Cirrus Logic CS5378 User Manual

CS5378
Serial Interface
Decimation and Filtering Engine
Mod u lator Data Inte r fa c e
Test Bit Stream
Con tr o lle r
Reset, Synchronization
TBSD ATA
Time Break Controller
GPIO
General Purpose I/O
SCK
MOSI
VDDPAD
VDDPLL
VDDCORE
SYNC MSYNC
TIME B
GPIO5:PLL1 GPIO4:PLL0 GPIO3 GPIO2 GPIO1
GNDPAD
GNDCORE
GNDPLL
MDATA
MFLAG
GPIO0
GPIO6:PLL2
GPIO7:BOOT
DRDY
MISO
SS:EECS
RESET
CLK MCLK
PLL, Clock Generation
Low-power Single-channel Decimation Filter
Features
Single-channel Digital Decimation Filter
Multiple On-chip FIR and IIR Coefficient SetsProgrammable Coefficients for Custom FiltersSynchronous Operation
Integrated PLL for Clock Generation
1.024 MHz, 2.048 MHz, or 4.096 MHz InputStandard Clock or Manchester Input
Selectable Output Word Rate
4000, 2000, 1000, 500, 333, 250 SPS200, 125, 100, 50, 40, 25, 20, 10, 5, 1 SPS
Digital Gain and Offset CorrectionsTest DAC Bit-stream Generator
Digital Sine Wave Output
Time Break Controller, General-purpose I/OMicrocontroller or EEPROM ConfigurationSmall-footprint, 28-pin SSOP PackageLow Power Consumption
16 mW at 500 SPS OWR
Flexible Power Supplies
I/O Interface and PLL: 3.3 V or 5.0 VDigital Logic Core: 2.5 V, 3.3 V or 5.0 V
I
Description
The CS5378 is a multi-function digital filter utilizing a low­power signal processing architecture to achieve efficient filtering for a delta-sigma-type modulator. By combining the CS537 8 with a CS33 01A/02A di fferential a mplifier and a CS5373A modulator + test DAC, a synchronous high-resolution, self- testing, sin gle-channel m easure­ment system can be designed quickly and easily.
Digital filter coefficients for the CS5378 FIR and IIR filters are included on-chip for a simple setup, or they can be programmed for custom ap plications. Selectable digital filter decimation ratios produce output wor d rates from 4000 SPS to 1 SPS, resulting in measurement band­widths ra nging fro m 16 00 Hz down to 400 mHz whe n using the on-chip coefficient sets.
The CS5378 includes integrated peripherals to simplify system d esign: a low- jitter PL L for standard clo ck or Manchester inpu ts, offset and gain co rrections, a test DAC bit stream generator, a tim e break controller, and eight general-purpose I/O pins.
ORDERING INFORMATION
See page 86.
http://www.cirrus.com
Copyright Cirrus Logic, Inc. 2010
(All Rights Reserved)
2&7 ‘10
DS639F3
TABLE OF CONTENTS
1. General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6
1.1. Digital Filter Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6
1.2. Integrated Peripheral Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
1.3. System Level Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
1.4. Configuration Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8
2. Characteristics and Specifications . . . . . . . . . . . . . . . . . . . . . . . . . 12
Specified Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
Digital Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
Power Consumption. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
Switching Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
3. System Design with CS5378. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.1. Power Supplies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18
3.2. Reset Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18
3.3. PLL and Clock Generation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18
3.4. Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19
3.5. System Configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19
3.6. Digital Filter Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19
3.7. Data Collection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19
3.8. Integrated peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19
4. Power Supplies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20
4.1. Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20
4.2. Bypass Capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20
4.3. Power Consumption. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20
5. Reset Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
5.1. Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
5.2. Reset Self-Tests. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
5.3. Boot Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
6. PLL and Clock Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
6.1. Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22
6.2. PLL Mode Select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22
6.3. Synchronous Clocking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22
6.4. Master Clock Jitter and Skew. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23
7. Synchronization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
7.1. Pin Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24
7.2. MSYNC Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24
7.3. Digital Filter Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24
7.4. Modulator Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24
7.5. Test Bit Stream Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24
8. Configuration By EEPROM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
8.1. Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25
8.2. EEPROM Hardware Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25
8.3. EEPROM Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25
8.4. EEPROM Configuration Commands . . . . . . . . . . . . . . . . . . . . . . . . . . .27
8.5. Example EEPROM Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29
9. Configuration By Microcontroller . . . . . . . . . . . . . . . . . . . . . . . . . . 30
CS5378
DS639F3 2
9.1. Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30
9.2. Microcontroller Hardware Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . .30
9.3. Microcontroller Serial Transactions . . . . . . . . . . . . . . . . . . . . . . . . . . . .30
9.4. Microcontroller Configuration Commands . . . . . . . . . . . . . . . . . . . . . . .33
9.5. Example Microcontroller Configuration . . . . . . . . . . . . . . . . . . . . . . . . .35
10. Modulator Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
10.1. Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36
10.2. Modulator Clock Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36
10.3. Modulator Synchronization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36
10.4. Modulator Data Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37
10.5. Modulator Flag Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37
11. Digital Filter Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
11.1. Filter Coefficient Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38
11.2. Filter Configuration Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38
12. SINC Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
12.1. SINC1 Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40
12.2. SINC2 Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40
12.3. SINC3 Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40
12.4. SINC Filter Synchronization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40
13. FIR Filter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44
13.1. FIR1 Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44
13.2. FIR2 Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44
13.3. On-Chip FIR Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44
13.4. Programmable FIR Coefficients. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45
13.5. FIR Filter Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45
14. IIR Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
14.1. IIR Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52
14.2. IIR1 Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52
14.3. IIR2 Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52
14.4. IIR3 Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53
14.5. On-Chip IIR Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53
14.6. Programmable IIR Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53
14.7. IIR Filter Synchronization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53
15. Gain and Offset Correction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
15.1. Gain Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56
15.2. Offset Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56
15.3. Offset Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57
16. Serial Data Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58
16.1. Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58
16.2. Serial Data Format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58
16.3. Serial Data Transactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59
17. Test Bit Stream Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60
17.1. Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60
17.2. TBS Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60
17.3. TBS Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60
17.4. TBS Data Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61
17.5. TBS Sine Wave Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61
17.6. TBS Loopback Testing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62
CS5378
DS639F3 3
17.7. TBS Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62
18. Time Break Controller. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63
18.1. Pin Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63
18.2. Time Break Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63
18.3. Time Break Delay. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63
19. General Purpose I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
19.1. Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64
19.2. GPIO Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64
19.3. GPIO Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64
19.4. GPIO Input Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64
19.5. GPIO Output Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64
20. Register Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
20.1. SPI Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66
20.2. Digital Filter Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71
21. Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
22. Package Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
23. Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .86
24. Environmental, Manufacturing, & Handling Information. . . . . . . 86
25. Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
CS5378
LIST OF FIGURES
Figure 1. CS5378 Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Figure 2. Digital Filtering Stages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Figure 3. FIR and IIR Coefficient Set Selection Word . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Figure 4. MOSI Write Timing in SPI Slave Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 5. MISO Read Timing in SPI Slave Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 6. Serial Data Read Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 7. SYNC, MCLK, MSYNC, MDATA Interface Timing. . . . . . . . . . . . . . . . . . . . . 16
Figure 8. TBS Output Data Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 9. Single-Channel System Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 10. Power Supply Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Figure 11. Reset Control Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 12. Clock Generation Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 13. Synchronization Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Figure 14. EEPROM Configuration Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Figure 15. EEPROM Serial Read Transactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Figure 16. 8 Kbyte EEPROM Memory Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Figure 17. Serial Interface Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Figure 18. Microcontroller Serial Transactions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Figure 19. SPI Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Figure 20. Modulator Data Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Figure 21. Digital Filter Stages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Figure 22. FIR and IIR Coefficient Set Selection Word . . . . . . . . . . . . . . . . . . . . . . . . . 39
Figure 23. SINC Filter Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Figure 24. SINC Filter Stages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Figure 25. FIR Filter Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Figure 26. FIR Filter Stages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Figure 27. FIR1 Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Figure 28. FIR2 Linear Phase Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
DS639F3 4
Figure 29. FIR2 Minimum Phase Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Figure 30. IIR Filter Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Figure 31. IIR Filter Stages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Figure 32. Gain and Offset Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Figure 33. Serial Data Interface Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Figure 34. 32-bit Serial Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Figure 35. SD Port Transaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Figure 36. Test Bit Stream Generator Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Figure 37. Time Break Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Figure 38. GPIO Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Figure 39. SPI Control Register SPICTRL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Figure 40. SPI Command Register SPICMD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Figure 41. SPI Data Register SPIDAT1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Figure 42. SPI Data Register SPIDAT2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Figure 43. Hardware Configuration Register CONFIG. . . . . . . . . . . . . . . . . . . . . . . . . . 72
Figure 44. GPIO Configuration Register GPCFG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Figure 45. Filter Configuration Register FILTCFG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Figure 46. Gain Correction Register GAIN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Figure 47. Offset Correction Register OFFSET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Figure 48. Time Break Counter Register TIMEBRK . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Figure 49. Test Bit Stream Configuration Register TBSCFG. . . . . . . . . . . . . . . . . . . . . 78
Figure 50. Test Bit Stream Gain Register TBSGAIN . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Figure 51. User Defined System Register SYSTEM1 . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Figure 52. Hardware Version ID Register VERSION . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Figure 53. Self Test Result Register SELFTEST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Figure 54. CS5378 Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
CS5378
LIST OF TABLES
Table 1. Microcontroller and EEPROM Configuration Commands . . . . . . . . . . . . . . . . . 9
Table 2. TBS Configurations Using On-Chip Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Table 3. SPI and Digital Filter Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Table 4. PLL and BOOT Mode Reset Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Table 5. PLL Mode Selections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Table 6. Maximum EEPROM Configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Table 7. EEPROM Boot Configuration Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Table 8. Example EEPROM File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Table 9. Microcontroller Boot Configuration Commands . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 10. Example Microcontroller Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Table 11. SINC Filter Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Table 12. SINC1 and SINC2 Filter Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Table 13. SINC3 Filter Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Table 14. FIR Filter Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Table 15. SINC + FIR Group Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Table 16. Minimum Phase Group Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Table 16. IIR Filter Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Table 17. IIR Filter Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Table 18. TBS Configurations Using On-chip Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
DS639F3 5
CS5378
Serial Interface
Decimation and Filtering Engine
Modulator D ata Interface
Test Bit Stream
Controller
Reset, Synchronization
TBSDATA
Time Break Controller
GPIO
General Purpose I/O
SCK
MOSI
VDDPAD
VDDPLL
VDDCORE
SYNC MSYNC
TIMEB
GPIO5:PLL1 GPIO4:PLL0 GPIO3 GPIO2 GPIO1
GNDPAD
GNDCORE
GNDPLL
MDATA
MFLAG
GPIO0
GPIO6:PLL2
GPIO7:BOOT
DRDY
MISO
SS:EECS
RESET
CLK MCLK
PLL, Clock Generation
Figure 1. CS5378 Block Diagram

1. GENERAL DESCRIPTION

The CS5378 is a single channel digital filter with integrated system peripherals. Figure 1 illustrates a simplified block diagram of the CS5378.

1.1 Digital Filter Features

Single channel decimation filter for CS5373A ΔΣ modulator.
Synchronous operation for simultaneous sam­pling in multi-sensor systems.
- Internal synchronization of digital filter
Output word rates, including low bandwidth rates.
- Standard output rates: 4000, 2000, 1000,
- Low bandwidth rates: 200, 125, 100, 50,
phase to an external SYNC signal.
500, 333, 250 SPS.
40, 25, 20, 10, 5, 1 SPS.
Flexible digital filter configuration. (See Figure
2)
- Cascaded SINC, FIR, and IIR filters with selectable output stage.
- Linear and minimum phase FIR low-pass filter coefficients included.
- 3 Hz Butterworth IIR high-pass filter coef­ficients included.
- FIR and IIR coefficients programmable to create a custom filter response.
Digital gain correction to normalize sensor gain.
Digital offset correction and calibration.
- Offset correction to remove measurement
DS639F3 6
CS5378
Figure 2. Digital Filtering Stages
Sinc Filter
2 - 64000
FIR1
4
FIR2
2
IIR1 IIR2
1
st
Order
2nd Order
Output to High Speed Serial Interface
DC Offset
Corrections
Output Word Rate from 4000 SPS ~ 1 SPS
Gain &
Modulator
512 kHz
Input
DC offset.
- Calibration engine for automatic calcula­tion of offset correction factor.
Time break controller to record system timing information.
- Dedicated TB status bit in the output data
stream.

1.2 Integrated Peripheral Features

Low jitter PLL to generate local clocks.
- 1.024 MHz, 2.048 MHz, 4.096 MHz stan­dard clock or Manchester encoded input.
- Programmable output delay to match sys­tem group delay.
8 General Purpose I/O (GPIO) pins for local hardware control.
Synchronous operation for simultaneous sam­pling in multi-sensor systems.
- MCLK / MSYNC output signals to syn-
chronize external components.
High speed serial data output.
- Asynchronous operation to 4 MHz for di-
rect connection to system telemetry.
- Internal 8-deep data FIFO for flexible out-
put timing.
- Selectable 24-bit data only or 32-bit sta-
tus+data output.
Digital test bit stream signal generator suitable for CS5373A ΔΣ test DAC.
- Sine wave output mode for testing total har-
monic distortion.
DS639F3 7

1.3 System Level Features

Flexible configuration options.
- Configuration 'on-the-fly' via microcon­troller or system telemetry.
- Fixed configuration via stand-alone boot EEPROM.
Low power consumption.
- 16 mW at 500 SPS OWR.
- 100 μW standby mode.
Flexible power supply configurations.
- Separate digital logic core, telemetry I/O, and PLL power supplies.
- Telemetry I/O and PLL interfaces operate
CS5378
from 3.3 V or 5 V.
- Digital logic core operates from 2.5 V,
3.3 V or 5 V.
Small 28-pin SSOP package.
- Total footprint 8 mm x 10 mm plus three bypass capacitors.

1.4 Configuration Interface

Configuration from microcontroller or stand­alone boot EEPROM.
- Microcontroller boot permits reconfigura-
tion during operation.
- EEPROM boot sets a fixed operational con­figuration.
Configuration commands written through the serial interface. (See Table 1)
- Standardized microcontroller interface us-
ing SPIregisters. (See Table 3)
- Commands write digital filter registers and
FIR / IIR filter coefficients.
- Digital filter registers set hardware config-
uration options.
DS639F3 8
Microcontroller Boot Configuration Commands
EEPROM Boot Configuration Commands
[DATA] indicates data word returned from digital filter. (DATA) indicates multiple words of this type are to be written.
Name CMD
24-bit
DAT1
24-bit
DAT2 24-bit
Description
NOP 000000 - - No Operation
WRITE DF REGISTER 000001 REG DATA Write Digital Filter Register
READ DF REGISTER 000002 REG
[DATA]
-
-
Read Digital Filter Register
WRITE FIR COEFFICIENTS 000003 NUM FIR1
(FIR COEF)
NUM FIR2
(FIR COEF)
Write Custom FIR Coefficients
WRITE IIR COEFFICIENTS 000004 a11
b11 a22 b21
b10 a21 b20 b22
Write Custom IIR Coefficients
WRITE ROM COEFFICIENTS 000005 COEF SEL - Use On-Chip Coefficients
NOP 000006 - - No Operation
NOP 000007 - - No Operation
FILTER START 000008 - - Start Digital Filter Operation
FILTER STOP 000009 - - Stop Digital Filter Operation
Name CMD
8-bit
DATA
24-bit
Description
NOP 00 - No Operation
WRITE DF REGISTER 01 REG
DATA
Write Digital Filter Register
WRITE FIR COEFFICIENTS 02 NUM FIR1
NUM FIR2
(FIR COEF)
Write Custom FIR Coefficients
WRITE IIR COEFFICIENTS 03 a11
b10 b11 a21 a22 b20 b21 b22
Write Custom IIR Coefficients
WRITE ROM COEFFICIENTS 04 COEF SEL Use On-Chip Coefficients
NOP 05 - No Operation
NOP 06 - No Operation
FILTER START 07 - Start Digital Filter Operation
Table 1. Microcontroller and EEPROM Configuration Commands
CS5378
DS639F3 9
CS5378
Bits 23:20 19:16 15:12 11:8 7:4 3:0
Selection 0000 0000 IIR2 IIR1 FIR2 FIR1
Figure 3. FIR and IIR Coefficient Set Selection Word
Bits 15:12 IIR2 Coefficients
0000 3 Hz @ 2000 SPS
0001 3 Hz @ 1000 SPS
0010 3 Hz @ 500 SPS
0011 3 Hz @ 333 SPS
0100 3 Hz @ 250 SPS
Bits 11:8 IIR1 Coefficients
0000 3 Hz @ 2000 SPS
0001 3 Hz @ 1000 SPS
0010 3 Hz @ 500 SPS
0011 3 Hz @ 333 SPS
0100 3 Hz @ 250 SPS
Bits 7:4 FIR2 Coefficients
0000 Linear Phase
0001 Minimum Phase
Bits 3:0 FIR1 Coefficients
0000 Linear Phase
0001 Minimum Phase
Test Bit Stream Characteristic Equation:
(Signal Freq) * (# TBS Data) * (Interpolation + 1) = Output Rate Example: (31.25 Hz) * (1024) * (0x07 + 1) = 256 kHz
Signal
Frequency
(TBSDATA)
Output
Rate
(TBSCLK)
Output Rate
Selection
(RATE)
Interpolation
Selection
(INTP)
10.00 Hz 256 kHz 0x4 0x18
10.00 Hz 512 kHz 0x5 0x31
25.00 Hz 256 kHz 0x4 0x09
25.00 Hz 512 kHz 0x5 0x13
31.25 Hz 256 kHz 0x4 0x07
31.25 Hz 512 kHz 0x5 0x0F
50.00 Hz 256 kHz 0x4 0x04
50.00 Hz 512 kHz 0x5 0x09
125.00 Hz 256 kHz 0x4 0x01
125.00 Hz 512 kHz 0x5 0x03
Table 2. TBS Configurations Using On-Chip Data
DS639F3 10
CS5378
SPI Registers
Digital Filter Registers
Name Addr. Type # Bits Description
SPICTRL 00 - 02 R/W 8, 8, 8 SPI Control
SPICMD 03 - 05 R/W 8, 8, 8 SPI Command
SPIDAT1 06 - 08 R/W 8, 8, 8 SPI Data 1
SPIDAT2 09 - 0B R/W 8, 8, 8 SPI Data 2
Name Addr. Type # Bits Description
CONFIG 00 R/W 24 Hardware Configuration
RESERVED 01-0D R/W 24 Reserved
GPCFG 0E R/W 24 GPIO[7:0] Direction, Pull-up Enable, and Data
RESERVED 0F-1F R/W 24 Reserved
FILTCFG 20 R/W 24 Digital Filter Configuration
GAIN 21 R/W 24 Gain Correction
RESERVED 22-24 R/W 24 Reserved
OFFSET 25 R/W 24 Offset Correction
RESERVED 26-28 R/W 24 Reserved
TIMEBRK 29 R/W 24 Time Break Delay
TBSCFG 2A R/W 24 Test Bit Stream Configuration
TBSGAIN 2B R/W 24 Test Bit Stream Gain
SYSTEM1 2C R/W 24 User Defined System Register 1
SYSTEM2 2D R/W 24 User Defined System Register 2
VERSION 2E R/W 24 Hardware Version ID
SELFTEST 2F R/W 24 Self-Test Result Code
Table 3. SPI and Digital Filter Registers
Table 4. PLL and BOOT Mode Reset Configurations
PLL[2:0] Mode Selection on Reset
111 32.768 MHz clock input (PLL bypass).
110 1.024 MHz clock input.
101 2.048 MHz clock input.
100 4.096 MHz clock input.
011 32.768 MHz clock input (PLL bypass).
010 1.024 MHz Manchester input.
001 2.048 MHz Manchester input.
000 4.096 MHz Manchester input.
Configuration Note:
States of the PLL[2:0] and BOOT pins are latched immediately after reset to select modes.
These pins have a weak (~100 kΩ) pull-up re­sistor enabled by default. An external 10 kΩ pull-down is required to set a low condition.
BOOT Mode Selection on Reset
1 EEPROM boot
0 Microcontroller boot
DS639F3 11
CS5378

2. CHARACTERISTICS AND SPECIFICATIONS

Min / Max characteristics and specifications are guaranteed over the Specified Operating Conditions.
Typical performance characteristics and specifications are derived from measurements taken at nomi­nal supply voltages and TA = 25°C.
GND, GND1, GND2 = 0 V, all voltages with respect to 0 V.

SPECIFIED OPERATING CONDITIONS

Parameter Symbol Min Nom Max Unit
Logic Core Power Supply VDDCORE 2.375 2.5 5.25 V
PLL Power Supply VDDPLL 3.135 3.3 5.25 V
I/O Power Supply VDDPAD 3.135 3.3 5.25 V
Ambient Operating Temperature Industrial (-IQ) T
A
-40 - 85 °C

ABSOLUTE MAXIMUM RATINGS

Parameter Symbol Min Max Units
DC Power Supplies Logic Core
Input Current, Any Pin Except Supplies (Note 1) I
Input Current, Power Supplies (Note 1) I
Output Current (Note 1) I
Power Dissipation P
Digital Input Voltages V
Ambient Operating Temperature (Power Applied) T
Storage Temperature Range T
1. Transient currents up to 100 mA will not cause SCR latch-up.
PLL
I/O
VDDCORE
VDDPLL VDDPAD
IN
IN
OUT
DN
IND
A
STG
-0.3
-0.3
-0.3
10mA
50mA
25mA
-500mW
-0.3 VDD+0.3 V
-40 85 °C
-65 150 °C
6.0
6.0
6.0
V V V
DS639F3 12

THERMAL CHARACTERISTICS

2.6 V
0.7 V
t
fallin
t
risein
4.6 V
0.4 V
t
riseout
t
fallout
0.90 * VDD
0.10 * VDD
0.90 * VDD
0.10 * VDD
Parameter Symbol Min Typ Max Unit
Allowable Junction Temperature T
Junction to Ambient Thermal Impedance (4-Layer PCB) Θ
Ambient Operating Temperature (Power Applied) T

DIGITAL CHARACTERISTICS

Parameter Symbol Min Typ Max Unit
High-Level Input Drive Voltage V
Low-Level Input Drive Voltage V
High-Level Output Drive Voltage I
Low-Level Output Drive Voltage I
Rise Times, Digital Inputs t
Fall Times, Digital Inputs t
Rise Times, Digital Outputs t
Fall Times, Digital Outputs t
Input Leakage Current (Note 2) I
3-State Leakage Current I
Digital Input Capacitance C
Digital Output Pin Capacitance C
= -40 µA V
out
= +40 µA V
out
RISE
FALL
RISE
FALL
OUT
IH
OH
OL
IN
OZ
IL
IN
JA
A
J
--13C
-50 °C / W
-40 - +85 °C
0.6 * VDD - VDD V
0.0 - 0.8 V
VDD - 0.3 - VDD V
0.0 - 0.3 V
--100ns
--100ns
--100ns
--100ns
1± 10µA
--± 10µA
-9-pF
-9-pF
CS5378
Notes: 2. Maximum leakage for pins with pull-up resistors (RESET, SS:EECS, GPIO, MOSI, SCK) is ±250 μA.

POWER CONSUMPTION

Parameter Symbol Min Typ Max Unit
Operational Power Consumption
1.024 MHz Digital Filter Clock PWR
2.048 MHz Digital Filter Clock PWR
4.096 MHz Digital Filter Clock PWR
8.192 MHz Digital Filter Clock PWR
Standby Power Consumption
32 kHz Digital Filter Clock, Filter Stopped PWR
1
2
4
8
S
-12-mW
-14-mW
-16-mW
-24-mW
- 100 - µW
DS639F3 13

SWITCHING CHARACTERISTICS

Figure 4. MOSI Write Timing in SPI Slave Mode
SSI
MOSI
SCLK
MSB MSB - 1
LSB
t
6
t
5
t
4
t
3
t
2
t
1
SCK
SS:EECS
Figure 5. MISO Read Timing in SPI Slave Mode
MISO
SCLK
MSB MSB - 1 LSB
t
10
t
9
t
8
t
7
SSI
SS:EECS
SCK
Serial Configuration Interface Timing (External Master)
CS5378
Parameter Symbol Min Typ Max Unit
MOSI Write Timing
SS:EECS
Data Set-up Time Prior to SCK Rising t
Data Hold Time After SCK Rising t
SCK High Time t
SCK Low Time t
SCK Falling Prior to SS:EECS
Enable to Valid Latch Clock t
Disable t
1
2
3
4
5
6
60 - - ns
60 - - ns
120 - - ns
120 - - ns
120 - - ns
60 - - ns
MISO Read Timing
SCK Falling to New Data Bit t
SCK High Time t
SCK Low Time t
SS:EECS
DS639F3 14
Rising to MISO Hi-Z t
7
8
9
10
- - 60 ns
120 - - ns
120 - - ns
--150ns
SWITCHING CHARACTERISTICS
Figure 6. Serial Data Read Timing
MISO
SCK
t
3
DRDY
t
4
t
2
t
1
t
5
Serial Data Interface Timing
CS5378
Parameter Symbol Min Typ Max Unit
DRDY
Falling Edge to SCK Rising t
SCK Falling to New Data Bit t
SCK High Time t
SCK Low Time t
Final SCK Falling to DRDY
Rising t
1
2
3
4
5
60 - - ns
--120ns
120 - - ns
120 - - ns
60 - - ns
DS639F3 15
SWITCHING CHARACTERISTICS
MSYNC
MCLK
MDATA
Figure 7. SYNC, MCLK, MSYNC, MDATA Interface Timing
t
msd
t
msd
t
msh
Data1 Data2
SYNC
f
MCLK
2.048 MHz 1.024 MHz
t
msd
= T
MCLK
/ 4 t
msd
= 122 ns t
msd
= 244 ns
t
msh
= T
MCLK
t
msh
= 488 ns t
msh
= 976 ns
Note: SYNC input latched on MCLK rising edge. MSYNC output triggered by MCLK falling edge.
CLK, SYNC, MCLK, MSYNC, and MDATA
CS5378
Master Clock Frequency (Note 3) CLK 32 32.768 33 MHz
Master Clock Duty Cycle DTY 40 - 60 %
Master Clock Rise Time t
Master Clock Fall Time t
Master Clock Jitter JTR - - 300 ps
Synchronization after SYNC rising (Note 4) SYNC -2 - 2 μs
MSYNC Setup Time to MCLK rising t
MCLK rising to Valid MDATA t
MSYNC falling to MCLK rising t
Notes: 3. PLL bypass mode. The PLL generates a 32.768 MHz master clock when enabled.
4. Sampling synchronization between multiple CS5378 devices receiving identical SYNC signals.
DS639F3 16
Parameter Symbol Min Typ Max Unit
- - 20 ns
- - 20 ns
20 - - ns
- - 75 ns
20 - - ns
RISE
FALL
mss
mdv
msf
SWITCHING CHARACTERISTICS
Figure 8. TBS Output Data Timing
TBSDATA
MCLK
t
2
t
1
Note: Example timing shown for a 256 kHz output rate and no programmable delays.
Test Bit Stream (TBS)
CS5378
Parameter Symbol Min Typ Max Unit
TBS Data Output Timing
TBS Data Bit Rate - 256 - kbps
TBS Data Rising to MCLK Rising Setup Time t
MCLK Rising to TBS Data Falling Hold Time (Note 5) t
5. TBSDATA can be delayed from 0 to 63 full bit periods. The timing diagram shows no TBSDATA delay.
1
2
60 - - ns
60 - - ns
DS639F3 17
CS5378
ΔΣ
Modulator
Test DAC
Digital Filter
AMP
Differential
Sensor
M U X
μController
or
Configuration
EEPROM
System
Telemetry
CS3301A CS3302A
CS5378
CS5373A
Figure 9. Single-Channel System Block Diagram

3. SYSTEM DESIGN WITH CS5378

Figure 9 illustrates a simplified block diagram of the CS5378 in a single channel measurement sys­tem.
A differential sensor is connected through the CS3301A/02A differential amplifiers to the CS5373A ΔΣ modulator, where analog to digital conversion occurs. The modulator’s 1-bit output connects to the CS5378 MDATA input, where the oversampled ΔΣ data is decimated and filtered to 24-bit output samples at a programmed output rate. These output samples are buffered into an 8-deep data FIFO and then passed to the system telemetry.
System self tests are performed by connecting the CS5378 test bit stream (TBS) generator to the CS5373A test DAC. Analog tests drive differential signals from the CS5373A test DAC into the mul­tiplexed inputs of the CS3301A/02A amplifiers or directly to the differential sensor. Digital loopback tests internally connect the TBS digital output di­rectly to the CS5378 modulator input.

3.1 Power Supplies

The system shown in Figure 9 typically operates from a ±2.5 V analog power supply and a 3.3 V digital power supply. The CS5378 logic core can be powered from 2.5 V to minimize power con­sumption, if required.

3.2 Reset Control

System reset is required only for the CS5378 de­vice, and is a standard active low signal that can be generated by a power supply monitor or microcon­troller. Other system devices default to a power­down state when the CS5378 is reset.

3.3 PLL and Clock Generation

A PLL is included on the CS5378 to generate an in­ternal 32.768 MHz master clock from a
1.024 MHz, 2.048 MHz, or 4.096 MHz standard clock or Manchester encoded input. Clock inputs for other system devices are driven by clock out­puts from the CS5378.
DS639F3 18
CS5378

3.4 Synchronization

Digital filter phase and analog sample timing of the ΔΣ modulator connected to the CS5378 are syn­chronized by a rising edge on the SYNC pin. If a synchronization signal is received identically by all CS5378 devices in a measurement network, syn­chronous sampling across the network is guaran­teed.

3.5 System Configuration

Through the serial configuration interface, filter coefficients and digital filter register settings can either be programmed by a microcontroller or auto­matically loaded from an external EEPROM after reset. System configuration is only required for the CS5378 device, as other devices are configured via the CS5378 General Purpose I/O pins.
Two registers in the digital filter, SYSTEM1 and SYSTEM2 (0x2C, 0x2D), are provided for user de­fined system information. These are general pur­pose registers that will hold any 24-bit data values written to them.

3.6 Digital Filter Operation

3.7 Data Collection

Data is collected from the CS5378 through the se­rial data interface. When data is available, serial transactions are automatically initiated to transfer 24-bit data or 32-bit status+data from the output FIFO to the system telemetry. The output FIFO has eight data locations to permit latency in data collec­tion.

3.8 Integrated peripherals

Test Bit Stream (TBS)
A digital signal generator built into the CS5378 produces a 1-bit ΔΣ sine wave. This digital test bit stream is connected to the CS5373A test DAC to create high quality analog test signals or internally looped back to the CS5378 MDATA input to test the digital filter and data collection circuitry.
Time Break
Timing information is recorded during data collec­tion by strobing the TIMEB pin. A dedicated flag in the sample status bits, TB, is set high to indicate during which measurement the timing event oc­curred.
After analog to digital conversion occurs in the modulator, the oversampled 1-bit ΔΣ data is read into the CS5378 through the MDATA pin. The dig­ital filter then processes data through the enabled filter stages, decimating it to 24-bit words at a pro­grammed output word rate. The final 24-bit sam­ples are concatenated with 8-bit status words and placed into an output FIFO.
DS639F3 19
General Purpose I/O (GPIO)
Eight general purpose pins are available on the CS5378 for system control. Each pin can be set as input or output, high or low, with an internal pull­up enabled or disabled. The CS3301A/02A and CS5373A devices in Figure 9 are configured by simple pin settings controlled through the CS5378 GPIO pins.

4. POWER SUPPLIES

1
2
3
4
5
6
7
821
22
23
24
25
26
27
28
9
10
11
12 17
18
19
20
13
14 15
16
VDDPAD
GNDPAD
GNDCORE
VDDCORE
Figure 10. Power Supply Block Diagram
GNDPLL
VDDPLL
CS5378
The CS5378 has three sets of power supply inputs. One set supplies power to the I/O pins of the device (VDDPAD), another supplies power to the logic core (VDDCORE) and the third supplies power to the PLL (VDDPLL). The I/O pin power supplies determine the maximum input and output voltages when interfacing to peripherals, the logic core pow­er supply largely determines the power consump­tion of the CS5378 and the PLL power supply powers the internal PLL circuitry.

4.1 Pin Descriptions

VDDPAD, GNDPAD - Pins 9, 10
Sets the interface voltage to a microcontroller, sys­tem telemetry, modulator, and test DAC. VDD­PAD can be driven with voltages from 3.3 V to 5V.
VDDPLL, GNDPLL - Pins 15, 16
Sets the operational voltage of the internal CS5378 PLL circuitry. Can be driven with voltages from
3.3 V to 5 V.
DS639F3 20
VDDCORE, GNDCORE - Pins 21, 22
Sets the operational voltage of the CS5378 logic core. VDDCORE can be driven with voltages from
2.5 V to 5 V. A 2.5 V supply will minimize total power consumption.

4.2 Bypass Capacitors

Each power supply pin should be bypassed with parallel 1 μF and 0.01 μF caps, or by a single
0.1 μF cap, placed as close as possible to the CS5378. Bypass capacitors should be ceramic (X7R, C0G), tantalum, or other good quality di­electric type.

4.3 Power Consumption

Power consumption of the CS5378 depends pri­marily on the power supply voltage of the logic core (VDDCORE) and the programmed digital fil­ter clock rate. Digital filter clock rates are selected based on the required output word rate as explained in “Digital Filter Initialization” on page 38.

5. RESET CONTROL

RESET
Self-Tests
SELFTEST
Register
BOOT
Pin
EEPROM
Boot
μController
Boot
1
0
Figure 11. Reset Control Block Diagram
BOOT Reset Mode
1 EEPROM boot
0 Microcontroller boot
Self-Test
Type
Pass
Code
Fail
Code
Program ROM 0x00000A 0x00000F
Data ROM 0x0000A0 0x0000F0
Program RAM 0x000A00 0x000F00
Data RAM 0x00A000 0x00F000
Execution Unit 0x0A0000 0x0F0000
CS5378
The CS5378 reset signal is active low. When re­leased, a series of self-tests are performed and the device either actively boots from an external EE­PROM or enters an idle state waiting for microcon­troller configuration.

5.1 Pin Descriptions

RESET
Reset input, active low.
- Pin 18
GPIO7:BOOT - Pin 28
Boot mode select, latched immediately following reset. Weak (~100 kΩ) internal pull-up defaults high, external 10 kΩ pull-down required to set low.
combined into the SELFTEST register (0x2F), with 0x0AAAAA indicating all passed. Self-tests require 60 ms to complete.

5.3 Boot Configurations

The logic state of the BOOT pin after reset deter­mines if the CS5378 actively reads configuration information from EEPROM or enters an idle state waiting for a microcontroller to write configuration commands.
EEPROM Boot
When the BOOT pin is high after reset, the CS5378 actively reads data from an external serial EE­PROM and then begins operation in the specified configuration. Configuration commands and data are encoded in the EEPROM as specified in the ‘Configuration By EEPROM’ section of this data sheet, starting on page 25.

5.2 Reset Self-Tests

After RESET is released but before booting, a se­ries of digital filter self-tests are run. Results are
DS639F3 21
Microcontroller Boot
When the BOOT pin is low after reset, the CS5378 enters an idle state waiting for a microcontroller to write configuration commands and initialize filter operation. Configuration commands and data are written as specified in the ‘Configuration By Mi­crocontroller’ section of this data sheet, starting on page 30.

6. PLL AND CLOCK GENERATION

PLL
CLK
DSPCFG Register
MCLK
Internal Clocks
Figure 12. Clock Generation Block Diagram
Clock Divider
Generator
and MCLK
Output
PLL[2:0]
32.768 MHz
PLL[2:0] PLL Mode
111 32.768 MHz clock input (PLL bypass).
110 1.024 MHz clock input.
101 2.048 MHz clock input.
100 4.096 MHz clock input.
011 32.768 MHz clock input (PLL bypass).
010 1.024 MHz Manchester input.
001 2.048 MHz Manchester input.
000 4.096 MHz Manchester input.
Table 5. PLL Mode Selections
CS5378
The CS5378 requires a 32.768 MHz master clock, which can be supplied directly or from an internal phase locked loop. This master clock is used to generate an internal digital filter clock and an exter­nal modulator clock.
The internal PLL will lock to standard clock or Manchester encoded input signals. The input type and input frequency are selected by the reset state of the PLL mode select pins.

6.1 Pin Descriptions

CLK - Pin 17
Clock or PLL input, standard clock or Manchester.
GPIO[4:6]:PLL[0:2] - Pins 5, 6, 7
PLL mode select, latched immediately after reset. Weak (~100 kΩ) internal pull-ups default high, ex­ternal 10 kΩ pull-downs required to set low.
A weak internal pull-up resistor (~100 kΩ) will hold the PLL mode select pins high by default. To force the pin low on reset, an external 10 kΩ pull­down resistor should be connected. Once the pin state is latched following reset, the GPIO[4:6] pins function without affecting PLL operation.

6.3 Synchronous Clocking

To guarantee synchronous measurements through­out a sensor network, a system clock should be dis­tributed to arrive at all nodes in phase. The distributed system clock can either be the full
32.768 MHz master clock, or the CS5378 PLL can create a synchronous 32.768 MHz clock from a slower clock. To ensure the generated clock re­mains synchronous with the network, the CS5378 PLL uses a phase/frequency detector architecture.

6.2 PLL Mode Select

The CS5378 PLL operational mode and frequency are selected immediately after reset based on the state of the PLL[0:2] pins. On the rising edge of the reset signal, the digital high or low state of the PLL[0:2] pins is latched and used to program the clock input type and frequency.
DS639F3 22
CS5378

6.4 Master Clock Jitter and Skew

Care must be taken to minimize jitter and skew on the distributed system clock as both parameters af­fect measurement performance.
Jitter on the input clock causes jitter in the generat­ed modulator clock, resulting in sample timing er­rors and increased noise.
Skew between input clocks from node to node cre­ates a sample timing offset, resulting in systematic measurement errors in a reconstructed signal.
DS639F3 23

7. SYNCHRONIZATION

Figure 13. Synchronization Block Diagram
SYNC
MSYNC
Digital
Filter
Generator
MSYNC
0 1
MSEN
0
1
TSYNC
Test Bit
Stream
Output
CS5378
The CS5378 has a dedicated SYNC input that aligns the internal digital filter phase and generates an external signal for synchronizing modulator an­alog sampling. By providing simultaneous rising edges to the SYNC pins of multiple CS5378 devic­es, synchronous sampling across a network can be guaranteed.

7.1 Pin Description

SYNC - Pin 19
Synchronization input, rising edge triggered.

7.2 MSYNC Generation

The SYNC signal rising edge is used to generate a retimed synchronization signal, MSYNC. The MSYNC signal reinitializes internal digital filter phase and is driven onto the MSYNC output pin to phase align modulator analog sampling.
The MSEN bit in the digital filter CONFIG register (0x00) enables MSYNC generation. See “Modula­tor Interface” on page 36 for more information about MSYNC.

7.3 Digital Filter Synchronization

The internal MSYNC signal resets the digital filter state machine to establish a known digital filter
phase. Filter convolutions restart, and the next out­put word is available one full sample period later.
Repetitive synchronization is supported when SYNC events occur at exactly the selected output rate. In this case, re-synchronization will occur at the start of a convolution cycle when the digital fil­ter state machine is already reset.

7.4 Modulator Synchronization

The external MSYNC signal phase aligns modula­tor analog sampling when connected to the CS5373A MSYNC input. This ensures synchro­nous analog sampling relative to MCLK.
Repetitive synchronization of the modulators is supported when SYNC events occur at exactly the selected output rate. In this case, re-synchroniza­tion always occurs at the start of analog sampling.

7.5 Test Bit Stream Synchronization

When the test bit stream generator is enabled, an MSYNC signal can reset the internal data pointer. This restarts the test bit stream from the first data point to establish a known output signal phase.
The TSYNC bit in the digital filter TBSCFG regis­ter (0x2A) enables synchronization of the test bit stream by MSYNC. When TSYNC is disabled, the test bit stream phase is not affected by MSYNC.
DS639F3 24

8. CONFIGURATION BY EEPROM

SS:EECS
SCK
MISO
MOSI
CS5378 AT25640
CS
SCK
SI
SO
27
24
25
26
1
6
2
5
VD
GND
WP VCC HOLD
387
4
Figure 14. EEPROM Configuration Block Diagram
CS5378
After reset, the CS5378 reads the state of the GPIO7:BOOT pin to determine a source for con­figuration commands. If BOOT is high, the CS5378 initiates serial transactions to read config­uration information from an external EEPROM.

8.1 Pin Descriptions

Pins required for EEPROM boot are listed here, other serial pins are inactive.
SCK - Pin 24
Serial clock output, nominally 1.024 MHz.
MISO - Pin 25
Serial data input pin. Valid on rising edge of SCK, transition on falling edge.
MOSI - Pin 26
Serial data output pin. Valid on rising edge of SCK, transition on falling edge.
SS:EECS - Pin 27
EEPROM chip select output, active low.

8.2 EEPROM Hardware Interface

When booting from EEPROM the CS5378 actively performs serial transactions, as shown in Figure 15,
DS639F3 25
to read configuration commands and data. 8-bit SPI opcodes and 16-bit addresses are combined to read back 8-bit configuration commands and 24-bit configuration data.
System design should include a connection to the configuration EEPROM for in-circuit reprogram­ming. The CS5378 serial pins tri-state when inac­tive to support external connections to the serial bus.

8.3 EEPROM Organization

The boot EEPROM holds the 8-bit commands and 24-bit data required to initialize the CS5378 into an operational state. Configuration information starts at memory location 0x10, with addresses 0x00 to 0x0F free for use as manufacturing header informa­tion.
The first serial transaction reads a 1-byte command from memory location 0x10 and then, depending on the command type, reads multiple 3-byte data words to complete the command. Command and data reads continue until the ‘Filter Start’ command is recognized.
SCK
MOSI
SS:EECS
MSB LSB
MISO
X
612345
MSB LSB612345
18276543
Cycle
MOSI
MISO
0x03 ADDR
DATA1 DATA3DATA2
SS:EECS
READ
1 BYTE / 3 BYTE
ADDR
CMD
ADDR
DATA
2 BYTE
Figure 15. EEPROM Serial Read Transactions
Serial Read from EEPROM
Instruction Opcode Address Definition
Read 0x03 ADDR[15:0] Read data beginning at the address given in ADDR.
CS5378
DS639F3 26
CS5378
Figure 16. 8 Kbyte EEPROM Memory Organization
0000h
1FFFh
EEPROM Manufacturing Information
EEPROM Command and Data Values
Mfg Header
8-bit Command
0010h
N x 24-bit Data
8-bit Command N x 24-bit Data
. . .
Table 6. Maximum EEPROM Configuration
Memory Requirement Bytes
Digital Filter Registers (12) 84 FIR Coefficients (255+255) 1537 IIR Coefficients (3+5) 25 ‘Filter Start’ Command 1
Total Bytes 1647
Write DF Register - 0x01
This EEPROM command writes a data value to the specified digital filter register. Digital filter regis­ters control hardware peripherals and filtering functions. See “Digital Filter Registers” on page 71 for the bit definitions of the digital filter registers.
Sample Command:
Write digital filter register 0x00 with data value 0x060431. Then write 0x20 with data 0x000240.
01 00 00 00 06 04 31 01 00 00 20 00 02 40
Write FIR Coefficients - 0x02
The maximum number of bytes that will be written for a single configuration is less than 2 KByte (16 Kbit), including command overhead:
Supported serial configuration EEPROMs are SPI mode 0 (0,0) compatible, 16-bit addresses, 8­bit data, larger than 2 KByte (16 KBit). ATMEL AT25640, AT25128, or similar serial EEPROMs are recommended.

8.4 EEPROM Configuration Commands

A summary of available EEPROM commands is shown in Table 7.
This EEPROM command writes custom coeffi­cients for the FIR1 and FIR2 filters. The first two data words set the number of FIR1 and FIR2 coef­ficients to be written. The remaining data words are the concatenated FIR1 and FIR2 coefficients.
A maximum of 255 coefficients can be written for each FIR filter, though the available digital filter computation cycles will limit their practical size. See “FIR Filter” on page 44 for more information about FIR filter coefficients.
Sample Command:
Write FIR1 coefficients 0x00022E, 0x000771 then FIR2 coefficients 0xFFFFB9, 0xFFFE8D.
02 00 00 02 00 00 02 00 02 2E 00 07 71 FF FF B9 FF FE 8D
Write IIR Coefficients - 0x03
This EEPROM command writes custom coeffi­cients for the two stage IIR filter. The IIR architec­ture and number of coefficients is fixed, so eight data words containing coefficient values always immediately follow the command byte. The IIR co­efficient write order is: a11, b10, b11, a21, a22, b20, b21, and b22. See “IIR Filter” on page 52 for more information about IIR filter coefficients.
DS639F3 27
Loading...
+ 61 hidden pages