Cirrus Logic CS493302-IL, CS493302-CL, CS493292-CL, CS493264-IL, CS493002-CL Datasheet

...
CS49300 Family DSP
Multi-Standard Audio Decoder Family

Features

z CS4930X: DVD Audio Sub-family
— PES Layer decode for A/V sync — DVD Audio Pack Layer Support — Meridian Lossless Packing Specification (MLP)™ — Dolby Digital™, Dolby Pro Logic II™ — MPEG-2, Advanced Audio Coding Algorithm (AAC) — MPEG Multichannel — DTS Digital Surround™, DTS-ES Extended Surround™
z CS4931X: Broadcast Sub-family
— PES Layer decode for A/V sync — Dolby Digital — MPEG-2, Advanced Audio Coding Algorithm (AAC) — MPEG-1 (Layers 1, 2, 3) Stereo — MPEG-2 (Layers 2, 3) Stereo
z CS4932X: AVR Sub-family
— Dolby Digital, Dolby Pro Logic II — DTS & DTS-ES decoding with integrated DTS tables — Cirrus Original Surround 5.1 PCM Enhancement — MPEG-2, Advanced Audio Coding Algorithm (AAC) — MPEG Multichannel — MP3 (MPEG-1, Layer 3)
z CS49330: General Purpose Audio DSP
—THX® Surround EX™ and THX® Ultra2 Cinema — General Purpose AVR and Broadcast Audio Decoder
(MPEG Multichannel, MPEG Stereo, MP3, C.O.S.)
— Car Audio
z Features are a super-set of the CS4923/4/5/6/7/8/9
— 8 channel output, including dual zone output capability — Dynamic Channel Remapability — Supports up to 192 kHz Fs @ 24-bit throughput — Increased memory/MIPs — SRAM Interface for increased delay and buffer capability — Dual-Precision Bass Manager — Enhance your system functionality via firmware
upgrades through the Crystal WareTM Software Licensing Program

Description

The CS493XX is a family of multichannel audio decoders intended to supersede the CS4923/4/5/6/7/8/9 family as the leader of audio decoding in both the DVD, broadcast and receiver markets. The family will be split into parts tailored for each of these distinct market segments.
For the DVD market, parts will be offered which support Meridian Lossless Packing (MLP), Dolby Digital, Dolby Pro Logic II, MPEG Multichannel, DTS Digital Surround, DTS-ES, AAC, and subsets thereof. For the receiver market, parts will be offered which support Dolby Digital, Dolby Pro Logic II, MPEG Multichannel, DTS Digital Surround, DTS-ES, AAC, and various virtualizers and PCM enhancement algorithms such as HDCD DTS Neo:6TM, LOGIC7®, and SRS Circle Surround II®. For the broadcast market, parts will be offered which support Dolby Digital, AAC, MPEG-1, Layers 1,2 and 3, MPEG-2, Layers 2 and
3.
Under the Crystal brand, Cirrus Logic is the only single supplier of high-performance 24-bit multi-standard audio DSP decoders, DSP firmware, and high-resolution data converters. This combination of DSPs, system firmware, and data converters simplify rapid creation of world-class high-fidelity digital audio products for the Internet age.
Ordering Information:
APPLICATION CORE DECODER FUNCTIONALITY
CS49300 DVD Audio MLP, AC-3, AAC, DTS, MPEG 5.1, MP3, etc.
CS49310 Broadcast AAC, AC-3, MPEG Stereo, MP3, etc.
CS49311 Broadcast AAC, MPEG Stereo, MP3, etc.
CS49312 Broadcast AC-3, MPEG Stereo, MP3, etc.
CS49325 AVR AC-3, COS, MPEG 5.1, MP3, etc.
CS49326 AVR AC-3, DTS, COS, MPEG 5.1, MP3, etc.
CS49329 AVR AC-3, AAC, DTS, MPEG 5.1, MP3, etc.
CS49330 Car Audio DSP Car Audio Code
CS49330 General Purpose MPEG 5.1, MPEG Stereo, MP3, C.O.S., etc
CS49330 Post-Processor DPP, THX Surround EX, THX Ultra2 Cinema
See page 85
®
,
RESET
CMPDAT,
SDATAN2
CMPCLK,
SCLKN2
CMPREQ,
LRCLKN2
SCLKN1,
STCCLK2
LRCLKN1
SDATAN1
CLKIN
CLKSEL
Compressed
Data Input
Interface
Digital
Audio
Input
Interface
PLL
Clock Manager
FILT1
FILT2 AGND
Preliminary Product Information
P.O. Box 17847, Austin, Texas 78760 (512) 445 7222 FAX: (512) 445 7581 http://www.cirrus.com
DATA7:0,
EMAD7:0,
GPIO7:0
Framer
Shifter
Input Buffer
Controller
RAM Input
Buffer
VA
RD
WR
,
,
R/W,
EMOE,
CS
GPIO11
DSP Processing
Program Memory
ROM Program Memory
DGND[3:1] VD[3:1]
SCDIO,
DS,
SCDOUT,
EMWR,
PSEL, GPIO9
A0,
SCCLK
RAM
Output
Buffer
GPIO10
Parallel or Serial Host Interface
24-Bit
RAM
RAM Data
Memory
ROM Data
Memory
STC
A1,
SCDIN
ABOOT, INTREQ
EXTMEM,
GPIO8
Output
Formatter
DD DC
MCLK
SCLK
LRCLK
AUDATA[2.0]
XMT958/AUDATA3
Copyright  Cirrus Logic, Inc. 2002
(All Rights Reserved)
MAR ‘02
DS339PP4
1

TABLE OF CONTENTS

1. CHARACTERISTICS AND SPECIFICATIONS ................................................................. 6
1.1 Absolute Maximum Ratings ........................................................................................ 6
1.2 Recommended Operating Conditions ......................................................................... 6
1.3 Digital D.C. Characteristics ......................................................................................... 6
1.4 Power Supply Characteristics ..................................................................................... 6
1.5 Switching Characteristics — RESET
1.6 Switching Characteristics — CLKIN ............................................................................ 7
1.7 Switching Characteristics — Intel
1.8 Switching Characteristics — Motorola
1.9 Switching Characteristics — SP
1.10 Switching Characteristics — I
1.11 Switching Characteristics — Digital Audio Input ..................................................... 16
1.12 Switching Characteristics — CMPDAT, CMPCLK .................................................. 18
1.13 Switching Characteristics — Parallel Data Input ..................................................... 18
1.14 Switching Characteristics — Digital Audio Output ................................................... 19
2. FAMILY OVERVIEW ....................................................................................................... 21
2.1 Multichannel Decoder Family of Parts ...................................................................... 21
3. TYPICAL CONNECTION DIAGRAMS ........................................................................... 24
3.1 Multiplexed Pins ........................................................................................................ 24
3.2 Termination Requirements ........................................................................................ 25
3.3 Phase Locked Loop Filter ......................................................................................... 25
4. POWER ........................................................................................................................... 25
4.1 Decoupling ................................................................................................................ 25
4.2 Analog Power Conditioning ....................................................................................... 25
CS49300 Family DSP
........................................................................ 7
®
Host Mode ........................................................... 8
®
I
2C®
Host Mode .................................................. 10
Control Port .......................................................... 12
Control Port ....................................................... 14
Contacting Cirrus Logic Support
For a complete listing of Direct Sales, Distributor, and Sales Representative contacts, visit the Cirrus Logic web site at:
http://www.cirrus.com/corporate/contacts
Dolby Digital, AC-3, Dolby Pro Logic, Dolby Pro Logic II, Dolby Surround, Surround EX, Virtual Dolby Digital, MLP and the “AAC” logo are trademarks and the “Dolby Digital” logo, “Dolby Digital with Pro Logic II” logo, “Dolby” and the double-”D” symbol are registered trademarks of Dolby Laboratories Licensing Corporation. DTS, DTS Digital Surround, DTS-ES Extended Surround, DTS Neo:6, and DTS Virtual 5.1 are trademarks and the “DTS”, “DTS-ES”, “DTS Virtual 5.1” logos are registered trademarks of the Digital Theater Systems Corporation. The “MPEG Logo” is a registered trademark of Philips Electronics N.V. Home THX Cinema and THX are registered trademarks of Lucasfilm Ltd. Surround EX is a jointly developed technology of THX and Dolby Labs, Inc. AAC (Advanced Audio Coding) is an “MPEG-2-standard-based” digital audio compression algorithm (offering up 5.1 discrete decoded channels for this implementation) collaboratively developed by AT&T, the Fraunhofer Institute, Dolby Laboratories, and the Sony Corporation. In regards to the MP3 capable functionality of the CS49300 Family DSP (via downloading of mp3_493xxx_vv.ld and mp3e_493xxx_vv.ld application codes) the following statements are applicable: “Supply of this product conveys a license for personal, private and non-commercial use. MPEG Layer-3 audio decoding technology licensed from Fraunhofer IIS and THOMSON Multimedia.” MLP and Meridian Lossless Packing are registered trademarks of Meridian Audio Ltd. Harman VMAx is a registered trademark of Harman International. The LOGIC7 logo and LOGIC7 are registered trademarks of Lexicon. SRS Circle Surround, and SRS TruSurround are trademarks of SRS Labs, Inc. The HDCD logo, HDCD, High Definition Compatible Digital and Pacific Microsonics are either registered trademarks or trademarks of Pacific Microsonics, Inc. in the United States and/or other countries. HDCD technology provided under license from Pacific Microsonics, Inc. This product’s software is covered by one or more of the following in the United States: 5,479,168; 5,638,074; 5,640,161; 5,872,531; 5,808,574; 5,838,274; 5,854,600; 5,864,311; and in Australia: 669114; with other patents pending. Intel is a registered trademark of Intel Corporation. Motorola is a registered trademark of Motorola, Inc. I registered trademark of Philips Semiconductor. Purchase of I conveys a license under the Philips I2C Patent Rights to use those components in a standard I2C system. The “Cirrus Logic Logo” is a registered trademark of Cirrus Logic, Inc. All other names are trademarks, registered trademarks, or service marks of their respective companies.
Preliminary product information describes products which are in production, but for which full characterization data is not yet available. Advance product information describes products which are in development and subject to development changes. Cirrus Logic, Inc. has made best efforts to ensure that the information contained in this document is accurate and reliable. However, the information is subject to change without notice and is provided “AS IS” without warranty of any kind (express or implied). No responsibility is assumed by Cirrus Logic, Inc. for the use of this information, nor for infringements of patents or other rights of third parties. This document is the property of Cirrus Logic, Inc. and implies no license under patents, copyrights, trademarks, or trade secrets. No part of this publication may be copied, reproduced, stored in a retrieval system, or transmitted, in any form or by any means (electronic, mechanical, photographic, or otherwise) without the prior written consent of Cirrus Logic, Inc. Items from any Cirrus Logic web site or disk may be printed for use by the user. However, no part of the printout or electronic files may be copied, reproduced, stored in a retrieval system, or transmitted, in any form or by any means (electronic, mechanical, photographic, or otherwise) without the prior written consent of Cirrus Logic, Inc. The names of products of Cirrus Logic, Inc. or other vendors and suppliers appearing in this document may be trademarks or service marks of their respective owners which may be registered in some jurisdictions. A list of Cirrus Logic, Inc. trademarks and service marks can be found at http://www.cirrus.com.
2
C Components of Cirrus Logic, Inc., or one of its sublicensed Associated Companies
2
C is a
2 DS339PP4
CS49300 Family DSP
4.3 Ground ...................................................................................................................... 32
4.4 Pads ......................................................................................................................... 32
5. CLOCKING .....................................................................................................................32
6. CONTROL ......................................................................................................................32
6.1 Serial Communication .............................................................................................. 33
6.1.1 SPI Communication ...................................................................................... 33
2
6.1.2 I
6.1.3 INTREQ Behavior: A Special Case .............................................................. 39
6.2 Parallel Host Communication ................................................................................... 41
6.2.1 Intel Parallel Host Communication Mode ..................................................... 43
6.2.2 Motorola Parallel Host Communication Mode .............................................. 45
6.2.3 Procedures for Parallel Host Mode Communication .................................... 46
7. EXTERNAL MEMORY .................................................................................................... 48
7.1 Non-Paged Memory ................................................................................................. 49
7.2 Paged Memory ........................................................................................................ 49
8. BOOT PROCEDURE & RESET ..................................................................................... 52
8.1 Host Boot ..................................................................................................................52
8.1.1 Serial Download Sequence .......................................................................... 52
8.1.2 Parallel Download Sequence ....................................................................... 55
8.2 Autoboot ...................................................................................................................56
8.2.1 Autoboot INTREQ
8.3 Decreasing Autoboot Times Using GFABT Codes (Fast Autoboot) ......................... 59
8.3.1 Design Considerations when using GFABT Codes ...................................... 61
8.4 Internal Boot ............................................................................................................. 61
8.5 Application Failure Boot Message ............................................................................ 61
8.6 Resetting the CS493XX ............................................................................................ 61
8.7 External Memory Examples ...................................................................................... 63
8.7.1 Non-Paged Autoboot Memory ...................................................................... 63
8.7.2 32 Kilobyte Paged Autoboot Memory ........................................................... 64
8.8 CDB49300-MEMA.0 ................................................................................................. 65
9. HARDWARE CONFIGURATION ................................................................................... 67
10.DIGITAL INPUT & OUTPUT ........................................................................................... 67
10.1 Digital Audio Formats .............................................................................................. 67
10.1.1 I
10.1.2 Left Justified ............................................................................................... 67
10.1.3 Multichannel ............................................................................................... 67
10.2 Digital Audio Input Port ........................................................................................... 68
10.3 Compressed Data Input Port ................................................................................... 69
10.4 Byte Wide Digital Audio Data Input ......................................................................... 69
10.4.1 Parallel Delivery with Parallel Control ........................................................ 69
10.4.2 Parallel Delivery with Serial Control ........................................................... 70
10.5 Digital Audio Output Port ......................................................................................... 70
10.5.1 IEC60958 Output ........................................................................................ 71
11.HARDWARE CONFIGURATION ................................................................................... 72
11.1 Address Checking ................................................................................................... 72
11.2 Input Data Hardware Configuration ........................................................................ 72
11.2.1 Input Configuration Considerations ......................................................... 75
11.3 Output Data Hardware Configuration ...................................................................... 76
11.3.1 Output Configuration Considerations ........................................................ 78
11.4 Creating Hardware Configuration Messages .......................................................... 78
C Communication ...................................................................................... 35
Behavior ......................................................................... 57
2
S .............................................................................................................. 67
DS339PP4 3
12.PIN DESCRIPTIONS ....................................................................................................... 80
13.ORDERING INFORMATION............................................................................................ 85
14.PACKAGE DIMENSIONS ............................................................................................... 85

LIST OF FIGURES

Figure 1. RESET Timing ..................................................................................................................... 7
Figure 2. CLKIN with CLKSEL = VSS = PLL Enable .......................................................................... 7
Figure 3. Intel
Figure 4. Intel
Figure 5. Motorola
Figure 6. Motorola
Figure 7. SPI Control Port Timing ..................................................................................................... 13
Figure 8. I2C
Figure 9. Digital Audio Input Data, Master and Slave Clock Timing ................................................. 17
Figure 10. Serial Compressed Data Timing ...................................................................................... 18
Figure 11. Parallel Data Timing (when not in a parallel control mode) ............................................. 18
Figure 12. Digital Audio Output Data, Input and Output Clock Timing ............................................. 20
Figure 13. I
Figure 14. I
Figure 15. SPI Control ...................................................................................................................... 28
Figure 16. SPI Control with External Memory ................................................................................... 29
Figure 17. Intel
Figure 18. Motorola
Figure 19. SPI Write Flow Diagram .................................................................................................. 33
Figure 20. SPI Read Flow Diagram .................................................................................................. 34
Figure 21. SPI Timing ....................................................................................................................... 36
Figure 22. I2C® Write Flow Diagram ................................................................................................ 37
Figure 23. I2C® Read Flow Diagram ................................................................................................ 38
Figure 24. I2C® Timing ..................................................................................................................... 40
Figure 24. Intel Mode, One-Byte Write Flow Diagram ...................................................................... 44
Figure 25. Intel Mode, One-Byte Read Flow Diagram ...................................................................... 44
Figure 26. Motorola Mode, One-Byte Write Flow Diagram ............................................................... 45
Figure 27. Motorola Mode, One-Byte Read Flow Diagram ............................................................... 46
Figure 28. Typical Parallel Host Mode Control Write Sequence Flow Diagram ............................... 47
Figure 29. Typical Parallel Host Mode Control Read Sequence Flow Diagram ............................... 48
Figure 30. External Memory Interface .............................................................................................. 51
Figure 31. External Memory Read (16-bit address) ......................................................................... 51
Figure 32. External Memory Write (16-bit address) .......................................................................... 51
Figure 33. Typical Serial Boot and Download Procedure ................................................................. 53
Figure 34. Typical Parallel Boot and Download Procedure .............................................................. 54
Figure 35. Autoboot Timing Diagram ................................................................................................ 56
Figure 37. Autoboot INTREQ Behavior ............................................................................................57
Figure 36. Autoboot Sequence ......................................................................................................... 58
®
®
®
Control Port Timing ................................................................................................... 15
2C®
2C®
CS49300 Family DSP
Parallel Host Mode Read Cycle ................................................................................. 9
Parallel Host Mode Write Cycle ................................................................................. 9
®
Parallel Host Mode Read Cycle ........................................................................ 11
®
Parallel Host Mode Write Cycle ........................................................................ 11
Control ..................................................................................................................... 26
Control with External Memory ................................................................................. 27
®
Parallel Control Mode ............................................................................................ 30
®
Parallel Control Mode ..................................................................................... 31
4 DS339PP4
Figure 38. Fast Autoboot Sequence Using GFABT Codes ...............................................................60
Figure 39. Performing a Reset ..........................................................................................................62
Figure 40. Non-Paged Memory .........................................................................................................64
Figure 41. Example Contents of a Paged 32 Kilobytes External Memory (Total 256 Kilobytes) .......64
Figure 42. CDB49300-MEMA.0 Daughter Card for the CDB4923/30-REV-A.0 ................................66
Figure 43. I
Figure 44. Left Justified Format (Rising Edge Valid SCLK) ...............................................................68
Figure 45. Multichannel Format .........................................................................................................68
2
S Format ........................................................................................................................68

LIST OF TABLES

Table 1. PLL Filter Component Values .............................................................................................. 25
Table 2. Host Modes .......................................................................................................................... 32
Table 3. SPI Communication Signals................................................................................................. 33
Table 4. I
Table 5. Parallel Input/Output Registers ............................................................................................ 42
Table 6. Intel Mode Communication Signals...................................................................................... 43
Table 7. Motorola Mode Communication Signals .............................................................................. 45
Table 8. Memory Interface Pins ......................................................................................................... 49
Table 9. Boot Write Messages ........................................................................................................... 52
Table 10. Boot Read Messages......................................................................................................... 52
Table 11. Reduced Autoboot Times using GFABT8.LD, GFABT6.LD, and GFABT4.LD
on a CS493264-CL Rev. G DSP........................................................................................................ 59
Table 12. Memory Requirements for Example 5.1, 6.1 and 7.1 Channel Systems ........................... 63
Table 13. Digital Audio Input Port ...................................................................................................... 68
Table 14. Compressed Data Input Port.............................................................................................. 69
Table 15. Digital Audio Output Port.................................................................................................... 70
Table 16. MCLK/SCLK Master Mode Ratios...................................................................................... 71
Table 17. Output Channel Mapping ................................................................................................... 71
Table 18. Input Data Type Configuration
(Input Parameter A)............................................................................................................................ 73
Table 19. Input Data Format Configuration
(Input Parameter B)............................................................................................................................ 73
Table 20. Input SCLK Polarity Configuration
(Input Parameter C) ........................................................................................................................... 75
Table 21. Input FIFO Setup Configuration
(Input Parameter D) ........................................................................................................................... 75
Table 22. Output Clock Configuration
(Parameter A)..................................................................................................................................... 76
Table 23. Output Data Format Configuration
(Parameter B)..................................................................................................................................... 76
Table 24. Output MCLK Configuration
(Parameter C) .................................................................................................................................... 77
Table 25. Output SCLK Configuration
(Parameter D) .................................................................................................................................... 77
Table 26. Output SCLK Polarity Configuration
(Parameter E)..................................................................................................................................... 77
Table 27. Example Values to be Sent to CS493XX After Download or Soft Reset ........................... 79
2
C® Communication Signals ............................................................................................. 35
CS49300 Family DSP
DS339PP4 5
CS49300 Family DSP

1. CHARACTERISTICS AND SPECIFICATIONS

1.1. Absolute Maximum Ratings

(AGND, DGND = 0 V; all voltages with respect to 0 V)
Parameter Symbol Min Max Unit
DC power supplies: Positive digital
Positive analog
||VA| – |VD||
Input current, any pin except supplies I
Digital input voltage V
Storage temperature T
CAUTION: Operation at or beyond these limits may result in permanent damage to the device. Normal operation
is not guaranteed at these extremes.

1.2. Recommended Operating Conditions

(AGND, DGND = 0 V; all voltages with respect to 0 V)
Parameter Symbol Min Typ Max Unit
DC power supplies: Positive digital
Positive analog
||VA| – |VD||
Ambient operating temperature T
VD VA
in
IND
stg
VD
VA
–0.3 –0.3
-
-
2.75
2.75
0.3
10 mA
±
V V V
–0.3 3.63 V
–65 150
2.37
2.37
-
A
0-70°C
2.5
2.5
-
2.63
2.63
0.3
C
°
V V V

1.3. Digital D.C. Characteristics

(TA = 25°C; VA, VD[3:1] = 2.5 V±5%; measurements performed under static conditions.)
Parameter Symbol Min Typ Max Unit
High-level input voltage V
Low-level input voltage V
High-level output voltage at I
Low-level output voltage at I
= –2.0 mA V
O
= 2.0 mA V
O
Input leakage current I
IH
IL
OH
OL
in
2.0 - - V
--0.8V
VD×0.9 - - V
--VD
--1.0µA

1.4. Power Supply Characteristics

(TA = 25°C; VA, VD[3:1] = 2.5 V±5%; measurements performed under operating conditions)
Parameter Symbol Min Typ Max Unit
Power supply current: Digital operating: VD[3:1]
Analog operating: VA
-
-
200
1.7
0.11 V
×
310
4
mA mA
6 DS339PP4
CS49300 Family DSP
1.5. Switching Characteristics — RESET
(TA = 25°C; VA, VD[3:1] = 2.5 V±5%; Inputs: Logic 0 = DGND, Logic 1 = VD, CL = 20 pF)
Parameter Symbol Min Max Unit
RESET
RESET
minimum pulse width low (-CL) (Note 1)
minimum pulse width low (-IL) (Note 1)
All bidirectional pins high-Z after RESET
Configuration bits setup before RESET
Configuration bits hold after RESET
high
low (Note 2)
high
T
T
T
rst2z
T
rstsu
T
rsthld
rstl
rstl
100 -
530 -
-50ns
50 - ns
15 - ns
s
µ
s
µ
Notes: 1. The minimum RESET
resistors on the RD
pulse listed above is valid only when using the recommended pull-up/pull-down
, WR, PSEL and ABOOT mode pins. For Rev. D and older parts, pull-up/pull-down
resistors may be 4.7 k or 3.3 k. For Rev. E and newer parts, pull-up/pull-down resistors must be 3.3 k.
2. This specification is characterized but not production tested.
RESET
RD, W R,
PSEL, ABOOT
All Bidirectional
Pins
T
rst2z
T
rstl
T
rstsuTrsthld
Figure 1. RESET Timing

1.6. Switching Characteristics — CLKIN

(TA = 25°C; VA, VD[3:1] = 2.5 V±5%; Inputs: Logic 0 = DGND, Logic 1 = VD, CL = 20 pF)
Parameter Symbol Min Max Unit
CLKIN period for internal DSP clock mode T
CLKIN high time for internal DSP clock mode T
CLKIN low time for internal DSP clock mode T
clki
clkih
clkil
35 3800 ns
18 ns
18 ns
CLKIN
T
clkih
T
clki
Figure 2. CLKIN with CLKSEL = VSS = PLL Enable
DS339PP4 7
T
clkil

1.7. Switching Characteristics — Intel® Host Mode

CS49300 Family DSP
(TA = 25°C; VA, VD[3:1] = 2.5 V±5%; Inputs: Logic 0 = DGND, Logic 1 = VD, CL = 20 pF)
Parameter Symbol Min Max Unit
Address setup before CS and RD low or CS and WR low
Address hold time after CS
Delay between RD
Data valid after CS
and RD low for read (Note 1)
CS
then CS low or CS then RD low
and RD low (Note 3)
Data hold time after CS
Data high-Z after CS
or RD high to CS and RD low for next read (Note 1)
CS
or RD high to CS and WR low for next write (Note 1)
CS
Delay between WR
then CS low or CS then WR low
Data setup before CS
CS
and WR low for write (Note 1)
Data hold after CS
or WR high to CS and RD low for next read (Note 1)
CS
or WR high to CS and WR low for next write (Note 1)
CS
or WR high
and RD low or CS and WR low
or RD high
or RD high (Note 2)
or WR high
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
ias
iah
icdr
idd
irpw
idhr
idis
ird
irdtw
icdw
idsu
iwpw
idhw
iwtrd
iwd
5-ns
5-ns
0
-21ns
DCLKP + 10 - ns
5-ns
-22ns
2*DCLKP + 10 - ns
2*DCLKP + 10 - ns
0
20 - ns
DCLKP + 10 - ns
5-ns
2*DCLKP + 10 - ns
2*DCLKP + 10 - ns
ns
ns
Notes: 1. Certain timing parameters are normalized to the DSP clock, DCLKP, in nanoseconds. DCLKP =
1/DCLK. The DSP clock can be defined as follows:
External CLKIN Mode: DCLK == CLKIN/4 before and during boot DCLK == CLKIN after boot
Internal Clock Mode: DCLK == 10MHz before and during boot, i.e. DCLKP == 100ns DCLK == 65 MHz after boot, i.e. DCLKP == 15.4ns
It should be noted that DCLK for the internal clock mode is application specific. The application code users guide should be checked to confirm DCLK for the particular application.
2. This specification is characterized but not production tested. A 470 ohm pull-up resistor was used for characterization to minimize the effects of external bus capacitance.
3. See T
from Intel Host Mode in Table 6 on page 43
idd
8 DS339PP4
A1:0
DATA7:0
CS
WR
RD
A1:0
DATA7:0
CS
RD
CS49300 Family DSP
T
ia h
T
ias
T
icdr
Figure 3. Intel® Parallel Host Mode Read Cycle
T
iah
T
ias
T
icdw
T
idd
T
T
irpw
iw p w
idhr
T
idis
T
ird
T
idh w
T
idsu
T
iw d
T
irdtw
T
iw trd
T
WR
Figure 4. Intel® Parallel Host Mode Write Cycle
DS339PP4 9
CS49300 Family DSP

1.8. Switching Characteristics — Motorola® Host Mode

(TA = 25°C; VA, VD[3:1] = 2.5 V±5%; Inputs: Logic 0 = DGND, Logic 1 = VD, CL = 20 pF)
Parameter Symbol Min Max Unit
Address setup before CS and DS low
Address hold time after CS
Delay between DS
Data valid after CS
then CS low or CS then DS low
and RD low with R/W high (Note 3)
and DS low
T
T
T
T
mas
mah
mcdr
mdd
5-ns
5-ns
0
-21ns
ns
and DS low for read (Note 1)
CS
Data hold time after CS
Data high-Z after CS
or DS high to CS and DS low for next read (Note 1)
CS
CS
or DS high to CS and DS low for next write (Note 1)
Delay between DS
Data setup before CS
CS
and DS low for write (Note 1)
setup before CS AND DS low
R/W
hold time after CS or DS high
R/W
Data hold after CS
or DS high to CS and DS low with R/W high for next read
CS
or DS high after read
or DS high low after read (Note 2)
then CS low or CS then DS low
or DS high
or DS high
T
mrpw
T
mdhr
T
mdis
T
T
mrdtw
T
mcdw
T
mdsu
T
mwpw
T
mrwsu
T
mrwhld
T
mdhw
T
mwtrd
mrd
DCLKP + 10 - ns
5-ns
-22ns
2*DCLKP + 10 - ns
2*DCLKP + 10 - ns
0
20 - ns
DCLKP + 10 - ns
5-ns
5-ns
5-ns
2*DCLKP + 10 - ns
(Note 1)
CS
or DS high to CS and DS low for next write (Note 1)
T
mwd
2*DCLKP + 10 - ns
Notes: 1. Certain timing parameters are normalized to the DSP clock, DCLKP, in nanoseconds. DCLKP =
1/DCLK. The DSP clock can be defined as follows:
External CLKIN Mode: DCLK == CLKIN/4 before and during boot DCLK == CLKIN after boot
ns
Internal Clock Mode: DCLK == 10MHz before and during boot, i.e. DCLKP == 100ns DCLK == 65 MHz after boot, i.e. DCLKP == 15.4ns
It should be noted that DCLK for the internal clock mode is application specific. The application code users guide should be checked to confirm DCLK for the particular application.
2. This specification is characterized but not production tested. A 470 ohm pull-up resistor was used for characterization to minimize the effects of external bus capacitance.
3. See T
from Motorola Host Mode in Table 7 on page 45
mdd
10 DS339PP4
A1:0
DATA7:0
CS
R/W
DS
T
T
mrwsu
mas
T
mah
T
mdd
T
mrpw
mdhr
T
mrd
T
mdis
T
T
mcdr
Figure 5. Motorola® Parallel Host Mode Read Cycle
CS49300 Family DSP
T
mrwhld
T
mrdtw
A1:0
DATA7:0
CS
R/W
DS
T
mas
T
mah
T
T
mcdw
T
mrwsu
mdsu
T
mdhw
T
mwpw
T
mwd
Figure 6. Motorola® Parallel Host Mode Write Cycle
T
mrwhld
T
mwtrd
DS339PP4 11
CS49300 Family DSP

1.9. Switching Characteristics — SPI Control Port

(TA = 25°C; VA, VD[3:1] = 2.5 V±5%; Inputs: Logic 0 = DGND, Logic 1 = VD, CL = 20 pF)
Parameter Symbol Min Max Units
SCCLK clock frequency (Note 1) f
CS
falling to SCCLK rising t
Rise time of SCCLK line (Note 7) t
Fall time of SCCLK lines (Note 7) t
SCCLK low time t
SCCLK high time t
Setup time SCDIN to SCCLK rising t
Hold time SCCLK rising to SCDIN (Note 2) t
Transition time from SCCLK to SCDOUT valid (Note 3) t
Time from SCCLK rising to INTREQ
Rise time for INTREQ
Hold time for INTREQ
from SCCLK rising (Note 5, 7) t
Time from SCCLK falling to CS
rising (Note 4) t
(Note 4) t
rising t
High time between active CS
Time from CS
rising to SCDOUT high-Z (Note 7) t
sck
css
r
f
scl
sch
cdisu
cdih
scdov
scrh
rr
scrl
sccsh
t
csht
cscdo
20 - ns
150 - ns
150 - ns
50 - ns
50 - ns
20 - ns
200 - ns
- 2000 kHz
-50ns
-50ns
-40ns
- 200 ns
- (Note 6) ns
0-ns
20 ns
Notes: 1. The specification f
aware that the actual maximum speed of the communication port may be limited by the software. The relevant application code user’s manual should be consulted for the software speed limitations.
2. Data must be held for sufficient time to bridge the 50 ns transition time of SCCLK.
3. SCDOUT should
4. INTREQ
goes high only if there is no data to be read from the DSP at the rising edge of SCCLK for the
second-to-last bit of the last byte of data during a read operation as shown.
5. If INTREQ
goes high as indicated in (Note 4), then INTREQ is guaranteed to remain high until the next rising edge of SCCLK. If there is more data to be read at this time, INTREQ this condition as a new read transaction. Raise chip select to end the current read transaction and then drop it, followed by the 7-bit address and the R/W
6. With a 4.7k Ohm pull-up resistor this value is typically 215ns. As this pin is open drain adjusting the pull up value will affect the rise time.
7. This time is by design and not tested.
indicates the maximum speed of the hardware. The system designer should be
sck
be sampled during this time period.
not
goes active low again. Treat
bit (set to 1 for a read) to start a new read transaction.
12 DS339PP4
CS49300 Family DSP
A6
csht
t
sccsh
t
7
6
5
LSB
tri-sta te
cscdo
t
scrl
LSB
t
scrh
t
scl
t
css
t
scdov
t
0
7
6
2
1
0
sch
t
t
t
MSB
R/W
MSB
scdov
t
Figure 7. SPI Control Port Timing
A0A6 A5
cdih
t
cdisu
t
f
r
CS
SCCLK
SCDIN
SCDOUT
IN T R E Q
DS339PP4 13
CS49300 Family DSP
1.10. Switching Characteristics — I
2
C® Control Port
(TA = 25°C; VA, VD[3:1] = 2.5 V±5%; Inputs: Logic 0 = DGND, Logic 1 = VD, CL = 20 pF)
Parameter Symbol Min Max Units
SCCLK clock frequency (Note 1) f
Bus free time between transmissions t
Start-condition hold time (prior to first clock pulse) t
Clock low time t
Clock high time t
SCDIO setup time to SCCLK rising t
SCDIO hold time from SCCLK falling (Note 2) t
Rise time of SCCLK (Note 3), (Note 7) t
Fall time of SCCLK (Note 7) t
Time from SCCLK falling to CS493XX ACK t
Time from SCCLK falling to SCDIO valid during read operation t
Time from SCCLK rising to INTREQ
Hold time for INTREQ
from SCCLK rising (Note 5) t
Rise time for INTREQ
rising (Note 4) t
(Note 6) t
Setup time for stop condition t
scl
buf
hdst
low
high
sud
hdd
r
f
sca
scsdv
scrh
scrl
rr
susp
4.7
4.0
1.2
1.0
250 ns
4.7
400 kHz
s
µ
s
µ
s
µ
s
µ
0
s
µ
50 ns
300 ns
40 ns
40 ns
200 ns
0ns
** ns
s
µ
Notes:. 1. The specification f
aware that the actual maximum speed of the communication port may be limited by the software. The relevant application code user’s manual should be consulted for the software speed limitations.
2. Data must be held for sufficient time to bridge the 300-ns transition time of SCCLK. This hold time is by design and not tested.
3. This rise time is
shorter
Section 6.1, “Serial Communication” on page 33.
4. INTREQ
goes high only if there is no data to be read from the DSP at the rising edge of SCCLK for the
last data bit of the last byte of data during a read operation as shown.
5. If INTREQ
goes high as indicated in Note 8, then INTREQ is guaranteed to remain high until the next rising edge of SCCLK. If there is more data to be read at this time, INTREQ this condition as a new read transaction. Send a new start condition followed by the 7-bit address and the R/W
bit (set to 1 for a read). This time is by design and is not tested.
6. With a 4.7k Ohm pull-up resistor this value is typically 215ns. As this pin is open drain adjusting the pull up value will affect the rise time.
7. This time is by design and not tested.
indicates the maximum speed of the hardware. The system designer should be
scl
than that recommended by the I2C specifications. For more information, see
goes active low again. Treat
14 DS339PP4
CS49300 Family DSP
stop
8
ACK
7
LSB
0
MSB
scsdv
t
8
ACK
7
R/W
6
A0
t
scrl
susp
t
scrh
t
sca
t
Control Port Timing
®
C
2
f
t
r
t
Figure 8. I
1
A5
0
A6
sud
t
start
buf
t
stop
SCDIO
high
t
hdd
t
low
t
hdst
t
SCCLK
INTREQ
DS339PP4 15
CS49300 Family DSP

1.11. Switching Characteristics — Digital Audio Input

(TA = 25°C; VA, VD[3:1] = 2.5 V±5%; Inputs: Logic 0 = DGND, Logic 1 = VD, CL = 20 pF)
Parameter Symbol Min Max Unit
SCLKN1(2) period for both Master and Slave mode (Note 1) T
sclki
SCLKN1(2) duty cycle for Master and Slave mode (Note 1) 45 55 %
Master Mode (Note 1, 2)
LRCLKN1(2) delay after SCLKN1(2) transition (Note 3) T
SDATAN1(2) setup to SCLKN1(2) transition (Note 4) T
SDATAN1(2) hold time after SCLKN1(2) transition (Note 4) T
lrds
sdsum
sdhm
Slave Mode (Note 5)
Time from active edge of SCLKN1(2) to LRCLKN1(2) transition T
Time from LRCLKN1(2) transition to SCLKN1(2) active edge T
SDATAN1(2) setup to SCLKN1(2) transition (Note 4) T
SDATAN1(2) hold time after SCLKN1(2) transition (Note 4) T
stlr
lrts
sdsus
sdhs
Notes: 1. Master mode timing specifications are characterized, not production tested.
2. Master mode is defined as the CS493XX driving LRCLKN1(2) and SCLKN1(2). Master or Slave mode can be programmed.
3. This timing parameter is defined from the non-active edge of SCLKN1(2). The active edge of SCLKN1(2) is the point at which the data is valid.
4. This timing parameter is defined from the active edge of SCLKN1(2). The active edge of SCLKN1(2) is the point at which the data is valid.
5. Slave mode is defined as SCLKN1(2) and LRCLKN1(2) being driven by an external source.
40 - ns
-10ns
10 - ns
5-ns
10 - ns
10 - ns
5-ns
5-ns
16 DS339PP4
SCLKN1 SCLKN2
LRCLKN1 LRCLKN2
SDATAN1 SDATAN2
SCLKN1 SCLKN2
LRCLKN1 LRCLKN2
MASTER MODE
T
lrds
T
sdsu mTsdhm
SLAVE MODE
T
lrts
T
stlr
CS49300 Family DSP
T
sclki
T
sclki
T
sdsus
T
sdhs
SDATAN1 SDATAN2
Figure 9. Digital Audio Input Data, Master and Slave Clock Timing
DS339PP4 17
CS49300 Family DSP

1.12. Switching Characteristics — CMPDAT, CMPCLK

(TA = 25°C; VA, VD[3:1] = 2.5 V±5%; Inputs: Logic 0 = DGND, Logic 1 = VD, CL = 20 pF)
Parameter Symbol Min Max Unit
Serial compressed data clock CMPCLK period T
CMPDAT setup before CMPCLK high T
CMPDAT hold after CMPCLK high T
CMPCLK
CMPDAT
cmpclk
cmpsu
cmphld
-27MHz
5-ns
3-ns
T
cm psu
T
cm p clk
T
cmp hld
Figure 10. Serial Compressed Data Timing

1.13. Switching Characteristics — Parallel Data Input

(TA = 25°C; VA, VD[3:1] = 2.5 V±5%; Inputs: Logic 0 = DGND, Logic 1 = VD, CL = 20 pF)
Parameter Symbol Min Max Unit
CMPCLK Period T
DATA[7:0] setup before CMPCLK high T
DATA[7:0] hold after CMPCLK high T
cmpclk
cmpsu
cmphld
Notes: 1. Certain timing parameters are normalized to the DSP clock, DCLK, in nanoseconds. The DSP clock can
be defined as follows:
External CLKIN Mode: DCLK == CLKIN/4 before and during boot DCLK == CLKIN after boot
Internal Clock Mode: DCLK == 10MHz before and during boot, i.e. DCLK == 100ns DCLK == 65 MHz after boot, i.e. DCLK == 15.4ns
4*DCLK + 10 ns
10 ns
10 ns
It should be noted that DCLK for the internal clock mode is application specific. The application code users guide should be checked to confirm DCLK for the particular application.
CMPCLK
DATA[7:0]
T
cmpsu
T
cmpclk
T
cmphld
Figure 11. Parallel Data Timing (when not in a parallel control mode)
18 DS339PP4

1.14. Switching Characteristics — Digital Audio Output

CS49300 Family DSP
(TA = 25°C; VA, VD[3:1] = 2.5 V±5%; Inputs: Logic 0 = DGND, Logic 1 = VD, CL = 20 pF)
Parameter Symbol Min Max Unit
MCLK period (Note 1) T
mclk
40 - ns
MCLK duty cycle (Note 1) 40 60 %
SCLK period for Master or Slave mode (Note 2) T
sclk
40 - ns
SCLK duty cycle for Master or Slave mode (Note 2) 45 55 %
Master Mode (Note 2, 3)
SCLK delay from MCLK rising edge, MCLK as an input T
SCLK delay from MCLK rising edge, MCLK as an output T
LRCLK delay from SCLK transition (Note 4) T
AUDATA2–0 delay from SCLK transition (Note 4) T
sdmi
sdmo
lrds
adsm
–5 10 ns
15 ns
10 ns
10 ns
Slave Mode (Note 5)
Time from active edge of SCLKN1(2) to LRCLKN1(2) transition T
Time from LRCLKN1(2) transition to SCLKN1(2) active edge T
AUDATA2–0 delay from SCLK transition (Note 4, 6) T
stlr
lrts
adss
10 - ns
10 - ns
15 ns
Notes: 1. MCLK can be an input or an output. These specifications apply for both cases.
2. Master mode timing specifications are characterized, not production tested.
3. Master mode is defined as the CS493XX driving both SCLK and LRCLK. When MCLK is an input, it is divided to produce SCLK and LRCLK.
4. This timing parameter is defined from the non-active edge of SCLK. The active edge of SCLK is the point at which the data is valid.
5. Slave mode is defined as SCLK and LRCLK being driven by an external source.
6. This specification is characterized, not production tested.
DS339PP4 19
MCLK (Input)
SCLK (Output)
MCLK (Output)
SCLK (Output)
SCLK
LRCLK
T
sdmi
T
sdmo
MASTER MODE
T
sclk
T
lrds
CS49300 Family DSP
T
mclk
T
mclk
AUDATA2:0
SCLK
LRCLK
AUDATA2:0
T
adsm
SLAVE MODE
T
T
lrts
T
adss
sclk
T
stlr
Figure 12. Digital Audio Output Data, Input and Output Clock Timing
20 DS339PP4
CS49300 Family DSP

2. FAMILY OVERVIEW

The CS49300 family contains system on a chip solutions for multichannel audio decompression and digital signal processing. The CS49300 family is split into 4 sub-families targeted at the DVD, broadcast and audio/video receiver (AVR), and effects and post processing markets.
This document focuses on the electrical features and characteristics of these parts. Different features are described from a hardware design perspective. It should be understood that not all of the features portrayed in this document are supported by all of the versions of application code available. The application code user’s guides should be consulted to confirm which hardware features are supported by the software.
The parts use a combination of internal ROM and RAM. Depending on the application being used, a download of application software may be required each time the part is powered up. This document uses “download” and “code load” interchangeably. These terms should be interpreted as meaning the transfer of application code into the internal memory of the part from either an external microcontroller or through the autoboot procedure.

2.1. Multichannel Decoder Family of Parts

CS49300 - DVD Audio Decoder. The CS49300 device is targeted at audio decoding in the DVD via ES or PES in a serial or parallel bursty fashion for MLP or for DVD Audio Pack Layer Support. (All the other decoding/processing algorithms listed below require delivery of PCM or IEC61937­packed compressed data via I2S or LJ formatted digital audio to the CS49300). Specifically the CS49300 will support all of the following decoding/processing standards:
Meridian Lossless Packing™ (MLP™)* (for ES and PES data delivery only)
DVD Audio Pack Layer Support* (for ES and PES data delivery only)
Dolby Digital™ (AC-3™) with Dolby Pro Logic
Dolby Digital™ with Dolby Pro Logic™ plus Cirrus Extra Surround
Dolby Digital™ with Dolby Pro Logic II
Dolby Digital™ with Dolby Pro Logic II™ plus Cirrus Extra Surround
Virtual Dolby Digital
MPEG-2, Advanced Audio Coding Algorithm (AAC)
MPEG Multichannel
MPEG Multichannel with Dolby Pro Logic II
MPEG Multichannel plus Cirrus Extra Surround
MPEG-1, Layer 3 (MP3)
DTS Digital Surround
DTS Digital Surround™ with Dolby Pro Logic II
DTS Digital Surround™ plus Cirrus Extra Surround
DTS-ES Extended Surround
(DTS-ES
Discrete 6.1 & Matrix 6.1)
DTS Neo:6
LOGIC5® (5.1 Channel, Max Fs=48kHz and LOGIC7® (7.1 Channel, Max Fs=96kHz)
VMAx VirtualTheater® (Virtual Dolby Digital)
SRS TruSurround™ (Virtual Dolby Digital and DTS Virtual 5.1™ Versions)
SRS Circle Surround™ I/II
HDCD
®
Cirrus P.D.F. (Dolby Pro Logic 2Fs Decoder and PCM Upsampler)
Cirrus PL2_2FS (Dolby Pro Logic II 2Fs Decoder and PCM Upsampler)
Please refer to the CS4932x/CS49330 Part Matrix vs. Code Matrix (PDF) document available from the CS49300 Web Site Page for the latest listing of audio decoding/processing algorithms. The part
DS339PP4 21
CS49300 Family DSP
will also support PES layer decode for audio/video synchronization and DVD Audio Pack layer support. The CS49300 will support all of the above decoding and PCM processing standards.
CS4931X - Broadcast Sub-family. The CS4931X sub-family is targeted at audio decoding in the broadcast markets in systems such as digital TV, HDTV, set-top boxes and digital audio broadcast units (digital radios). Specifically the CS4931X sub-family will support the following decode standards:
Dolby Digital™ (AC-3™) with Dolby Pro
Logic
MPEG-2, Advanced Audio Coding Algorithm (AAC)
MPEG-1, Layers 1, 2 Stereo
MPEG-1, Layers 3 (MP3) Stereo
MPEG-2, Layer 2 Stereo
MPEG-2, Layer 3 (MP3) Stereo
The part will also support PES layer decode for audio/video synchronization. The CS49310 will support all of the above decode standards while other parts in the CS4931X sub-family will decode subsets of the above audio decoding standards.
Dolby Digital™ with Dolby Pro Logic II™ plus Cirrus Extra Surround
Virtual Dolby Digital
MPEG-2, Advanced Audio Coding Algorithm (AAC)
MPEG Multichannel
MPEG Multichannel with Dolby Pro Logic II
MPEG Multichannel plus Cirrus Extra Surround
MPEG-1, Layer 3 (MP3)
DTS Digital Surround
DTS Digital Surround™ with Dolby Pro Logic II
DTS Digital Surround™ plus Cirrus Extra Surround
DTS-ES Extended Surround
(DTS-ES
Discrete 6.1 & Matrix 6.1)
DTS Neo:6
LOGIC5® (5.1 Channel, Max Fs=48kHz and LOGIC7® (7.1 Channel, Max Fs=96kHz)
VMAx VirtualTheater® (Virtual Dolby Digital)
SRS TruSurround™ (Virtual Dolby Digital and DTS Virtual 5.1™ Versions)
CS4932X - Audio/Video Receiver (AVR) Sub­family. The CS4932X sub-family is targeted at
audio decoding in the audio/video receiver markets. Typical applications will include amplifiers with integrated decoding capability, outboard decoder pre-amplifiers, car radios and
SRS Circle Surround™ I/II
HDCD
®
Cirrus P.D.F. (Dolby Pro Logic 2Fs Decoder and PCM Upsampler)
Cirrus PL2_2FS (Dolby Pro Logic II 2Fs Decoder and PCM Upsampler)
any system where the compressed audio is received in an IEC61937 format. Specifically the CS4932X sub-family will support the following decode standards:
The CS49326 will support all of the above decode standards while other parts in the CS4932X sub­family will decode subsets of the above audio decoding standards.
Dolby Digital™ (AC-3™) with Dolby Pro Logic
Except for the CS49329 which offers AAC support this subfamily will offer integrated ROM support
Dolby Digital™ with Dolby Pro Logic™ plus Cirrus Extra Surround
Dolby Digital™ with Dolby Pro Logic II
22 DS339PP4
for the AC-3 code, DTS code, Cirrus Original Surround code and DTS tables. The CS49329 will
CS49300 Family DSP
require an external download for all applications but will still support the DTS tables on chip.
CS49330 - General Purpose, Car Audio Processor, PCM Effects & Multichannel Post­Processing Device. The CS49330 sub-family is
targeted at any system that may require post processing or multichannel effects processing, a general purpose MPEG Stereo, MPEG Multichannel, MP3, decoder or PCM effects processor or mixer, or for car audio applications. Typical applications will include multichannel amplifiers, outboard pre-amplifiers, HDTVs and car radios. Specifically the CS49330 sub-family will support the following:
Cirrus Digital Post-Processor, Home THX Cinema® and THX Surround EX™ 5.1 and 7.1 Channel Post-Processors
Any general purpose application which only requires MPEG Multichannel; MPEG-1, Layer 3; MPEG-2, Layer 3*, or C.O.S. PCM Effects Processor. (MPEG-1, Layer 3 and MPEG-2, Layer 3 are only available for applications where serial or parallel bursty elementary stream data is available. MPEG-1, Layer 3
audio decoding is only available for IEC61937­packed MP3 data.)
Multichannel Effects Processing
General purpose broadcast application that only requires MPEG-1 Stereo (Layers 1, 2, or
3) and MPEG-2 Stereo (Layers 2 or 3)
Car Audio Post-Processor
This sub-family will continue to grow as more post processing algorithms are supported.
This data sheet covers the CS49300, CS4931X, CS4932X and CS49330 sub-families and devices. These parts are identical from an external electrical perspective. Internally, each part has been tailored for supporting different decoding standards. For this document individual part numbers have been replaced by CS493XX if the description applies to the entire CS49300 Family DSP. If a description only applies to a particular sub-family, CS49300, CS4931X, CS4932X or CS49330 will be used. When CS49300, CS4931X, CS4932X or CS49330 is used, this should be interpreted as applying to all parts within the particular sub-family or a particular device.
DS339PP4 23
CS49300 Family DSP

3. TYPICAL CONNECTION DIAGRAMS

Six typical connection diagrams have been presented to illustrate using the part with the different communication modes available. They are as follows:
Figure 13, "I2C® Control" on page 26 Figure 14, "I2C® Control with External Memory" on page 27 Figure 15, "SPI Control" on page 28 Figure 16, "SPI Control with External Memory" on page 29 Figure 17, "Intel® Parallel Control Mode" on page 30 Figure 18, "Motorola® Parallel Control Mode" on page 31
The following should be noted when viewing the typical connection diagrams:
The pins are grouped functionally in each of the typical connection diagrams. Please be aware that the CS493XX symbol may appear differently in each diagram.
of integration, many of these pins are internally multiplexed to serve multiple purposes. Some pins are designed to operate in one mode at power up, and serve a different purpose when the DSP is running. Other pins have functionality which can be controlled by the application running on the DSP. In order to better explain the behavior of the part, the pins which are multiplexed have been given multiple names. Each name is specific to the pin’s operation in a particular mode.
An example of this would be the use of pin 20 in one of the serial control modes. During the boot period of the CS493XX, pin 20 is called ABOOT. ABOOT is sampled on the rising edge of RESET. If ABOOT is high the host must download code to the DSP. If ABOOT is low when sampled, the CS493XX goes into autoboot mode and loads itself with code by generating addresses and reading data on EMAD[7:0]. When the part has been loaded with code and is running an application, however, pin 20 is called INTREQ. INTREQ is an open drain output used to inform the host that the DSP has an outgoing message which should be read.
The external memory interface is only supported when a serial communication mode has been chosen.
The typical connection diagrams demonstrate the PLL being used (CLKSEL is pulled low). To use CLKIN as the DSP clock, CLKSEL should be pulled high. The system designer must be aware that certain software features may not be available if external CLKIN is used as the DSP must run slower when external CLKIN is used. The system designer should also be aware of additional duty cycle requirements when using external CLKIN as a DSP clock. It is highly suggested that the system designer use the PLL and pull CLKSEL low.

3.1. Multiplexed Pins

The CS493XX family of digital signal processors (DSPs) incorporate a large amount of flexibility into a 44 pin package. Because of the high degree
In this document, pins will be referred to by their functionality. Section 12, “Pin Descriptions” on
page 80 describes each pin of the CS493XX and
lists all of its names. Please refer to this section when exact pin numbers are in question.
The part has 12 general purpose input and output (GPIO[11:0]) pins that all have multiple functionality. While in one of the parallel communication modes (Section 6.2, “Parallel Host
Communication” on page 41), these pins are used
to implement the parallel host communication interface. While in one of the serial host modes these pins are used to implement an external memory interface. Alternatively while in one of the serial host modes these pins could be used for another general purpose if the application code has been programmed to support the special purpose. In this document the pins are referenced by the
24 DS339PP4
CS49300 Family DSP
name corresponding to their particular use. Sometimes GPIO[11:0], or some subset thereof, is used when referring to the pins in a general sense.

3.2. Termination Requirements

The CS493XX incorporates open drain pins which must be pulled high for proper operation. INTREQ (pin 20) is always an open drain pin which requires a pull-up for proper operation. When in the I2C serial communication mode, the SCDIO signal (pin
19) is open drain and thus requires a pull-up for proper operation.
Due to the internal, multiplexed design of the pins, certain signals may or may not require termination depending on the mode being used. If a parallel host communication mode is not being used, GPIO[11:0] must be terminated or driven as these pins will come up as high impedance inputs and will be prone to oscillation if they are left floating. The specific termination requirements may vary since the state of some of the GPIO pins will determine the communication mode at the rising edge of reset (please see Section 6, “Control” on
page 32 for more information). For the explicit
termination requirements of each communication mode please see the typical connection diagrams.
Generally a 4.7k Ohm resistor is recommended for open drain pins. The communication mode setting pins (please see Section 6, “Control” on page 32 for more information) should also be terminated with a
4.7k resistor. A 10k Ohm resistor is sufficient for the GPIO pins and unused inputs.

3.3. Phase Locked Loop Filter

The internal phase locked loop (PLL) of the CS493XX requires an external filter for successful operation. The topology of this filter is shown in the typical connection diagrams. The component values are shown below. Care should be taken when laying out the filter circuitry to minimize trace lengths and to avoid any close routing of high frequency signals. Any noise coupled on to the
filter circuit will be directly coupled into the PLL, which could affect performance.
Reference Designator Value
C1 2.2uF
C2 220pF
C3 10nF
R1 200k Ohm
Table 1. PLL Filter Component Values

4. POWER

The CS493XX requires a 2.5V digital power supply for the digital logic within the DSP and a
2.5V analog power supply for the internal PLL. There are three digital power pins, VD1, VD2 and VD3, along with three digital grounds, DGND1, DGND2 and DGND3. There is one analog power pin, VA and one analog ground, AGND. The DSP will perform at its best when noise has been eliminated from the power supply. The recommendations given below for decoupling and power conditioning of the CS493XX will help to ensure reliable performance.

4.1. Decoupling

It is good practice to decouple noise from the power supply by placing capacitors directly between the power and ground of the CS493XX. Each pair of power pins (VD1/DGND, VD2/DGND, VD3/DGND, VA/AGND) should have its own decoupling capacitors. The recommended procedure is to place both a 0.1uF and a 1uF capacitor as close as physically possible to each power pin. The 0.1uF capacitor should be closest to the part (typically 5mm or closer).

4.2. Analog Power Conditioning

In order to obtain the best performance from the CS493XX’s internal PLL, the analog power supply (VA) must be as clean as possible. A ferrite bead should be used to filter the 2.5V power supply for the analog portion of the CS493XX. This power
DS339PP4 25
+2.5 Supply (+2.5VD)
1 uF 0.1 uF
+
Resistor Pack 10k
I2C INTERFACE
MICROCONTROLLER
CS49300 Family DSP
NOTE: A capacitor pair (1 uF and 0.1 uF) must be supplied for each power pin. NOTE: +2.5VA is simply +2.5VD after filtering through the ferrite bead. Pin 32 must be referenced to +2.5VA
0.1 uF
3.3k
10k
10k
EMAD_GPIO [8:0]
1 uF 0.1 uF
+
1 uF
+
+2.5VD+2.5VD
3.3k
4.7k
4.7k
3.3k
37
DD
38
DC
20
INTREQ
19
SCDIO
6
SCDIN
18
CS
7
SCCLK
36
RESET
4
WR__GPIO10
5
RD__GPIO11
21
GPIO8
8
GPIO7
9
GPIO6
10
GPIO5
11
GPIO4
14
GPIO3
15
GPIO2
16
GPIO1
17
GPIO0
FERRITE BEAD
1
12
23
VD1
VD2
VD3
CS493XX
1 uF 0.1 uF
+
DGND1
DGND2
2
13
DGND3
24
AGND
35
+
34
VA
MCLK
SCLK
LRCLK
AUDATA0
AUDATA1
AUDATA2
CMPDAT
CMPCLK
CMPREQ
SDATAN
SCLKN
SLRCLKN
XMT958
CLKIN
CLKSEL
FLT2
FLT1
+2.5VA
47 uF
44
43
42
41
40
39
27
28
29
22
25
26
3
30
31
32
+2.5VA
33
33
33
DAC (S)
DIR or ADC [S]
OPT_TX
33
OSCILLATOR
10k
C1
+
R1
3.3k
C2
C3
Figure 13. I2C® Control
26 DS339PP4
Loading...
+ 60 hidden pages