Cirrus Logic CS494502-CQ, CS494002-CQ Datasheet

CS49400 Family DSP
Multi-Standard Audio Decoder

Features

CS49300 Legacy Audio Decoder Support
Dolby Digital EXTM, Dolby Pro Logic II
DTS-ES 96/24TM, DTS 96/24TM,DTS-ES Discrete 6.1TM, DTS-ES Matrix 6.1TM,DTS Digital Surround
MPEG-2: AAC Multichannel 5.1
MPEG Multichannel and Musicam
MPEG-1/2, Layer III (MP3)
DTS Neo:6TM, LOGIC7®, SRS Circle Surround II
Cirrus Extra SurroundTM, Cirrus Original Surround 6.1 (C.O.S. 6.1)
THX Surround EXTM, THX Ultra2 Cinema
12-Channel Serial Audio Inputs
Integrated 8K Byte Input Buffer
Powerful 32-bit Audio DSP
Customer Software Security Keys
Large On-chip X,Y, and Program RAM
Supports SDRAM, SRAM, FLASH memories
16-channel PCM output
Dual S/PDIF Transmitters
SPI Serial, and Motorola®and Intel®Parallel
Host Control Interfaces
GPIO support for all common sub-circuits
TM
TM
and DTS Virtual 5.1
TM
TM
TM

Description

The CS49400 Audio Decoder DSP is targeted as a market­specific consumer entertainment processor for AV Receivers and DVD Audio/Video Players. The device is constructed using an enhanced version of the CS49300 Family DSP audio decoder followed by a 32-bit programmable post-processor DSP, which gives the designer the ability to add product differentiation through the Cirrus Framework structure and Framework module library. Dolby Digital Pro Logic II, DTS Digital Surround, MPEG Multichannel, and Cirrus Original Surround 6.1 PCM Effects Processor (capable of generating such DSP audio modes as: Hall, Theater, Church) are included in the cost of the CS49400 Family DSP. Additional algorithms available through the Crystal Ware Licensing Program, give the designer the ability to further
TM
deliver end-product differentiation.
The CS49400 contains sufficient on-chip SRAM to support decoding all major audio decoding algorithms available today including: AAC Multichannel, DTS 96/24, DTS-ES 96/24. The CS49400 also supports a glueless SDRAM/SRAM for increased all-channel delays. The SRAM interface also supports connection to an external byte-wide EPROM for code storage or Flash memory thus allowing products to be field­upgradable as new audio algorithms are developed.
This chip, teamed with Crystal Ware library, Cirrus digital interface products and mixed signal data converters, enables the conception and design of next generation digital entertainment products.
Ordering Information: See page 98
TM
TM
certified decoder
programming
TM
Software
Compressed
Digital
Interface
Digital Audio
Input
DSP AB
PLL Clock
Manager
Frame Shifter
Input
Buffer
RAM
Multi-Standard Audio Decoder
Parallel or Serial
Host Interface
P.O. Box 17847, Austin, Texas 78760 (512) 445 7222 FAX: (512) 445 7581 http://www.cirrus.com
SAI 0 SAI 1 SAI 2 SAI 3
DSP C
Programmable
ared Memory h S
This document contains information for a new product. Cirrus Logic reserves the right to modify this product without notice.
CopyrightCirrus Logic, Inc. 2002
DSP RAM
(All Rights Reserved)
Serial Audio
Interface
32-Bit DSP
DSP
ROM
External Memory
Digital
Audio
Output
Internal Bus
GPIO and I/O
Parallel or Serial
Host Interface
Interface
DAO 0
DAO 1
Controller
DS536PP2
JUL ‘02
1
TABLE OF CONTENTS
1.0 CHARACTERISTICS AND SPECIFICATIONS ...................................................................... 8
1.1 Absolute Maximum Ratings ............................................................................................... 8
1.2 Recommended Operating Conditions ................................................................................ 8
1.3 Digital D.C. Characteristics for VDD Level I/O ................................................................... 8
1.4 Digital D.C. Characteristics for VDDSD Level I/O ..............................................................9
1.5 Power Supply Characteristics ............................................................................................ 9
1.6 Switching CharacteristicsRESET .................................................................................. 9
1.7 Switching Characteristics CLKIN .................................................................................10
1.8 Switching Characteristics Intel
1.9 Switching Characteristics Intel
1.10 Switching Characteristics Motorola
1.11 Switching Characteristics Motorola
1.12 Switching Characteristics SPI Control Port Slave Mode (DSPAB) ............................19
1.13 Switching Characteristics SPI Control Port Slave Mode (DSPC) .............................. 21
1.14 Switching Characteristics Digital Audio Input (DSPAB) ............................................23
1.15 Switching Characteristics Serial Audio Input (DSPC) ............................................... 24
1.16 Switching Characteristics CMPDAT, CMPCLK (DSPAB) ......................................... 25
1.17 Switching Characteristics Parallel Data Input (DSPAB) ............................................ 26
1.18 Switching Characteristics Digital Audio Output .........................................................27
1.19 Switching Characteristics SRAM/FLASH Interface ...................................................29
1.20 Switching Characteristics SDRAM Interface ............................................................. 31
2. OVERVIEW ............................................................................................................................. 35
®
Host Slave Mode (DSPAB) ......................................11
®
Host Slave Mode (DSPC) ........................................ 13
®
Host Slave Mode (DSPAB) ............................ 15
®
Host Slave Mode (DSPC) ..............................17
Contacting Cirrus Logic Support
For a complete listing of Direct Sales, Distributor, and Sales Representative contacts, visit the Cirrus Logic web site at:
http://www.cirrus.com/corporate/contacts/sales.cfm
Dolby Digital, Dolby Digital EX, AC-3, Dolby Pro Logic, Dolby Pro Logic II, Dolby Digital EX Pro Logic II, Dolby Surround, Dolby Surround Pro Logic II, Surround EX, Virtual Dolby Digital and the AAClogo are trademarks and the Dolbyand the double-”D” symbol are registered trademarks of Dolby Laboratories Licensing Corporation. DTS, DTS Digital Surround, DTS-ES Extended Surround, DTS 96/24, DTS-ES 96/24, DTS Neo:6, and DTS Virtual 5.1 are trademarks and the DTS”, “DTS Digital Surround”, “DTS-ES”, “DTS 96/24”, “DTS-ES 96/24”, “DTS Neo:6”, “DTS Virtual 5.1logos are registered trademarks of the Digital Theater Systems Corporation. The MPEG Logois a registered trademark of Philips Electronics N.V. THX Ultra2 Cinema, Timbre-Matching, Re-EQ, Adapative Decorrelation and THX are trademarks or registered trademarks of Lucasfilm, Ltd. Surround EX is a jointly developed technology of THX and Dolby Labs, Inc. AAC (Advanced Audio Coding) is an MPEG-2-standard-baseddigital audio compression algorithm (offering up 5.1 discrete decoded channels for this implementation) collaboratively developed by AT&T, the Fraunhofer Institute, Dolby Laboratories, and the Sony Corporation. In regards to the MP3 capable functionality of the CS494XX Family DSP (via downloading of mp3_ab_494xxx_vv.uld application code) the following statements are applicable: Supply of this product conveys a license for persona l, private and non-commercial use. MPEG Layer-3 audio decoding technology licensed from Fraunhofer IIS and THOMSON Multimedia.VMAx is a registered trademark of Harman International. The LO GIC7 logo and LOGIC7 are registered trademarks of Lexicon. SRS CircleSurround, SRS Circle Suround II, SRS T ruSurround, and SRS TruSurround XT are trademarks of SRS Labs, Inc. The HDCD logo, HDCD, High Definition Compatible Digital and Pacific Microsonics are either registered trademarks or trademarks of Pacific Microsonics, Inc. in the United States and/or other countries. HDCD technology provided under license from Pacific Microsonics, Inc. This products software is covered by one or more of the following in the United States: 5,479,168; 5,638,074; 5,640,161; 5,872,531; 5,808,574; 5,838,274; 5,854,600; 5,864,311; and in Australia: 669114; with other patents pending. Intel is a registered trademark of Intel Corporation. Motorola is a registered trademark of Motorola, Inc. I Semiconductor. Purchase of I Philips I2C Patent Rights to use those components in a standard I2Csystem.Crystal Ware”, Cirrus Framework, Cirrus Extra Surround, Cirrus Triple Crossover Bass Management”, “Cirrus Quadruple Crossover Bass Managementand Cirrus Original Surround 6.1are trademarks and Cirrus Logicis a registered trademarks of Cirrus Logic, Inc. All other names are trademarks, registered trademarks, or service marks of their respective companies.
Preliminary product information describes products which are in production, but for which full characterization data is not yet available. Advance product information describes products which are in development and subject to develo pment changes. Cirrus Logic, Inc. has made best efforts to ensure that the information contained in this document is accurate an d reliable. However, the information is subject to change without notice and is provided “AS ISwithout warranty of any kind (express or implied). No responsibility is assumed by Cirrus Logic, Inc. for the use of this information, nor for infringements of patents or other rights of third parties. This document is the property of Cirrus Logic, Inc. and implies no license under patents, copyrights, trademarks, or trade secrets. No part of this publication may be copied, reproduced, stored in a retrieval system, or transmitted, in any form or by any means (electronic, mechanical, photographic, or otherwise) without the prior written consent of Cirrus Logic, Inc. Items from any Cirrus Logic website or disk may be printed for use by the user. However, no part of the printout or electronic files may be copied, reproduced, store d in a retrieval system, or transmitted, in any form or by any means (electronic, mechanical, photographic, or otherwise) without the prior written consentof Cirrus Logic, Inc.Furthermore, no part of this publication may be used as a basis for manufacture or sale of any items without the prior written consent of Cirrus Logic, Inc. The names of products of Cirrus Logic, Inc. or other vendors an d suppliers appearing in this document may be trademarks or service m arks of their respective owners which may be registered in some jurisdictions. A list of Cirrus Logic, Inc. trademarks and service marks can be found at http://www.cirrus.com.
2
C Components of Cirrus Logic, Inc., or one of its sublicensed Associated Companies conveys a license under the
2
C is a registered trademark of Philips
2
2.1 DSPAB ............................................................................................................................ 36
2.2 DSPC ............................................................................................................................... 36
3. TYPICAL CONNECTION DIAGRAMS ................................................................................... 37
3.1 Multiplexed Pins ..............................................................................................................37
3.2 Termination Requirements .............................................................................................. 37
3.3 Phase Locked Loop Filter ................................................................................................ 37
4. POWER .............................................................................................................................. 38
4.1 Decoupling ....................................................................................................................... 38
4.2 Analog Power Conditioning ............................................................................................. 38
4.3 Ground ............................................................................................................................. 38
4.4 Pads ................................................................................................................................ 38
5. CLOCKING ............................................................................................................................. 42
6. CONTROL .............................................................................................................................. 42
6.1 Serial Communication ..................................................................................................... 42
6.1.1 SPI Communication for DSPAB .......................................................................... 42
6.1.2 SPI Communication for DSPC ............................................................................ 46
6.1.3 FINTREQ Behavior: A Special Case .................................................................. 49
6.2 Parallel Host Communication for DSPAB ........................................................................ 51
6.2.5 Intel Parallel Host Communication Mode for DSPAB ......................................... 51
6.2.6 Motorola Parallel Communication Mode for DSPAB ........................................... 54
6.2.7 Procedures for Parallel Host Mode Communication for DSPAB ......................... 56
6.3 Parallel Host Communication for DSPC .......................................................................... 58
6.3.5 Intel Parallel Host Communication Mode for DSPC ............................................ 60
6.3.6 Motorola Parallel Host Communication Mode for DSPC .................................... 64
6.3.7 Procedures for Parallel Host Mode Communication for DSPC ........................... 68
7. EXTERNAL MEMORY ............................................................................................................ 70
7.1 Configuring SRAM Timing Parameters ........................................................................... 71
8. BOOT PROCEDURE .............................................................................................................. 72
8.1 Host Controlled Master Boot ........................................................................................... 72
8.2 Host Boot Via DSPC ........................................................................................................ 75
9. SOFT RESETTING THE CS49400 ......................................................................................... 77
9.1 Host Controlled Master Soft Reset .................................................................................. 77
10. HARDWARE CONFIGURATION ......................................................................................... 79
11. DIGITAL INPUT AND OUTPUT DATA FORMATS .............................................................. 79
11.1 Digital Audio Formats .................................................................................................... 79
11.1.1 I
2
S ..................................................................................................................... 79
11.1.2 Left Justified ...................................................................................................... 79
11.2 Digital Audio Input Port .................................................................................................. 79
11.3 Compressed Data Input Port ......................................................................................... 80
11.4 Input Data Hardware Configuration for CDI and DAI on DSPAB ................................. 80
11.4.1 Input Configuration Considerations ................................................................ 81
11.5 Serial Audio Input .......................................................................................................... 82
11.6 Digital Audio Output Port ............................................................................................... 82
11.6.1 S/PDIF Outputs ................................................................................................. 83
11.7 Output Data Hardware Configuration ............................................................................ 84
11.8 Creating Hardware Configuration Messages ................................................................. 85
12.0 PIN DESCRIPTION ............................................................................................................. 87
12.1 144-Pin LQFP Package Pin Layout ............................................................................... 87
12.2 100-Pin LQFP Package Pin Layout ............................................................................... 88
12.3 Pin Definitions ................................................................................................................ 89
13. ORDERING INFORMATION ................................................................................................ 99
14. PACKAGE DIMENSIONS .................................................................................................. 100
14.1 144-Pin LQFP Package ............................................................................................... 100
3
LIST OF FIGURES
Figure 1. RESET Timing ..................................................................................................................... 9
Figure 2. CLKIN with CLKSEL = VSS = PLL Enable ........................................................................ 10
Figure 3. Intel
Figure 4. Intel
Figure 5. Intel
Figure 6. Intel
Figure 7. Motorola
Figure 8. Motorola
Figure 9. Motorola
Figure 10. Motorola
Figure 11. SPI Control Port Slave Mode Timing (DSPAB) ............................................................... 20
Figure 12. SPI Control Port Slave Mode Timing (DSPC) ................................................................. 22
Figure 13. Digital Audio Input Data, Slave Clock Timing .................................................................. 23
Figure 14. Serial Audio Input Data, Slave Clock Timing ................................................................... 24
Figure 15. Serial Compressed Data Timing ...................................................................................... 25
Figure 16. Parallel Data Timing ........................................................................................................ 26
Figure 17. Digital Audio Output Data, Input and Output Clock Timing ............................................. 28
Figure 18. Digital Audio Output Data, Input and Output Clock Timing ............................................. 28
Figure 19. SRAM/Flash Controller Timing Diagram - Write Cycle .................................................... 29
Figure 20. SRAM/Flash Controller Timing Diagram - Read Cycle .................................................... 29
Figure 21. SRAM/Flash Controller Timing Diagram - Single Byte Write Cycle ................................. 30
Figure 22. SRAM/Flash Controller Timing Diagram - Single Byte Read Cycle ................................ 30
Figure 23. SDRAM Controller Timing Diagram - Load Mode Register Cycle ................................... 31
Figure 24. SDRAM Controller Timing Diagram - Burst Write Cycle .................................................. 32
Figure 25. SDRAM Controller Timing Diagram - Burst Read Cycle ................................................. 33
Figure 26. SDRAM Controller Timing Diagram - Auto Refresh Cycle .............................................. 34
Figure 27. SPI Control with External Memory - 144 Pin Package .................................................... 39
Figure 28. Intel
Figure 29. Motorola
Figure 30. SPI Write Flow Diagram for DSPAB ................................................................................ 43
Figure 31. SPI Timing for DSPAB ..................................................................................................... 44
Figure 32. SPI Read Flow Diagram for DSPAB ................................................................................ 45
Figure 33. SPI Write Flow Diagram for DSPC .................................................................................. 46
Figure 34. SPI Timing for DSPC .......................................................................................................47
Figure 35. SPI Read Flow Diagram for DSPC .................................................................................. 48
Figure 36. Intel Mode, One-Byte Write Flow Diagram for DSPAB .................................................... 53
Figure 37. Intel Mode, One-Byte Read Flow Diagram for DSPAB ................................................... 54
Figure 38. Motorola Mode, One-Byte Write Flow Diagram for DSPAB ............................................ 55
Figure 39. Motorola Mode, One-Byte Read Flow Diagram for DSPAB ............................................ 55
Figure 40. Typical Parallel Host Mode Control Write Sequence Flow Diagram for DSPAB ............. 56
Figure 41. Typical Parallel Host Mode Control Read Sequence Flow Diagram for DSPAB ............. 57
®
®
®
®
Parallel Host Mode Slave Read Cycle for DSPAB .................................................. 12
Parallel Host Mode Slave Write Cycle for DSPAB ................................................... 12
Parallel Host Slave Mode Read Cycle for DSPC ..................................................... 14
Parallel Host Slave Mode Write Cycle for DSPC ..................................................... 14
®
Parallel Host Slave Mode Read Cycle for DSPAB ........................................... 16
®
Parallel Host Slave Mode Write Cycle for DSPAB ........................................... 16
®
Parallel Host Slave Mode Read Cycle for DSPC ............................................. 18
®
Parallel Host Slave Mode Write Cycle for DSPC ............................................ 18
®
Parallel Control Mode - 144 Pin Package .............................................................. 40
®
Parallel Control Mode - 144 Pin Package ....................................................... 41
4
Figure 42. Intel Mode, One-Byte Write Flow Diagram for DSPC .......................................................60
Figure 44. Intel Mode, One-Byte Read Flow Diagram for DSPC ......................................................61
Figure 43. Intel Mode, 32-bit (4-byte) Write Flow
Diagram for DSPC .............................................................................................................................62
Figure 45. Intel Mode, 32-Bit (4-Byte) Read Flow
Diagram for DSPC .............................................................................................................................63
Figure 46. Motorola Mode, One-Byte Write Flow
Diagram for DSPC .............................................................................................................................64
Figure 47. Motorola Mode, 32-bit (4-byte) Write Flow Diagram for DSPC ........................................65
Figure 48. Motorola Mode, One-Byte Read Flow
Diagram for DSPC .............................................................................................................................66
Figure 49. Motorola Mode, 32-Bit (4-Byte) Read Flow Diagram for DSPC .......................................67
Figure 50. Typical Parallel Host Mode Control Write Sequence Flow Diagram for DSPC ................68
Figure 51. Typical Parallel Host Mode Control Read Sequence Flow Diagram for DSPC ................69
Figure 52. Host Controlled Master Boot
(Downloading both a DSPAB Application Code and a DSPC Application Code) ..............................73
Figure 53. Host Boot Via DSPC .......................................................................................................76
Figure 54. Host Controlled Master Softreset .....................................................................................78
2
Figure 55. I
S Format ........................................................................................................................80
Figure 56. Left Justified Format (Rising Edge Valid SCLK) ...............................................................80
Figure 57. Pin Layout (144-Pin LQFP Package) ...............................................................................87
Figure 58. Pin Layout (100-Pin LQFP Package) ...............................................................................88
Figure 59. 144-Pin LQFP Package Drawing ...................................................................................100
5
LIST OF TABLES
Table 1. PLL Filter Component Values...............................................................................................37
Table 2. Host Modes for DSPAB ........................................................................................................42
Table 3. Host Modes for DSPC ..........................................................................................................42
Table 4. SPI Communication Signals for DSPAB...............................................................................43
Table 5. SPI Communication Signals for DSPC .................................................................................46
Table 6. Intel Mode Communication Signals for DSPAB.................................................................... 51
Table 6. Parallel Input/Output Registers for DSPAB ..........................................................................52
Table 7. Motorola Mode Communication Signals for DSPAB.............................................................54
Table 8. Parallel Input/Output Registers for DSPC.............................................................................59
Table 9. Intel Mode Communication Signals for DSPC ......................................................................60
Table 10. Motorola Mode Communication Signals for DSPC .............................................................64
Table 11. SRAM Interface Pins .......................................................................................................... 70
Table 12. SDRAM Interface Pins ........................................................................................................70
Table 13. SRAM Controller Timing .....................................................................................................71
Table 14. SDRAM Config Register .....................................................................................................71
Table 15. Application Messages from DSPAB ...................................................................................72
Table 16. Boot Write Messages for DSPC .........................................................................................72
Table 17. Boot Read Messages from DSPC ......................................................................................72
Table 18. Digital Audio Input Port.......................................................................................................80
Table 19. Compressed Data Input Port ..............................................................................................80
Table 20. Input Data Type Configuration
(Input Parameter A).............................................................................................................81
Table 21. Input Data Format Configuration
(Input Parameter B).............................................................................................................81
Table 22. Input SCLK Polarity Configuration
(Input Parameter C) ............................................................................................................81
Table 23. Serial Audio Input Port ........................................................................................................82
Table 24. SAI Data Type Configuration
(Input Parameter D) ............................................................................................................82
Table 25. Digital Audio Output Port ....................................................................................................82
Table 26. MCLK/SCLK Master Mode Ratios ......................................................................................83
Table 27. Output Clock Configuration
(Parameter A)......................................................................................................................84
Table 28. Output Data Configuration Parameter B)...........................................................................84
Table 29. Output SCLK/LRCLK Configuration
(Parameter C) ..................................................................................................................... 84
Table 30. Output SCLK Polarity Configuration
(Parameter D) ..................................................................................................................... 85
Table 31. Example Values to be Sent to DSPAB After Download or Soft Reset................................86
Table 32. Example Values to be Sent to DSPC After Download or Soft Reset..................................86
6

1.0 CHARACTERISTICS AND SPECIFICATIONS

Note: All data sheet minimum and maximum timing parameters are guaranteed over the rated voltage and temperature. Actual production testing is performed at T
=25°C with an appropriate guardband to
A
guarantee minimum and maximum timing specifications over rated voltage and temperature.

1.1 Absolute Maximum Ratings

(VSS, VSSSD, PLLVSS = 0 V; all voltages with respect to 0 V)
Parameter Symbol Min Max Unit
DC power supplies: Core supply
PLL supply
Memory supply
||PLLVDD| – |VDD||
Input current, any pin except supplies I
Digital input voltage on I/O pins powered from VDD V
Digital input voltage on I/O pins powered from VDDSD V
Storage temperature T
VDD
PLLVSS
VDDSD
in
ind
insd
stg
0.30.30.3
-
2.7
2.7
3.6
0.3
V V V V
- ±10 mA
-3.6V
-3.6V
–65 150 °C
Caution: Operation at or beyond these limits may result in permanent damage to the device. Normal operation is not guaranteed at these extremes.

1.2 Recommended Operating Conditions

(VSS, VSSSD, PLLVSS = 0 V; all voltages with respect to 0 V)
Parameter Symbol Min Typ Max Unit
DC power supplies: Core supply
PLL supply
Memory supply
VDD
PLLVSS
VDDSD
||PLLVDD| – |VDD||
Ambient operating temperature T
A

1.3 Digital D.C. Characteristics for VDD Level I/O

(TA=25°C;VDD = 2.5 V; measurements performed under static conditions.)
Parameter Symbol Min Typ Max Unit
High-level input voltage V
Low-level input voltage V
High-level output voltage at I
Low-level output voltage at I
= –2.0 mA V
O
=2.0mA V
O
Input leakage current (all pins without internal pull­up resistors except CLKIN)
Input leakage current (pins with internal pull-up resistors, CLKIN)
OH
I
IH
IL
OL
in
2.0 - - V
--0.8V
VDD × 0.9 - - V
--VDD× 0.1 V
--10µA
2.37
2.37
3.15
2.5
2.5
3.3
2.63
2.63
3.45
0.3
0-70°C
50 µA
V V V V
7

1.4 Digital D.C. Characteristics for VDDSD Level I/O

(TA=25°C;VDDSD = 3.3 V±; measurements performed under static conditions.)
Parameter Symbol Min Typ Max Unit
High-level input voltage V
Low-level input voltage V
High-level output voltage at I
Low-level output voltage at I
= –2.0 mA V
O
=2.0mA V
O
Input leakage current (except all pins with internal pull-
I
IH
IL
OH
OL
in
0.65xVDDSD V
0.35xVDDSD V
0.9xVDDSD V
0.1xVDDSD V
10 µA
up)
Input leakage current (all pins with internal pull-up) 50 µA

1.5 Power Supply Characteristics

(TA=25°C; VDD, PLLVDD = 2.5 V; VDDSD = 3.3 V;measurements performed under operating conditions)
Parameter Symbol Min Typ Max Unit
Power supply current: Core and I/O operating: VSS
PLL operating: PLLVSS
Memory operating: VSSSD
400
6
25
mA mA mA

1.6 Switching Characteristics— RESET

(TA=25°C; VDD, PLLVDD= 2.5 V; VDDSD = 3.3 V; CL=20pF)
Parameter Symbol Min Max Unit
RESET
minimum pulse width low
All bidirectional pins high-Z after RESET
Configuration bits setup before RESET
Configuration bits hold after RESET
All Bidirectional
high
RESET
FHS0,1,2
UHS0,1,2
Pins
low
high
T
rst2z
T
rstl
Figure 1. RESET Timing
T
rstl
T
rst2z
T
rstsu
T
rsthld
T
rstsuTrsthld
10 - µs
50 ns
50 - ns
15 - ns
8

1.7 Switching Characteristics — CLKIN

(TA=25°C; VDD, PLLVDD = 2.5; VDDSD = 3.3 V; CL=20pF)
Parameter Symbol Min Max Unit
CLKIN period for internal DSP clock mode T
CLKIN high time for internal DSP clock mode T
CLKIN low time for internal DSP clock mode T
External Crystal operating frequency F
CLKIN
clki
clkih
clkil
xtal
35 100 ns
18 ns
18 ns
10 14 MHz
T
clkih
T
clki
T
clkil
Figure 2. CLKIN with CLKSEL = VSS = PLL Enable
9

1.8 Switching Characteristics — Intel®Host Slave Mode (DSPAB)

(TA=25°C; VDD, PLLVDD = 2.5 V; VDDSD = 3.3 V; CL=20pF)
Parameter Symbol Min Max Unit
Address setup before FCS and FRD low or FCS and FWR low
Address hold time after FCS
and FRD low or FCS and FWR
T
ias
T
iah
high
Read
Delay between FRD then FCS low or FCS then FRD low
Data valid after FCS
FCS
and FRD low for read (Note 1)
Data hold time after FCS
Data high-Z after FCS
FCS
or FRD high to FCS and FRD low for next read (Note 1)
FCS
or FRD high to FCS and FWR low for next write (Note 1)
and FRD low T
or FRD high
or FRD high
T
T
T
T
T
icdr
idd
irpw
idhr
idis
T
ird
irdtw
Write
Delay between FWR then FCS low or FCS then FWR low
Data setup before FCS
FCS
and FWR low for write (Note 1)
Data hold after FCS
FCS
or FWR high to FCS and FRD low for next read (Note 1)
FCS
or FWR high to FCS and FWR low for next write (Note 1)
or FWR high
or FWR high
T
T
T
T
T
T
icdw
idsu
iwpw
idhw
iwtrd
iwd
Notes: 1. Certain timing parameters are normalized to the DSP clock period, DCLKP. DCLKP = 1/DCLK. The
DSP clock can be defined as follows:
5-ns
5-ns
0-ns
-21ns
DCLKP + 10 - ns
5-ns
-22ns
2*DCLKP + 10 - ns
2*DCLKP + 10 - ns
0-ns
20 - ns
DCLKP + 10 - ns
5-ns
2*DCLKP + 10 - ns
2*DCLKP + 10 - ns
10
Internal Clock Mode: DCLK ~ 60MHz before and during boot, i.e. DCLKP ~ 16.6ns DCLK ~ 86 MHz after boot, i.e. DCLKP ~ 11.6ns
It should be noted that DCLK for the internal clock mode is application specific. The application code users guide should be checked to confirm DCLK for the particular application.
A1:0F
DATA7:0
F
F
F
F
A1:0F
CS
WR
RD
T
ia h
T
ias
T
icdr
T
idd
idhr
T
idis
T
irpw
T
ird
T
Figure 3. Intel®Parallel Host Mode Slave Read Cycle for DSPAB
T
ird tw
F
DATA7:0
F
F
F
WR
CS
RD
T
iah
T
ias
T
icdw
T
iwpw
T
id hw
T
idsu
T
iw d
T
iwtrd
Figure 4. Intel®Parallel Host Mode Slave Write Cycle for DSPAB
11

1.9 Switching Characteristics — Intel®Host Slave Mode (DSPC)

(TA=25°C; VDD, PLLVDD = 2.5 V; VDDSD = 3.3 V; CL=20pF)
Parameter Symbol Min Max Unit
Address setup before CS and RD low or CS and WR low
Address hold time after CS
and RD low or CS and WR low
Read
Delay between RD then CS low or CS then RD low
Data valid after CS
and RD low
T
ias
T
iah
T
icdr
T
idd
DCLKP+15 - ns
DCLKP - ns
0-ns
- 2*DCLKP+25ns
and RD low for read (Note 1)
CS
Data hold time after CS
Data high-Z after CS
CS
or RD high to CS and RD low for next read (Note 1)
CS
or RD high to CS and WR low for next write (Note 1)
or RD high
or RD high
T
T
T
T
irpw
idhr
idis
T
ird
irdtw
2*DCLKP - ns
DCLKP+10 - ns
- 2*DCLKP+10ns
2*DCLKP+10 - ns
2*DCLKP+10 - ns
Write
Delay between WR then CS low or CS then WR low
Data setup before CS
CS
and WR low for write (Note 1)
Data hold after CS
CS
or WR high to CS and RD low for next read (Note 1)
CS
or WR high to CS and WR low for next write (Note 1)
or WR high
or WR high
T
T
T
T
T
T
icdw
idsu
iwpw
idhw
iwtrd
iwd
0-ns
2*DCLKP+10 - ns
2*DCLKP - ns
DCLKP - ns
2*DCLKP+10 - ns
2*DCLKP+10 - ns
Notes: 1. Certain timing parameters are normalized to the DSP clock, DCLKP, in nanoseconds. DCLKP =
1/DCLK. The DSP clock can be defined as follows:
Internal Clock Mode: DCLK ~ 60MHz before and during boot, i.e. DCLKP ~ 16.6ns DCLK ~ 86 MHz after boot, i.e. DCLKP ~ 11.6ns
12
It should be noted that DCLK for the internal clock mode is application specific. The application code users guide should be checked to confirm DCLK for the particular application.
A1:0
DATA7:0
CS
WR
RD
A1:0
DATA7:0
CS
RD
T
iah
T
ias
T
icdr
T
idhr
T
idd
T
idis
T
irpw
T
ird
Figure 5. Intel®Parallel Host Slave Mode Read Cycle for DSPC
T
iah
T
ias
T
icdw
T
iwpw
T
idhw
T
idsu
T
iwd
T
irdtw
T
iwtrd
WR
Figure 6. Intel®ParallelHostSlaveModeWriteCycleforDSPC
13

1.10 Switching Characteristics — Motorola®Host Slave Mode (DSPAB)

(TA=25°C; VDD, PLLVDD = 2.5 V; VDDSD = 3.3 V; CL=20pF)
Parameter Symbol Min Max Unit
Address setup before FCS and FDS low
Address hold time after FCS
and FDS low
Read
Delay between FDS then FCS low or FCS then FDS low
Data valid after FCS
and FRD low with R/W high)
T
T
T
T
mas
mah
mcdr
mdd
5-ns
5-ns
0-ns
-21ns
and FDS low for read (Note 1)
FCS
Data hold time after FCS
Data high-Z after FCS
FCS
or FDS high to FCS and FDS low for next read (Note 1)
FCS
or FDS high to FCS and FDS low for next write(Note 1)
or FDS high after read
or FDS high after read
T
mrpw
T
T
T
T
mrdtw
mdhr
mdis
mrd
DCLKP + 10 - ns
5-ns
-22ns
2*DCLKP + 10 - ns
2*DCLKP + 10 - ns
Write
Delay between FDS then FCS low or FCS then FDS low
Data setup before FCS
FCS
and FDS low for write (Note 1)
R/W
setup before FCS AND FDS low
R/W
hold time after FCS or FDS high
Data hold after FCS
FCS
or FDS high to FCS and FDS low with R/W high for
or FDS high
or FDS high
T
mcdw
T
mdsu
T
mwpw
T
mrwsu
T
mrwhld
T
mdhw
T
mwtrd
0-ns
20 - ns
DCLKP + 10 - ns
5-ns
5-ns
5-ns
2*DCLKP + 10 - ns
next read (Note 1)
or FDS high to FCS and FDS low for next write(Note 1)
FCS
T
mwd
2*DCLKP + 10 - ns
Notes: 1. Certain timing parameters are normalized to the DSP clock, DCLKP, in nanoseconds. DCLKP =
1/DCLK. The DSP clock can be defined as follows:
Internal Clock Mode: DCLK ~ 60MHz before and during boot, i.e. DCLKP ~ 16.6ns DCLK ~ 86 MHz after boot, i.e. DCLKP ~ 11.6ns
14
It should be noted that DCLK for the internal clock mode is application specific. The application code users guide should be checked to confirm DCLK for the particular application.
A1:0F
T
mah
DATA7:0
F
CS
F
R/W
F
DS
F
T
T
mas
mrwsu
T
mcdr
T
mdhr
T
mdd
T
mdis
T
mrpw
T
mrd
Figure 7. Motorola®Parallel Host Slave Mode Read Cycle for DSPAB
A1:0F
T
mas
F
DATA7:0
FF
CS
F
R/W
F
DS
T
T
mcdw
T
mrwsu
mdsu
T
mah
T
mdhw
T
mwpw
T
mwd
T
mrdtw
T
mrwhld
T
mrwhld
T
mwtrd
Figure 8. Motorola®Parallel Host Slave Mode Write Cycle for DSPAB
15

1.11 Switching Characteristics — Motorola®Host Slave Mode (DSPC)

(TA=25°C; VDD, PLLVDD = 2.5 V; VDDSD = 3.3 V; CL=20pF)
Parameter Symbol Min Max Unit
Address setup before CS and DS low
Address hold time after CS
and DS low
Read
Delay between DS then CS low or CS then DS low
Data valid after CS
and RD low with R/W high
T
T
T
T
mas
mah
mcdr
mdd
DCLKP - ns
DCLKP+15 - ns
0-ns
- 2*DCLKP+25ns
and DS low for read (Note 1)
CS
Data hold time after CS
Data high-Z after CS
or DS high to CS and DS low for next read (Note 1)
CS
CS
or DS high to CS and DS low for next write (Note 1)
or DS high after read
or DS high low after read
T
mrpw
T
T
T
T
mrdtw
mdhr
mdis
mrd
2*DCLKP - ns
DCLKP+ 10 - ns
- 2*DCLKP+10ns
2*DCLKP+10 - ns
2*DCLKP+10 - ns
Write
Delay between DS then CS low or CS then DS low
Data setup before CS
CS
and DS low for write (Note 1)
R/W
setup before CS AND DS low
R/W
hold time after CS or DS high
Data hold after CS
CS
or DS high to CS and DS low with R/W high for next read
or DS high
or DS high
T
mcdw
T
mdsu
T
mwpw
T
mrwsu
T
mrwhld
T
mdhw
T
mwtrd
0-ns
2*DCLKP+10 - ns
2*DCLKP - ns
DCLKP - ns
5-ns
DCLKP - ns
2*DCLKP+10 - ns
(Note 1)
CS or DS high to CS and DS low for next write (Note 1)
T
mwd
2*DCLKP+10 - ns
Notes: 1. Certain timing parameters are normalized to the DSP clock, DCLKP, in nanoseconds. DCLKP =
1/DCLK. The DSP clock can be defined as follows:
16
Internal Clock Mode: DCLK ~ 60MHz before and during boot, i.e. DCLKP ~ 16.6ns DCLK ~ 86 MHz after boot, i.e. DCLKP ~ 11.6ns
It should be noted that DCLK for the internal clock mode is application specific. The application code users guide should be checked to confirm DCLK for the particular application.
A1:0
DATA7:0
CS
R/W
DS
A1:0
DATA7:0
CS
R/W
DS
T
mas
T
mah
T
T
mrwsu
mas
T
mcdr
T
mdd
T
mrpw
T
mdhr
T
mrd
T
mdis
Figure 9. Motorola®ParallelHostSlaveModeReadCycleforDSPC
T
mah
T
T
mcdw
T
mrwsu
mdsu
T
mdhw
T
mwpw
T
mwd
T
mrdtw
T
mrwhld
T
mrwhld
T
mwtrd
Figure 10. Motorola®Parallel Host Slave Mode Write Cycle for DSPC
17

1.12 Switching Characteristics — SPI Control Port Slave Mode (DSPAB)

(TA=25°C; VDD, PLLVDD = 2.5 V; VDDSD = 3.3 V; CL=20pF)
Parameter Symbol Min Max Units
FSCCLK clock frequency (Note 1) f
falling to FSCCLK rising t
FCS
FSCCLK low time t
FSCCLK high time t
Setup time FSCDIN to FSCCLK rising t
Hold time FSCCLK rising to FSCDIN (Note 2) t
Transition time from FSCCLK to FSCDOUT valid t
Time from FSCCLK rising to FINTREQ
Hold time for FINTREQ
from FSCCLK rising (Note 4, 5) t
Time from FSCCLK falling to FCS
rising (Note 3) t
rising t
High time between active FCS
Time from FCS
Notes: 1. The specification f
rising to FSCDOUT high-Z t
indicates the maximum speed of the hardware. The system designer should be
sck
aware that the actual maximum speed of the communication port may be limited by the DSP application code. The relevant application code users manual should be consulted for the software speed limitations.
2. Data must be held for sufficient time to bridge the transition time of FSCCLK.
3. FINTREQ
goes high only if there is no data to be read from the DSP at the rising edge of FSCCLK for
the second-to-last bit of the last byte of data during a read operation as shown.
4. If FINTREQ
goes high as indicated in (Note 3), then FINTREQ is guaranteed to remain high until the next rising edge of FSCCLK. If there is more data to be read at this time, FINTREQ again. Treat this condition as a new read transaction. Raise chip select to end the current read transaction and then drop it, followed by the 7-bit address and the R/W a new read transaction.
sck
css
scl
sch
cdisu
cdih
scdov
scrh
scrl
sccsh
t
csht
cscdo
-2MHz
20 - ns
150 - ns
150 - ns
50 - ns
50 - ns
-40ns
-200ns
0-ns
20 - ns
200 - ns
20 ns
goes active low
bit (set to 1 for a read) to start
18
sccsh
t
A6
csht
t
LSB
LSB
tri-state
cscdo
t
scrl
t
675
scdov
07
62
MSB
R/W
A0A6 A5
t
MSB
scdov
t
scrh
t
Figure 11. SPI Control Port Slave Mode Timing (DSPAB)
cdih
1
scl
t
0
css
t
sch
t
f
t
r
t
t
cdisu
t
FCS
FSCCLK
FSCDIN
FSCDOUT
FINTREQ
19

1.13 Switching Characteristics — SPI Control Port Slave Mode (DSPC)

(TA=25°C; VDD, PLLVDD = 2.5 V; VDDSD = 3.3 V; CL=20pF)
Parameter Symbol Min Max Units
SCCLK clock frequency (Note 1) f
falling to SCCLK rising t
CS
SCCLK low time t
SCCLK high time t
Setup time SCDIN to SCCLK rising t
Hold time SCCLK rising to SCDIN (Note 2) t
Time from SCCLK low to SCDOUT valid t
Time from SCCLK rising to INTREQ
Hold time for INTREQ
from SCCLK rising t
Time from SCCLK falling to CS
Time from SCCLK low to CS
falling t
rising t
rising t
High time between active CS
Time from CS
Notes: 1. The specification f
rising to SCDOUT high-Z t
indicates the maximum speed of the hardware. The system designer should be
sck
aware that the actual maximum speed of the communication port may be limited by the software. The relevant application code users manual should be consulted for the software speed limitations.
2. Data must be held for sufficient time to bridge the transition time of SCCLK.
sck
css
scl
sch
cdisu
cdih
scdov
scrh
scrl
sccsh
sccsl
t
csht
cscdo
-5MHz
4*DCLKP - ns
4*DCLKP - ns
4*DCLKP - ns
DCLKP - ns
DCLKP+20 - ns
- 3*DCLKP+20 ns
- DCLKP ns
DCLKP - ns
2*DCLKP+15 - ns
10 ns
4*DCLKP - ns
DCLKP ns
20
Figure 12. SPI Control Port Slave Mode Timing (DSPC)
21

1.14 Switching Characteristics — Digital Audio Input (DSPAB)

(TA=25°C; VDD, PLLVDD = 2.5 V; VDDSD = 3.3 V; CL=20pF)
Parameter Symbol Min Max Unit
FSCLKN1 period for Slave mode T
sclki
FSCLKN1 duty cycle for Slave mode 45 55 %
Slave Mode (Note 2)
Time from active edge of FSCLKN1(2) to FLRCLKN1(2) transition T
Time from FLRCLKN1(2) transition to FSCLKN1(2) active edge T
FSDATAN1(2) setup to FSCLKN1(2) transition (Note 1) T
FSDATAN1(2) hold time after FSCLKN1(2) transition (Note 1) T
stlr
lrts
sdsus
sdhs
Notes: 1. This timing parameter is defined from the active edge of FSCLKN1/2. The active edge of FSCLKN1/2
is the point at which the data is valid.
2. Slave mode is defined as FSCLKN1/2 and FLRCLKN1/2 driven by an external source.
FSCLKN1 FSCLKN2
T
T
lrts
T
stlr
sclki
FLRCLKN1
FLRCLKN2
40 - ns
10 - ns
10 - ns
5-ns
5-ns
FSDATAN1 FSDATAN2
Figure 13. Digital Audio Input Data, Slave Clock Timing
T
sdsus T
sdhs
22

1.15 Switching Characteristics — Serial Audio Input (DSPC)

(TA=25°C; VDD, PLLVDD = 2.5 V; VDDSD = 3.3 V; CL=20pF)
Parameter Symbol Min Max Unit
Slave Mode
SCLKN period for Slave mode T
sclki
SCLKN duty cycle for Slave mode 45 55 %
Time from active edge of SCLKN to LRCLKN transition T
Time from LRCLKN transition to SCLKN active edge T
SDATAN0 setup to SCLKN transition (Notes 2) T
SDATAN0 hold time after SCLKN transition (Notes 2) T
stlr
lrts
sdsus
sdhs
Notes: 1. Slave mode is defined as SCLKN and LRCLKN being driven by an external source.
2. This timing parameter is defined from the active edge of SCLKN. The active edge of SCLKN is the point at which the data is valid.
SCLKN
T
sclki
stlr
LRCLKN
T
lrts
T
40 - ns
20 - ns
20 - ns
10 - ns
10 - ns
SDATAN0, 1, 2, 3
Figure 14. Serial Audio Input Data, Slave Clock Timing
T
sdsus T
sdhs
23

1.16 Switching Characteristics — CMPDAT, CMPCLK (DSPAB)

(TA=25°C; VDD, PLLVDD = 2.5 V; VDDSD = 3.3 V; CL=20pF)
Parameter Symbol Min Max Unit
Serial compressed data clock CMPCLK frequency T
CMPDAT setup before CMPCLK high T
CMPDAT hold after CMPCLK high T
CMPCLK
CMPDAT
cmpclk
cmpsu
cmphld
-27MHz
10 - ns
10 - ns
T
cmpsu
T
cmpcl k
T
cmphld
Figure 15. Serial Compressed Data Timing
24

1.17 Switching Characteristics — Parallel Data Input (DSPAB)

(TA=25°C; VDD, PLLVDD = 2.5 V; VDDSD = 3.3 V; CL=20pF)
Parameter Symbol Min Max Unit
CMPCLK Period T
FDAT[7:0] setup before CMPCLK high T
FDAT[7:0] hold after CMPCLK high T
cmpclk
cmpsu
cmphld
Notes: 1. Certain timing parameters are normalized to the DSP clock, DCLK, in nanoseconds. The DSP clock can
be defined as follows:
Internal Clock Mode: DCLK ~ 60MHz before and during boot, i.e. DCLKP ~ 16.6ns DCLK ~ 86 MHz after boot, i.e. DCLKP ~ 11.6ns
It should be noted that DCLK for the internal clock mode is application specific. The application code users guide should be checked to confirm DCLK for the particular application.
CMPCLK
FDAT[7:0]
T
cmps u
T
cmpc lk
4*DCLKP + 10 ns
10 ns
10 ns
T
cmphld
Figure 16. Parallel Data Timing
25

1.18 Switching Characteristics — Digital Audio Output

(TA=25°C; VDD, PLLVDD = 2.5 V; VDDSD = 3.3 V; CL=20pF)
Parameter Symbol Min Max Unit
MCLK period T
mclk
MCLK duty cycle 40 60 %
SCLK0, SCLK1 period for Master or Slave mode (Note 2) T
sclk
SCLK0, SCLK1 duty cycle for Master or Slave mode (Note 2) 45 55 %
Master Mode (Output A1 Mode) (Note 2, 3)
SCLK0, SCLK1 delay from MCLK rising edge, MCLK as an
T
sdmi
input
LRCLK0, LRCLK1 delay from SCLK0, SCLK1 transition,
T
lrds
respectively (Note 4)
AUDATA7–0 delay from SCLK0, SCLK1 transition (Note 4) T
adsm
Slave Mode (Output A0 Mode) (Note 5)
Time from active edge of SCLK0, SCLK1 to LRCLK0, LRCLK1
T
stlr
transition
Time from LRCLK0, LRCLK1 transition to SCLK0, SCLK1
T
lrts
active edge
AUDATA7–0 delay from SCLK0, SCLK1 transition (Note 4) T
adss
Notes: 1. DSPC has two Digital Audio Output modules having analogous signal names ending in 0 and 1. Both
DAO ports share a common MCLK but have independent SCLKs and LRCLKs.
2. Master mode timing specifications are characterized, not production tested.
3. Master mode is defined as the CS49400 driving both SCLK0, SCLK1, LRCLK0, and LRCLK1. When MCLK is an input, it is divided to produce SCLK0, SCLK1, LRCLK0 and LRCLK1.
4. This timing parameter is defined from the non-active edge of SCLK0 and SCLK1. The active edge of SCLK0 and SCLK1 is the point at which the data is valid.
5. Slave mode is defined as SCLK0, SCLK1, LRCLK0 and LRCLK1 driven by an external source.
40 - ns
40 - ns
15 ns
10 ns
10 ns
10 - ns
10 - ns
15 ns
26
MCLK (Input)
T
mclk
SCLK0,1 (Output)
T
T
sdmo,
sdmi
SCLK 0,1
(Output)
T
sclk
T
lrds
LRCLK 0,1
(Output)
T
adsm
AUDATA7:0
Master Mode (Output A1) Output Clock Timing and Digital Audio
Output Data
SCLK 0,1
(Input)
T
T
lrts
sclk
T
stlr
LRCLK 0,1
(Input)
T
adss
AUDATA7:0
Slave Mode (Output A0) Output Clock Timing and Digital Audio
Output Data
Figure 18. Digital Audio Output Data, Input and Output Clock Timing
27

1.19 Switching Characteristics — SRAM/FLASH Interface

(TA=25°C; VDD, PLLVDD = 2.5 V; VDDSD = 3.3 V; CL=20pF)
Parameter Symbol Min Max Unit
Write Cycle
Single Byte Write Cycle T
Data Hold after NV_WE or NV_CS high T
Data Valid after NV_CS and NV_WE low T
Data Strobe T
Read Cycle
Single Byte Read Cycle T
Data Strobe T
Data Hold after NV_WE or NV_CS high T
Data Setup Time T
TA[19:0]
NV_CS
T
wrc
NV_WE
T
ds
wrc
dh
dv
ds
rdc
ds
dh
su
(SRAM_FLASH_WR_CYCLE + 1) * DCLKP
DCLKP-5
DCLKP-5
(SRAM_FLASH_RD_CYCLE + 1) * DCLKP
DCLKP-5
DCLKP+5
DCLKP+5
-ns
-ns
10 ns
-ns
-ns
-ns
-ns
-ns
XTD[7:0]
XTA[19:0]
NV_CS
NV_OE
EXTD[7:0]
T
dv
MSP LSP
T
dh
Figure 19. SRAM/Flash Controller Timing Diagram - Write Cycle
T
rdc
T
su
MSP LSP
T
ds
T
dh
Figure 20. SRAM/Flash Controller Timing Diagram - Read Cycle
28
EXTA[19:0]
NV_CS
NV_WE
NV_OE
Valid
T
wrc
T
dv
T
ds
T
dh
EXTD[7:0]
LSP
Figure 21. SRAM/Flash Controller Timing Diagram - Single Byte Write Cycle
EXTA[19:0]
Valid
NV_CS
T
rdc
T
ds
NV_OE
NV_WE
T
su
T
dh
EXTD[7:0]
LSP
Figure 22. SRAM/Flash Controller Timing Diagram - Single Byte Read Cycle
29

1.20 Switching Characteristics — SDRAM Interface

(TA=25°C; VDD, PLLVDD = 2.5 V; VDDSD = 3.3 V; CL= 20 pF, SD_CLKOUT = SD_CLKIN)
Parameter Symbol Min Max Unit
SD_CLKIN high time t
SD_CLKIN low time t
clk_high
clk_low
SD_CLKOUT rise/fall time t
SD_CLKOUT duty cycle t
SD_CLKOUT rising edge to signal valid t
Signal hold from SD_CLKOUT rising edge t
SD_CLKOUT rising edge to SD_DQMn valid t
SD_DQMn hold from SD_CLKOUT rising edge t
SD_DATA valid setup to SD_CLKIN rising edge t
SD_DATA valid hold to SD_CLKIN rising edge t
SD_CLKOUT rising edge to ADDRn valid t
SD_CLKOUT
clkrf
clkrf
d
h
DQd
DQh
DAs
DAh
d
0.475*DCLKP - ns
0.475*DCLKP - ns
-1ns
45 55 %
-9.8ns
1.0 ns
-7.2ns
1.0 - ns
-8.0ns
8.3 ns
1.0 ns
SSSSDDDD____CCCCSSSS
SSSSDDDD____RRRRAAAASSSS
SSSSDDDD____CCCCAAAASSSS
SSSSDDDD____WWWWEEEE
SD_DQMn
SD_ADDRn
SD_DATAn
t
d
t
h
OPCODE
Figure 23. SDRAM Controller Timing Diagram - Load Mode Register Cycle
30
Loading...
+ 70 hidden pages