770
IIR2 (Coefficient set 2) 2
nd
order, high pass
Corner at 0.60% f
s
5 coefficients
 
 
++
++
=
1
22
1
21
1
22
1
2120
1
)(
zaza
zbzbb
zH
a
21
= -8165041
a
22
= 3976543
b
20
= 4083972
b
21
= -8167944
b
22
= 4083972
IIR2 (Coefficient set 3) 2
nd
Order, high pass
Corner at 0.90% f
s
5 coefficients
 
 
++
++
=
1
22
1
21
1
22
1
2120
1
)(
zaza
zbzbb
zH
a
21
= -8053350
a
22
= 3871939
b
20
= 4029898
b
21
= -8059796
b
22
= 4029898
IIR2 (Coefficient set 4) 2
nd
order, high pass
Corner at 1.20% f
s
5 coefficients
 
 
++
++
=
1
22
1
21
1
22
1
2120
1
)(
zaza
zbzbb
zH
a
21
= -7941764
a
22
= 3770088
b
20
= 3976539
b
21
= -7953078
b
22
= 3976539
Table 17. IIR Filter Coefficients
DS639F3 55
CS5378
Figure 32. Gain and Offset Correction
FIR
IIR
Filters
Filter
Output to High Speed Serial Data Port (SD Port)
Offset Correction
Output Rate 4000 SPS ~ 1 SPS
SINC
Filter
MDI Input
512 kHz
Correction
Gain
Offset Calibration

15.GAIN AND OFFSET CORRECTION

The CS5378 digital filter can apply gain and offset corrections to the measurement data. Also, an off­set calibration algorithm can automatically calcu­late the offset correction value.
A gain correction value is written to the GAIN reg­isters (0x21), while an offset correction value is written to the OFFSET register (0x25). Gain and offset corrections are enabled by the USEGR and USEOR bits in the FILTCFG register (0x20).
When enabled, the offset calibration algorithm will automatically calculate an offset correction value and write it into the OFFSET register. Offset cali­bration is enabled by writing the EXP and ORCAL bits in FILTCFG.

15.1 Gain Correction

Gain correction in the CS5378 normalizes sensor gain in multi-sensor networks. It requires an exter­nally calculated correction value to be written into the GAIN register (0x21).
A gain correction value is 24-bit two’s complement with unity gain defined as full scale, 0x7FFFFF. Gain correction always scales to a fractional value, and can never gain the digital filter data greater than one.
Output Value = Data * (GAIN / 0x7FFFFF) Unity Gain: GAIN = 0x7FFFFF 50% Gain: GAIN = 0x3FFFFF Zero Gain: GAIN = 0x000000
Once the GAIN register is written, the USEGR bit in the FILTCFG register enables gain correction.

15.2 Offset Correction

Offset correction in the CS5378 cancels the DC bias of a measurement channel by subtracting the value in the OFFSET register (0x25) from the dig­ital filter output data word.
An offset correction value is 24-bit two’s comple­ment with a maximum positive value of 0x7FFFFF,
DS639F3 56
CS5378
and a maximum negative value of 0x800000. If ap­plying an offset correction causes the final result to exceed a 24-bit two’s complement maximum, the output data will saturate to that maximum value.
Output Data = Input Data - Offset Correction Max Positive Output Value = 0x7FFFFF Max Negative Output Value = 0x800000
Once the OFFSET register is written, the USEOR bit in the FILTCFG register enables offset correc­tion.

15.3 Offset Calibration

An offset calibration algorithm in the CS5378 can automatically calculate an offset correction value. When using the offset calibration algorithm, back­ground noise data should be used as the input signal for calculating the offset of the measurement chan­nel.
The offset calibration algorithm is an exponential averaging function that places increased weight on more recent digital filter data. The exponential weighting factor is set by the EXP bits in the
FILTCFG register, with larger exponent values producing a smoother averaging function that re­quires a longer settling time, and smaller values producing a noisier averaging function that re­quires a shorter settling time. Typical exponential values range from 0x05 to 0x0F, depending on the available settling time.
The characteristic equations of the offset calibra­tion algorithm include an input value, X, an output value, Y, a summation value, YSUM, a sample in­dex, n, and an exponential value, EXP.
Y(n) = X(n) - [YSUM(n-1) >> EXP] YSUM(n) = Y(n) + YSUM(n-1) Offset Correction = YSUM >> EXP
Once the EXP bits are written, the ORCAL bit in the FILTCFG register is set to enable offset calibra­tion. When enabled, an updated offset correction value is automatically written to the OFFSET reg­ister. When the offset calibration algorithm is fully settled, the ORCAL bit should be cleared to main­tain the final value in the OFFSET register.
DS639F3 57

16.SERIAL DATA INTERFACE

CS5378
Figure 33. Serial Data Interface Block Diagram
System Telemetry
MISO
DRDY SCK
Data Ready
Data In
Clock Out
Data
Status
02331
--
MFLAG
-- --
W
31 2930 28 27 26 25 24
Figure 34. 32-bit Serial Data Format
TB
--
--
0 - Modulator Ok 1 - Modulator Error
0 - No Time Break 1 - Time Break
0 - FIFO Ok 1 - FIFO Overflow
CS5378
Once digital filtering is complete, each 24-bit out­put sample is combined with an 8-bit status byte. These data words are written to an 8-deep FIFO buffer and then transmitted to the communications channel through a high speed serial data interface.

16.1 Pin Descriptions

DRDY
Data ready output signal, active low. Open drain output requiring an external pull-up resistor.
- Pin 23
SCK - Pin 24
Serial clock input.
MISO - Pin 25
Serial data output.

16.2 Serial Data Format

Serial data transactions transfer either 24-bit data words or 32-bit status+data words, depending on the STAT bit in the CONFIG register. When trans­mitting status information, each 8-bit status byte has an MFLAG bit, a time break bit, and a FIFO overflow bit encoded as shown in Figure 34.
MFLAG Bit - MFLAG
The MFLAG bit is set in the status byte when an signal is received on the MFLAG pin. When re-
DS639F3 58
CS5378
DRDY
SCK
MISO
Figure 35. SD Port Transaction
MSB LSB
ceived, the MFLAG bit is set in the next output word. See “Modulator Interface” on page 36 for more information about MFLAG.
Time Break Bit - TB
The time break bit marks a timing reference based on a rising edge into the TIMEB pin. After a pro­grammed delay, the TB bit in the status byte is set for one output sample. The TIMEBRK digital fil­ter register (0x29) programs the sample delay for the TB bit output. See “Time Break Controller” on page 63 for more information about time break.
FIFO Overflow Bit - W
The FIFO overflow bit indicates an error condition in the serial data FIFO, and is set if new digital fil­ter data overwrites a FIFO location containing data which has not yet been sent.
The W bit is sticky, meaning it persists indefinitely once set. Clearing the W bit requires sending the ‘Filter Stop’ and ‘Filter Start’ configuration com­mands to reinitialize the data FIFO.
Conversion Data Word
The lower 24-bits of the serial data word is the con­version sample for the specified channel. Conver­sion data is 24-bit two’s complement format.

16.3 Serial Data Transactions

The CS5378 automatically initiates serial data transactions whenever data becomes available in the output FIFO by driving the DRDY Once a serial data transaction is initiated, serial clocks received into SCK cause data to be output to MISO, as shown in Figure 35. When all available data is read from the serial data FIFO, DRDY leased.
pin low.
is re-
DS639F3 59

17.TEST BIT STREAM GENERATOR

Digital ΔΣ Modulator
24-bit
1-bit
TBSDATA
Digital Filter
TBSGAIN Register
24-bit
Figure 36. Test Bit Stream Generator Block Diagram
Data Bus
CS5378
The CS5378 test bit stream (TBS) generator creates sine wave ΔΣ bit stream data to drive an external test DAC. The TBS digital output can also be in­ternally connected to the MDATA inputs for loop­back testing of the digital filter.

17.1 Pin Descriptions

TBSDATA - Pin 8
Test bit stream 1-bit ΔΣ data output.
MCLK - Pin 11
Test bit stream clock output.

17.2 TBS Architecture

The test bit stream generator consists of a data in­terpolator and a digital ΔΣ modulator. It receives periodic 24-bit data from the digital filter to create a 1-bit ΔΣ data output on the TBSDATA pin.
The TBS input data from the digital filter is scaled by the TBSGAIN register (0x2B). Maximum sta­ble amplitude is 0x04FFFF, with 0x04B000 ap­proximately full scale for the CS5373A test DAC. The full scale 1-bit ΔΣ output from the TBS gener­ator is defined as 25% minimum and 75% maxi­mum one’s density.

17.3 TBS Configuration

Configuration options for the TBS generator are set through the TBSCFG register (0x2A). Gain scal­ing of the TBS generator output is set by the TB­SGAIN register (0x2B).
Interpolation Factor - INTP[7:0]
Selects how many times the interpolator uses a data point when generating the output bit stream. Inter­polation is zero based and represents one greater than the programmed register value.
Output Rate - RATE[2:0]
Selects the TBSDATA output rate.
Synchronization - TSYNC
Enables synchronization of the TBS output phase to the MSYNC signal.
Loopback - LOOP
Enables digital loopback from the TBS output to the MDATA inputs.
Run - RUN
Enables the test bit stream generator.
DS639F3 60
CS5378
Test Bit Stream Characteristic Equation:
(Signal Freq) * (# TBS Data) * (Interpolation + 1) = Output Rate
Example: (31.25 Hz) * (1024) * (0x07 + 1) = 256 kHz
Signal
Frequency
(TBSDATA)
Output
Rate
(TBSCLK)
Output Rate
Selection
(RATE)
Interpolation
Selection
(INTP)
10.00 Hz 256 kHz 0x4 0x18
10.00 Hz 512 kHz 0x5 0x31
25.00 Hz 256 kHz 0x4 0x09
25.00 Hz 512 kHz 0x5 0x13
31.25 Hz 256 kHz 0x4 0x07
31.25 Hz 512 kHz 0x5 0x0F
50.00 Hz 256 kHz 0x4 0x04
50.00 Hz 512 kHz 0x5 0x09
125.00 Hz 256 kHz 0x4 0x01
125.00 Hz 512 kHz 0x5 0x03
Table 18. TBS Configurations Using On-chip Data
Data Delay - DDLY[5:0]
Programs full period delays for TBSDATA, up to a maximum of 63 bits.

17.5 TBS Sine Wave Output

The TBS generator uses data from digital filter memory to create a sine wave test signal that can drive a test DAC. Sine wave frequency and output
Gain - TBSGAIN[23:0]
Scales the amplitude of the sine wave output. Max­imum 0x04FFFF, nominal 0x04B000.

17.4 TBS Data Source

An on-chip 24-bit 1024 point digital sine wave is stored on the CS5378 which will produce the test signal frequencies listed in Table 18. Additional discrete test frequencies and output rates can be programmed by varying the interpolation factor
data rate are calculated as shown by the character­istic equation of Table 18.
The sine wave maximum ΔΣ one’s density output from the TBS generator is set by the TBSGAIN register. TBSGAIN can be programmed up to a maximum of 0x04FFFF, with the TBS generator unstable for higher amplitudes. For the CS5373A test DAC, a gain value of 0x04B000 produces an approximately full scale sine wave output (5 V differential).
and output rate.
pp
DS639F3 61
CS5378

17.6 TBS Loopback Testing

Included as part of the CS5378 test bit stream gen­erator is a feedback path to the digital filter MDA­TA input. This loopback mode provides a fully digital signal path to test the TBS generator, digital filter, and data collection interface. Digital loop­back testing expects 512 kHz ΔΣ data into the MDATA input.
A mismatch of the TBS generator full scale output and the MDATA full scale input results in an am­plitude mismatch when testing in loopback mode. The TBS generator outputs a 75% maximum one’s density, while the MDATA inputs expect an 86% maximum one’s density from a ΔΣ modulator, re-
sulting in a measured full scale error of approxi­mately -3.6 dB.

17.7 TBS Synchronization

When the TSYNC bit is set in the TBSCFG regis­ter, the MSYNC signal resets the sine wave data pointer and phase aligns the TBS signal output. Once the digital filter is settled, all CS5378 devices receiving the SYNC signal will have identical TBS signal phase. See “Synchronization” on page 24 for more information about the SYNC and MSYNC signals.
If TSYNC is clear, MSYNC has no effect on the TBS data pointer and no change in the TBS output phase will occur during synchronization.
DS639F3 62

18.TIME BREAK CONTROLLER

TIMEB
in Serial Data
Status Byte
Delay Counter
TIMEBRK
TB Flag
Figure 37. Time Break Block Diagram
CS5378
A time break signal is used to mark timing events that occur during measurement. An external signal sets a flag in the status byte of an output sample to mark when the external event occurred.
A rising edge input to the TIMEB pin causes the TB timing reference flag to be set in the serial data status byte. When set, the TB flag appears for only one output sample in the status byte. The TB flag output can be delayed by programming a sample delay value into the TIMEBRK digital filter regis­ter.

18.1 Pin Description

TIMEB - Pin 20
Time break input pin, rising edge triggered.

18.2 Time Break Operation

An externally generated timing reference signal ap­plied to the TIMEB pin initiates an internal sample counter. After a number of output samples have passed, programmed in the TIMEBRK digital filter register (0x29), the TB flag is set in the status byte of the serial data output word. The TB flag is auto­matically cleared for subsequent data words, and appears for only one output sample.

18.3 Time Break Delay

The TIMEBRK register (0x29) sets a sample delay between a received rising edge on the TIMEB pin and writing the TB flag into the serial data status byte.
The programmable sample counter can compensate for group delay through the digital filters. When the proper group delay value is programmed into the TIMEBRK register, the TB flag will be set in the status byte of the measurement sample taken when the timing reference signal was received.
18.3.1 Step Input and Group Delay
A simple method to empirically measure the step response and group delay of a CS5378 measure­ment channel is to use the time break signal as both a timing reference input and an analog step input.
When a rising edge is received on the TIMEB pin with no delay programmed into the TIMEBRK reg­ister, the TB flag is set in the next serial data status byte. The same rising edge can act as a step input to the analog channel, propagating through the dig­ital filter to appear as a rising edge in the measure­ment data. By comparing the timing of the TB status flag output and the rising edge in the mea­surement data, the measurement channel group de­lay can be determined.
DS639F3 63

19.GENERAL PURPOSE I/O

Figure 38. GPIO Block Diagram
GPIO
GP_DIR
GP_DATA
GP_PULL
Pull Up Logic
R
CS5378
The General Purpose I/O (GPIO) block provides 8 general purpose pins to interface with external hardware.

19.1 Pin Descriptions

GPIO[3:0] - Pins 4 - 1
Standard GPIO pins.
GPIO[6:4]:PLL[2:0] - Pins 7 - 5
Standard GPIO pins also used to select the PLL mode after reset. Internal pull-ups default high, 10 kΩ external pull-downs required to set low.
GPIO7:BOOT - Pin 28
Standard GPIO pin also used to select boot mode after reset. Internal pull-up defaults high, 10 kΩ ex­ternal pull-down required to set low.

19.2 GPIO Architecture

Each GPIO pin can be configured as input or out­put, high or low, with a weak (~100 kΩ) internal pull-up resistor enabled or disabled. Figure 38 shows the structure of a bi-directional GPIO pin.

19.3 GPIO Registers

GPIO pin settings are programmed in the GPCFG register. GP_DIR bits set the input/output mode,
GP_PULL bits enable/disable the internal pull-up resistor, and GP_DATA bits set the output data val­ue. After reset, GPIO pins default as inputs with pull-up resistors enabled.

19.4 GPIO Input Mode

When reading a value from the GP_DATA bits, the returned data reports the current state of the pins. If a pin is externally driven high it reads a logical 1, if externally driven low it reads a logical 0. When a GPIO pin is used as an input, the pull-up resistor should be disabled to save power if it isn’t required.

19.5 GPIO Output Mode

When a GPIO pin is programmed as an output with a data value of 0, the pin is driven low and the in­ternal pull-up resistor is automatically disabled. When programmed as an output with a data value of 1, the pin is driven high and the pull-up resistor is inconsequential.
Any GPIO pin can be used as an open-drain output by setting the data value to 0, enabling the pull-up, and using the GP_DIR direction bits to control the pin value. This open-drain output configuration uses the internal pull-up resistor to hold the pin high when GP_DIR is set as an input, and drives the pin low when GP_DIR is set as an output.
DS639F3 64
CS5378
19.5.1 GPIO Reads in Output Mode
When reading GPIO pins the GP_DATA register value always reports the current state of the pins, so a value written in output mode does not necessarily read back the same value. If a pin in output mode is written as a logical 1, the CS5378 attempts to drive the pin high. If an external device forces the pin
low, the read value reflects the pin state and returns a logical 0. Similarly, if an output pin is written as a logical 0 but forced high externally, the read val­ue reflects the pin state and returns a logical 1. In both cases the CS5378 is in contention with the ex­ternal device resulting in increased power con­sumption.
DS639F3 65

20.REGISTER SUMMARY

20.1 SPI Registers

The CS5378 SPI registers interface the serial port to the digital filter.
Name Addr. Type # Bits Description
SPICTRLH 00 R/W 8 SPI Control Register, High Byte SPICTRLM 01 R/W 8 SPI Control Register, Middle Byte SPICTRLL 02 R/W 8 SPI Control Register, Low Byte SPICMDH 03 R/W 8 SPI Command, High Byte SPICMDM 04 R /W 8 SPI Command, Middle Byte SPICMDL 05 R/W 8 SPI Command, Low Byte SPIDAT1H 06 R/W 8 SPI Data 1, High Byte SPIDAT1M 07 R/W 8 SPI Data 1, Middle Byte SPIDAT1L 08 R/W 8 SPI Data 1, Low Byte SPIDAT2H 09 R/W 8 SPI Data 2, High Byte SPIDAT2M 0A R/W 8 SPI Data 2, Middle Byte SPIDAT2L 0B R/W 8 SPI Data 2, Low Byte
CS5378
DS639F3 66
20.1.1 SPICTRL : 0x00, 0x01, 0x02
(MSB) 23 22 21 20 19 18 17 16
-- -- -- -- -- -- -- --
R/W R/W1 R/W R/W R/W R/W R/W R/W
00001011
15 14 13 12 11 10 9 8
SMODF----EMOPSWEF----E2DREQ
R R/W R R R R/W R/W R/W
00000010
7654321(LSB) 0
-- -- -- -- -- -- -- --
R/WR/WR/WR/WR/WR/WR/WR/W
00100000
SPI Address: 0x00
0x01 0x02
-- Not defined; read as 0
RReadable WWritable R/W Readable and
Writable
Bits in bottom rows are reset condition
Bit definitions:
23:16 -- reserved 15 SMODF SPI mode fault flag 7:0 -- reserved
14:13 -- reserved
12 EMOP External master to SPI
operation in progress flag
11 SWEF SPI write collision error
flag
10:9 -- reserved
8 E2DREQ External master to digital
filter request flag
Figure 39. SPI Control Register SPICTRL
CS5378
DS639F3 67
20.1.2 SPICMD : 0x03, 0x04, 0x05
(MSB) 23 22 21 20 19 18 17 16
SCMD23 SCMD22 SCMD21 SCMD20 SCMD19 SCMD18 SCMD17 SCMD16
R/WR/WR/WR/WR/WR/WR/WR/W
00000000
15 14 13 12 11 10 9 8
SCMD15 SCMD14 SCMD13 SCMD12 SCMD11 SCMD10 SCMD9 SCMD8
R/WR/WR/WR/WR/WR/WR/WR/W
00000000
7654321(LSB) 0
SCMD7 SCMD6 SCMD5 SCMD4 SCMD3 SCMD2 SCMD1 SCMD0
R/WR/WR/WR/WR/WR/WR/WR/W
00000000
SPI Address: 0x03
0x04 0x05
-- Not defined; read as 0
R Readable WWritable R/W Readable and
Writable
Bits in bottom rows are reset condition
Figure 40. SPI Command Register SPICMD
Bit definitions:
23:16 SCMD[23:16] SPI Command High
Byte
15:8 SCMD[15:8] SPI Command Mid-
dle Byte
15:8 SCMD[7:0] SPI Command
Low Byte
CS5378
DS639F3 68
20.1.3 SPIDAT1 : 0x06, 0x07, 0x08
(MSB) 23 22 21 20 19 18 17 16
SDAT23 SDAT22 SDAT21 SDAT20 SDAT19 SDAT18 SDAT17 SDAT16
R/WR/WR/WR/WR/WR/WR/WR/W
00000000
15 14 13 12 11 10 9 8
SDAT15 SDAT14 SDAT13 SDAT12 SDAT11 SDAT10 SDAT9 SDAT8
R/WR/WR/WR/WR/WR/WR/WR/W
00000000
7654321(LSB) 0
SDAT7 SDAT6 SDAT5 SDAT4 SDAT3 SDAT2 SDAT1 SDAT0
R/WR/WR/WR/WR/WR/WR/WR/W
00000000
SPI Address: 0x06
0x07 0x08
-- Not defined; read as 0
R Readable WWritable R/W Readable and
Writable
Bits in bottom rows are reset condition
Figure 41. SPI Data Register SPIDAT1
Bit definitions:
23:16 SDAT[23:16] SPI Data
High Byte
15:8 SDAT[15:8] SPI Data
Middle Byte
15:8 SDAT[7:0] SPI Data
Low Byte
CS5378
DS639F3 69
20.1.4 SPIDAT2 : 0x09, 0x0A, 0x0B
(MSB) 23 22 21 20 19 18 17 16
SDAT23 SDAT22 SDAT21 SDAT20 SDAT19 SDAT18 SDAT17 SDAT16
R/WR/WR/WR/WR/WR/WR/WR/W
00000000
15 14 13 12 11 10 9 8
SDAT15 SDAT14 SDAT13 SDAT12 SDAT11 SDAT10 SDAT9 SDAT8
R/WR/WR/WR/WR/WR/WR/WR/W
00000000
7654321(LSB) 0
SDAT7 SDAT6 SDAT5 SDAT4 SDAT3 SDAT2 SDAT1 SDAT0
R/WR/WR/WR/WR/WR/WR/WR/W
00000000
SPI Address: 0x09
0x0A 0x0B
-- Not defined; read as 0
R Readable WWritable R/W Readable and
Writable
Bits in bottom rows are reset condition
Figure 42. SPI Data Register SPIDAT2
Bit definitions:
23:16 SDAT[23:16] SPI Data
High Byte
15:8 SDAT[15:8] SPI Data
Middle Byte
15:8 SDAT[7:0] SPI Data
Low Byte
CS5378
DS639F3 70

20.2 Digital Filter Registers

The CS5378 digital filter registers control hardware peripherals and filtering functions.
Name Addr. Type # Bits Description
CONFIG 00 R/W 24 Hardware Configuration RESERVED 01-0D R/W 24 Reserved GPCFG 0E R/W 24 GPIO[7:0] Direction, Pull-Up Enable, and Data RESERVED 0F-1F R/W 24 Reserved FILTCFG 20 R/W 24 Digital Filter Configuration GAIN 21 R/W 24 Gain Correction RESERVED 22-24 R/W 24 Reserved OFFSET 25 R/W 24 Offset Correction RESERVED 26-28 R/W 24 Reserved TIMEBRK 29 R/W 24 Time Break Delay TBSCFG 2A R/W 24 Test Bit Stream Configuration TBSGAIN 2B R/W 24 Test Bit Stream Gain SYSTEM1 2C R/W 24 User Defined System Register 1 SYSTEM2 2D R/W 24 User Defined System Register 2 VERSION 2E R/W 24 Hardware Version ID SELFTEST 2F R/W 24 Self-Test Result Code
CS5378
DS639F3 71
20.2.1 CONFIG : 0x00
(MSB)2322212019181716
-- -- -- -- -- DFS2 DFS1 DFS0
R/W R/W R/W R/W R/W R/W R/W R/W
00000101
15 14 13 12 11 10 9 8
-- -- -- -- -- MCKFS2 MCKFS1 MCKFS0
R/W R/W R/W R/W R/W R/W R/W R/W
00000100
7654321(LSB)0
STAT -- -- MCKEN MDIFS -- BOOT MSEN
R/W R/W R/W R/W R/W R/W R R/W
00000001
Figure 43. Hardware Configuration Register CONFIG
Bit definitions:
23:19 - - reserved 15:11 -- reserved 7:6 STAT Serial Data Status Byte
1: Disabled (24-bit output) 0: Enabled (32-bit output)
18:16 DFS
[2:0]
Digital filter frequency select 111: Reserved 110: 8.192 MHz 101: 4.096 MHz 100: 2.048 MHz 011: 1.024 MHz 010: 512 kHz 001: 256 kHz 000: 32 kHz
10:8 MCKFS
[2:0]
MCLK frequency select 111: reserved 110: reserved 101: 4.096 MHz 100: 2.048 MHz 011: 1.024 MHz 010: 512 kHz 001: reserved 000: reserved
5 -- reserved
4 MCKEN MCLK output enable
1: Enabled 0: Disabled
3 MDIFS MDATA input frequency
select 1: 256 kHz 0: 512 kHz
2 -- reserved
1 BOOT Boot source indicator
1: Booted from EEPROM 0: Booted from Micro
0 MSEN MSYNC enable
1: MSYNC generated 0: MSYNC remains low
DF Address: 0x00
-- Not defined; read as 0
R Readable WWritable R/W Readable and
Writable
Bits in bottom rows are reset condition
CS5378
DS639F3 72
20.2.2 GPCFG : 0x0E
(MSB) 23 22 21 20 19 18 17 16
GP_DIR7 GP_DIR6 GP_DIR5 GP_DIR4 GP_DIR3 GP_DIR2 GP_DIR1 GP_DIR0
R/WR/WR/WR/WR/WR/WR/WR/W
00000000
15 14 13 12 11 10 9 8
GP_PULL7 GP_PULL6 GP_PULL5 GP_PULL4 GP_PULL3 GP_PULL2 GP_PULL1 GP_PULL0
R/WR/WR/WR/WR/WR/WR/WR/W
11111111
7654321(LSB) 0
GP_DATA7 GP_DATA6 GP_DATA5 GP_DATA4 GP_DA TA3 GP_DATA2 GP_DATA1 GP_DATA0
R/WR/WR/WR/WR/WR/WR/WR/W
11111111
DF Address: 0x0E
-- Not defined; read as 0
RReadable WWritable R/W Readable and
Writable
Bits in bottom rows are reset condition
Bit definitions:
Notes: GPIO[7] also used as BOOT mode select after reset GPIO[6:4] also used as PLL mode select after reset.
23:16 GP_DIR
[7:0]
GPIO pin direction 1: Output 0: Input
15:8 GP_PULL
[7:0]
GPIO pullup resistor 1: Enabled 0: Disabled
7:0 GP_DATA
[7:0]
GPIO data value 1: VDD 0: GND
Figure 44. GPIO Configuration Register GPCFG
CS5378
DS639F3 73
20.2.3 FILTCFG : 0x20
(MSB) 23 22 21 20 19 18 17 16
-- -- -- EXP4 EXP3 EXP2 EXP1 EXP0
R/WR/WR/WR/WR/WR/WR/WR/W
00000000
15 14 13 12 11 10 9 8
-- ORCAL USEOR USEGR -- FSEL2 FSEL1 FSEL0
R/WR/WR/WR/WR/WR/WR/WR/W
00000000
7654321(LSB) 0
DEC3 DEC2 DEC1 DEC0 -- -- -- --
R/WR/WR/WR/WR/WR/WR/WR/W
00000000
DF Address: 0x20
-- Not defined; read as 0
R Readable WWritable R/W Readable and
Writable
Bits in bottom rows are reset condition
Bit definitions:
23:21 -- reserved 15 -- reserved 7:4 DEC[3:0] Decimation selection
(Output word rate)
20:16 EXP[4:0] OFFSET calibration
exponent
14 ORCAL Run OFFSET calibration
1: Enable 0: Disable
0111 : 4000 SPS 0110: 2000 SPS 0101: 1000 SPS 0100: 500 SPS 0011: 333 SPS
13 USEOR Use OFFSET correction
1: Enable 0: Disable
0010: 250 SPS 0001: 200 SPS 0000: 125 SPS 1111: 100 SPS 1110: 50 SPS
12 USEGR Use GAIN correction
1: Enable 0: Disable
1101: 40 SPS 1100: 25 SPS 1011: 20 SPS 1010: 10 SPS 1001: 5 SPS 1000: 1 SPS
11 -- reserved 3:0 -- reserved
10:8 FSEL[2:0] Output filter stage select
111: reserved 110: reserved 101: IIR 3rd Order 100: IIR 2nd Order 011: IIR 1st Order 010: FIR2 Output 001: FIR1 Output 000: SINC Output
Figure 45. Filter Configuration Register FILTCFG
CS5378
DS639F3 74
20.2.4 GAIN : 0x21
(MSB) 23 22 21 20 19 18 17 16
GAIN23 GAIN22 GAIN21 GAIN20 GAIN19 GAIN18 GAIN17 GAIN16
R/WR/WR/WR/WR/WR/WR/WR/W
00000000
15 14 13 12 11 10 9 8
GAIN15 GAIN14 GAIN13 GAIN12 GAIN11 GAIN10 GAIN9 GAIN8
R/WR/WR/WR/WR/WR/WR/WR/W
00000000
7654321(LSB) 0
GAIN7 GAIN6 GAIN5 GAIN4 GAIN3 GAIN2 GAIN1 GAIN0
R/WR/WR/WR/WR/WR/WR/WR/W
00000000
DF Address: 0x21
-- Not defined; read as 0
R Readable WWritable R/W Readable and
Writable
Bits in bottom rows are reset condition
Figure 46. Gain Correction Register GAIN
Bit definitions:
23:16 GAIN[23:16] Gain Correction
Upper Byte
15:8 GAIN[15:8] Gain Correction
Middle Byte
15:8 GAIN[7:0] Gain Correction
Lower Byte
CS5378
DS639F3 75
20.2.5 OFFSET : 0x25
(MSB) 23 22 21 20 19 18 17 16
OFST23 OFST22 OFST21 OFST20 OFST19 OFST18 OFST17 OFST16
R/WR/WR/WR/WR/WR/WR/WR/W
00000000
15 14 13 12 11 10 9 8
OFST15 OFST14 OFST13 OFST12 OFST11 OFST10 OFST9 OFST8
R/WR/WR/WR/WR/WR/WR/WR/W
00000000
7654321(LSB) 0
OFST7 OFST6 OFST5 OFST4 OFST3 OFST2 OFST1 OFST0
R/WR/WR/WR/WR/WR/WR/WR/W
00000000
DF Address: 0x25
-- Not defined; read as 0
R Readable WWritable R/W Readable and
Writable
Bits in bottom rows are reset condition
Figure 47. Offset Correction Register OFFSET
Bit definitions:
23:16 OFST[23:16] Offset Correction
Upper Byte
15:8 OFST[15:8] Offset Correction
Middle Byte
15:8 OFST[7:0] Offset Correction
Lower Byte
CS5378
DS639F3 76
20.2.6 TIMEBRK : 0x29
(MSB) 23 22 21 20 19 18 17 16
TBRK23 TBRK22 TBRK21 TBRK20 TBRK19 TBRK18 TBRK17 TBRK16
R/WR/WR/WR/WR/WR/WR/WR/W
00000000
15 14 13 12 11 10 9 8
TBRK15 TBRK14 TBRK13 TBRK12 TBRK11 TBRK10 TBRK9 TBRK8
R/WR/WR/WR/WR/WR/WR/WR/W
00000000
7654321(LSB) 0
TBRK7 TBRK6 TBRK5 TBRK4 TBRK3 TBRK2 TBRK1 TBRK0
R/WR/WR/WR/WR/WR/WR/WR/W
00000000
DF Address: 0x29
-- Not defined; read as 0
R Readable WWritable R/W Readable and
Writable
Bits in bottom rows are reset condition
Figure 48. Time Break Counter Register TIMEBRK
Bit definitions:
23:16 TBRK[23:16] Time Break Counter
Upper Byte
15:8 TBRK[15:8] Time Break Coun-
ter Middle Byte
15:8 TBRK[7:0] Time Break Coun-
ter Lower Byte
CS5378
DS639F3 77
20.2.7 TBSCFG : 0x2A
(MSB) 23 22 21 20 19 18 17 16
INTP7 INTP6 INTP5 INTP4 INTP3 INTP2 INTP1 INTP0
R/WR/WR/WR/WR/WR/WR/WR/W
00000000
15 14 13 12 11 10 9 8
-- RATE2 RATE1 RATE0 TSYNC -- -- --
R/WR/WR/WR/WR/WR/WR/WR/W
00000000
7654321(LSB) 0
LOOP RUN DDLY5 DDLY4 DDLY3 DDLY2 DDLY1 DDLY0
R/WR/WR/WR/WR/WR/WR/WR/W
00000000
DF Address: 0x2A
-- Not defined; read as 0
R Readable WWritable R/W Readable and
Writable
Bits in bottom rows are reset condition
Figure 49. Test Bit Stream Configuration Register TBSCFG
Bit definitions:
23:16 INTP[7:0] Interpolation factor
0xFF: 256 0xFE: 255 ... 0x01: 2 0x00: 1 (use once)
15 -- reserved 7 LOOP Loopback
TBSDATA output to MDATA inputs 1: Enabled 0: Disabled
14:12 RATE[2:0] TBSDATA and
TBSCLK output rate. 111: 2.048 MHz 110: 1.024 MHz 101: 512 kHz 100: 256 kHz 011: 128 kHz 010: 64 kHz 001: 32 kHz 000: 4 kHz
6 RUN Run Test Bit Stream
1: Enabled 0: Disabled
11 TSYNC Synchronization
1: Sync enabled 0: No sync
5:0 DDLY[5:0] TBSDATA output
delay 0x3F: 63 bits 0x3E: 62 bits ... 0x01: 1 bit 0x00: 0 bits ( no delay)
10:8 -- reserved
CS5378
DS639F3 78
20.2.8 TBSGAIN : 0x2B
(MSB) 23 22 21 20 19 18 17 16
TGAIN23 TGAIN22 TGAIN21 TGAIN20 TGAIN19 TGAIN18 TGAIN17 TGAIN16
R/WR/WR/WR/WR/WR/WR/WR/W
00000000
15 14 13 12 11 10 9 8
TGAIN15 TGAIN14 TGAIN13 TGAIN12 TGAIN11 TGAIN10 TGAIN9 TGAIN8
R/WR/WR/WR/WR/WR/WR/WR/W
00000000
7654321(LSB) 0
TGAIN7 TGAIN6 TGAIN5 TGAIN4 TGAIN3 TGAIN2 TGAIN1 TGAIN0
R/WR/WR/WR/WR/WR/WR/WR/W
00000000
DF Address: 0x2B
-- Not defined; read as 0
R Readable WWritable R/W Readable and
Writable
Bits in bottom rows are reset condition
Figure 50. Test Bit Stream Gain Register TBSGAIN
Bit definitions:
23:16 TGAIN[23:16] Test Bit Stream Gain
Upper Byte
15:8 TGAIN[15:8] Test Bit Stream
Gain Middle Byte
15:8 TGAIN[7:0] Test Bit Stream
Gain Lower Byte
CS5378
DS639F3 79
20.2.9 SYSTEM1, SYSTEM2 : 0x2C, 0x2D
(MSB) 23 22 21 20 19 18 17 16
SYS23 SYS22 SYS21 SYS20 SYS19 SYS18 SYS17 SYS16
R/WR/WR/WR/WR/WR/WR/WR/W
00000000
15 14 13 12 11 10 9 8
SYS15 SYS14 SYS13 SYS12 SYS11 SYS10 SYS9 SYS8
R/WR/WR/WR/WR/WR/WR/WR/W
00000000
7654321(LSB) 0
SYS7 SYS6 SYS5 SYS4 SYS3 SYS2 SYS1 SYS0
R/WR/WR/WR/WR/WR/WR/WR/W
00000000
DF Address: 0x2C
-- Not defined; read as 0
R Readable WWritable R/W Readable and
Writable
Bits in bottom rows are reset condition
Figure 51. User Defined System Register SYSTEM1
Bit definitions:
23:16 SYS[23:16] System Register
Upper Byte
15:8 SYS[15:8] System Register
Middle Byte
15:8 SYS[7:0] System Register
Lower Byte
CS5378
DS639F3 80
20.2.10 VERSION : 0x2E
(MSB) 23 22 21 20 19 18 17 16
TYPE7 TYPE6 TYPE5 TYPE4 TYPE3 TYPE2 TYPE1 TYPE0
R/WR/WR/WR/WR/WR/WR/WR/W
01111000
15 14 13 12 11 10 9 8
HW7 HW6 HW5 HW4 HW3 HW2 HW1 HW0
R/WR/WR/WR/WR/WR/WR/WR/W
00000010
7654321(LSB) 0
ROM7 ROM6 ROM5 ROM4 ROM3 ROM2 ROM1 ROM0
R/WR/WR/WR/WR/WR/WR/WR/W
00000010
DF Address: 0x2E
-- Not defined; read as 0
R Readable WWritable R/W Readable and
Writable
Bits in bottom rows are reset condition
Figure 52. Hardware Version ID Register VERSION
Bit definitions:
23:16 TYPE
[7:0]
Chip Type 78 - CS5378
15:8 HW
[7:0]
Hardware Revision 01 - CS5378 Rev A 02 - CS5378 Rev B
7:4 ROM
[7:0]
ROM Version 01 - Ver 1.0 02 - Ver 2.0
CS5378
DS639F3 81
20.2.11 SELFTEST : 0x2F
(MSB) 23 22 21 20 19 18 17 16
-- -- -- -- EU3 EU2 EU1 EU0
R/WR/WR/WR/WR/WR/WR/WR/W
00001010
15 14 13 12 11 10 9 8
DRAM3 DRAM2 DRAM1 DRAM0 PRAM3 PRAM2 PRAM1 PRAM0
R/WR/WR/WR/WR/WR/WR/WR/W
10101010
7654321(LSB) 0
DROM3 DROM2 DROM1 DROM0 PROM3 PROM2 PROM1 PROM0
R/WR/WR/WR/WR/WR/WR/WR/W
10101010
DF Address: 0x2F
-- Not defined; read as 0
R Readable WWritable R/W Readable and
Writable
Bits in bottom rows are reset condition
Figure 53. Self Test Result Register SELFTEST
Bit definitions:
23:20 -- reserved 15:12 DRAM
[3:0]
Data RAM Test ‘A’: Pass ‘F’: Fail
7:4 DROM
[3:0]
Data ROM Test ‘A’: Pass ‘F’: Fail
19:16 EU
[3:0]
Execution Unit Test ‘A’: Pass ‘F’: Fail
11:8 PRAM
[3:0]
Program RAM Test ‘A’: Pass ‘F’: Fail
3:0 PROM
[3:0]
Program ROM Test ‘A’: Pass ‘F’: Fail
CS5378
DS639F3 82

21.PIN DESCRIPTION

1
2
3
4
5
6
7
821
22
23
24
25
26
27
28
9
10
11
12 17
18
19
20
13
14 15
16
GPIO0 GPIO1 GPIO2
GPIO3 GPIO4:PLL0 GPIO5:PLL1 GPIO6:PLL2
TBSDATA
VDDPAD
GNDPAD
MCLK
MSYNC
MDATA
MFLAG
GPIO7:BOOT SS:EECS MOSI MISO SCK DRDY GNDCORE VDDCORE TIMEB SYNC RESET CLK GNDPLL VDDPLL
Figure 54. CS5378 Pin Assignments
PLL[2:0] Reset Mode
111 32.768 MHz clock input (PLL bypass).
110 1.024 MHz clock input.
101 2.048 MHz clock input.
100 4.096 MHz clock input.
011 32.768 MHz clock input (PLL bypass).
010 1.024 MHz Manchester input.
001 2.048 MHz Manchester input.
000 4.096 MHz Manchester input.
BOOT Reset Mode
1 EEPROM boot
0 Microcontroller boot
CS5378
Pin
Name
GPIO[0:3] 1, 2, 3, 4 Input / Output General Purpose I/O.
GPIO[4:6]:PLL[0:2] 5, 6, 7 Input / Output General Purpose I/O with PLL mode select.
GPIO7:BOOT 28 Input / Output General Purpose I/O with boot mode select.
DS639F3 83
Pin
Number
Pin
Type
General Purpose Input / Output
PLL mode selection latched immediately after reset.
Boot mode selection latched immediately after reset.
Pin
Description
GPIO pins have weak (~100 kΩ) internal pull-ups.
GPIO pins have weak (~100 kΩ) internal pull-ups.
CS5378
Pin
Name
TBSDATA 8 Output Test bit stream data output.
MCLK 11 Output Modulator clock output.
MSYNC 12 Output Modulator sync output.
MDATA 13 Input Modulator data input.
MFLAG 14 Input Modulator flag input.
CLK 17 Input Clock input.
RESET 18 Input Reset, active low.
SYNC 19 Input Sync input.
TIMEB 20 Input Time break input.
DRDY
SCK 24 Input / Output Serial clock.
MISO 25 Input / Output Serial data, master in / slave out.
MOSI 26 Input / Output Serial data, master out / slave in.
SS:EECS
VDDPAD,
GNDPAD
VDDPLL, GNDPLL
VDDCORE,
GNDCORE
Pin
Number
23 Output Data ready, active low.
27 Input Slave select with EEPROM chip select, active low.
9, 10 Supply Pin power supply.
15, 16 Supply PLL power supply.
21, 22 Supply Logic core power supply.
Pin
Type
Test Bit Stream
Modulator Interface
Telemetry Interface
Serial Interface
Power Supplies
Pin
Description
DS639F3 84

22.PACKAGE DIMENSIONS

28L SSOP PACKAGE DRAWING
E
N
1
23
e
b
2
A1
A2
A
D
SEATING
PLANE
E1
1
L
SIDE VIEW
END VIEW
TOP VIEW
INCHES MILLIMETERS NOTE
DIM MIN NOM MAX MIN NOM MAX
A-- --0.084-- --2.13 A1 0.002 0.006 0.010 0.05 0.15 0.25 A2 0.064 0.069 0.074 1.62 1.75 1.88
b 0.009 -- 0.015 0.22 -- 0.38 2,3 D 0.390 0.4015 0.413 9.90 10.20 10.50 1 E 0.291 0.307 0.323 7.40 7.80 8.20
E1 0.197 0.209 0.220 5.00 5.30 5.60 1
e 0.022 0.026 0.030 0.55 0.65 0.75
L 0.025 0.0354 0.041 0.63 0.90 1.03
CS5378
JEDEC #: MO-150
Controlling Dimension is Millimeters
DS639F3 85

23.ORDERING INFORMATION

Model Temperature Package
CS5378-ISZ (Lead Free) -40 to +85 °C 28-pin SSOP

24.ENVIRONMENTAL, MANUFACTURING, & HANDLING INFORMATION

Model Number Peak Reflow Temp MSL Rating* Max Floor Life
CS5378-ISZ (Lead Free)
* MSL (Moisture Sensitivity Level) as specified by IPC/JEDEC J-STD-020.
260 °C 3 7 Days
CS5378
DS639F3 86

25.REVISION HISTORY

Revision Date Changes
PP1 FEB 2004 Initial “Preliminary Product” release.
F1 OCT 2005 Added lead-free device ordering information. Added MSL data.
F2 SEP 2008 Rev B. Update Single-S part numbers. Remove TBS impulse mode.
OCT 2010 Removed lead-containing device
F3
ordering information.
CS5378
DS639F3 87
CS5378
Contacting Cirrus Logic Support
For all product questions and inquiries contact a Cirrus Logic Sales Representative. To find the one nearest to you go to www.cirrus.com
IMPORTANT NOTICE
Cirrus Logic, Inc. and its subsidiaries ("Cirrus") believe that the information contained in this document is accurate and reliable. However, the information is subject to change without notice and is provided "AS IS" without warranty of any kind (express or implied). Customers are advised to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, indemnification, and limitation of liabil ity. No responsibility is assumed by Cirrus for the use of this information, including use of this information as the basis for manufacture or sale of any items, or for infringement of patents or other rights of third parties. This document is the property of Cirrus and by furnishing this information, Cirrus grants no license, express or implied under any patents, mask work rights, copyrights, trademarks, trade secrets or other intellectual property rights. Cirrus owns the copyrights associated with the information contained herein and gives con­sent for copies to be made of the information only for use within your organization with respect to Cirrus integrated circuits or other products of Cirrus. This consent does not extend to other copying such as copying for general distribution, advertising or promotional purposes, or for creating any work for resale.
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROP­ERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). CIRRUS PRODUCTS ARE NOT DESIGNED, AUTHORIZED OR WARRANTED FOR USE IN PRODUCTS SURGICALLY IMPLANTED INTO THE BODY, AUTOMOTIVE SAFETY OR SECURITY DEVICES, LIFE SUPPORT PRODUCTS OR OTHER CRIT­ICAL APPLICATIONS. INCLUSION OF CIRRUS PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK AND CIR­RUS DISCLAIMS AND MAKES NO WARRANTY, EXPRESS, STATUTORY OR IMPLIED, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR PARTICULAR PURPOSE, WITH REGARD TO ANY CIRRUS PRODUCT THAT IS USED IN SUCH A MANNER. I F THE CUSTOMER OR CUS­TOMER'S CUSTOMER USES OR PERMITS THE USE OF CIRRUS PRODUCTS IN CRITICAL APPLICATIONS, CUSTOMER AGREES, BY SUCH USE, TO FUL­LY INDEMNIFY CIRRUS, ITS OFFICERS, DIRECTORS, EMPLOYEES, DISTRIBUTORS AND OTHER AGENTS FROM ANY AND AL L LIABILITY, INCLUDING ATTORNEYS' FEES AND COSTS, THAT MAY RESULT FROM OR ARISE IN CONNECTION WITH THESE USES.
Cirrus Logic, Cirrus, and the Cirrus Logic logo designs are trademarks of Cirrus Logic, Inc. All other brand and product names in this document may be trademarks or service marks of their respective owners.
SPI is a trademark of Motorola, Inc.
DS639F3 88
Loading...